File: _tinygrad.py

package info (click to toggle)
python-einx 0.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,112 kB
  • sloc: python: 11,619; makefile: 13
file content (222 lines) | stat: -rw-r--r-- 7,472 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from .base import *
import einx.tracer as tracer
from einx.tracer.tensor import op
import einx, types
from functools import partial
import functools


def create():
    tTensor = tracer.import_("Tensor", from_="tinygrad")
    tdtypes = tracer.import_("dtypes", from_="tinygrad")
    from tinygrad import Tensor, dtypes

    def scalar_to_tensor(x):
        if isinstance(x, (einx.tracer.Scalar, float, int)):
            return einx.tracer.apply(
                tTensor,
                args=[x],
                output=einx.tracer.Tensor([]),
            )
        else:
            return x

    def elementwise(func, convert_all_to_tensor=False):
        @einx.trace
        @functools.wraps(func)
        def outer(*args):
            if convert_all_to_tensor:
                args = [scalar_to_tensor(a) for a in args]
            else:
                args = [a for a in args]
                args[0] = scalar_to_tensor(args[0])
            return op.elementwise(func)(*args)

        return outer

    def reduce(func):
        @einx.trace
        @functools.wraps(func)
        def reduce(tensor, axis=None, **kwargs):
            keepdims = kwargs.get("keepdims", False)
            if axis is None:
                shape = ()
            else:
                axes = [axis] if isinstance(axis, int) else axis
                shape = list(tensor.shape)
                if keepdims:
                    for a in axes:
                        shape[a] = 1
                else:
                    for a in sorted(axes, reverse=True):
                        del shape[a]
                kwargs = {**kwargs, **{"axis": axis}}
            if "keepdims" in kwargs:
                kwargs["keepdim"] = kwargs.pop("keepdims")
            return tracer.apply(func, args=[tensor], kwargs=kwargs, output=tracer.Tensor(shape))

        return reduce

    def to_dtype(x):
        if isinstance(x, str):
            return getattr(dtypes, x)
        else:
            return x

    to_dtype2 = to_dtype

    class tinygrad(Backend):
        name = "tinygrad"
        tensor_types = [Tensor]

        to_dtype = staticmethod(to_dtype2)

        @staticmethod
        @einx.trace
        def to_tensor(tensor, shape):
            return einx.tracer.apply(
                tTensor,
                args=[tensor],
                output=einx.tracer.Tensor(shape),
            )

        reshape = op.reshape(tTensor.reshape)
        transpose = op.transpose(tTensor.permute)
        broadcast_to = op.broadcast_to(tTensor.expand)

        @classmethod
        @einx.trace
        def einsum(backend, equation, *tensors):
            x = equation.split("->")
            if len(x) != 2:
                raise ValueError("Invalid equation")
            inputs, output = x
            inputs = inputs.split(",")
            if len(inputs) != len(tensors):
                raise ValueError("Invalid equation")
            inputs = [x.strip().replace(" ", "") for x in inputs]
            tensors = [t for t in tensors]

            scalars = []
            for i in list(range(len(inputs)))[::-1]:
                if (len(inputs[i]) > 0) != (len(tensors[i].shape) > 0):
                    raise ValueError("Invalid equation")
                if len(inputs[i]) == 0:
                    scalars.append(tensors[i])
                    inputs.pop(i)
                    tensors.pop(i)

            if len(tensors) > 1:
                equation = ",".join(inputs) + "->" + output
                x = op.einsum(tTensor.einsum)(equation, *tensors)
            elif len(tensors) == 1:
                x = tensors[0]
            else:
                x = scalars[0]
                scalars = scalars[1:]
            for scalar in scalars:
                x = backend.multiply(x, scalar)

            return x

        @staticmethod
        @einx.trace
        def arange(n, dtype="int32"):
            if isinstance(dtype, str):
                dtype = getattr(tdtypes, dtype)
            return op.arange(tTensor.arange)(n, dtype=dtype)

        @staticmethod
        @einx.trace
        def concatenate(tensors, axis=0):
            shape = list(tensors[0].shape)
            shape[axis] = sum(tensor.shape[axis] for tensor in tensors)
            return tracer.apply(
                tTensor.cat, args=[*tensors], kwargs={"dim": axis}, output=tracer.Tensor(shape)
            )

        add = associative_binary_to_nary(elementwise(tTensor.add))
        subtract = elementwise(tTensor.sub)
        multiply = associative_binary_to_nary(elementwise(tTensor.mul))
        true_divide = elementwise(tTensor.div)
        floor_divide = elementwise(partial(tTensor.div, upcast=False))
        divide = elementwise(tTensor.div)
        logical_and = associative_binary_to_nary(elementwise(tTensor.mul))
        logical_or = associative_binary_to_nary(elementwise(tTensor.add))
        where = elementwise(tTensor.where)
        less = elementwise(tracer.Operator("<"))
        less_equal = elementwise(tracer.Operator("<="))
        greater = elementwise(tracer.Operator(">"))
        greater_equal = elementwise(tracer.Operator(">="))
        equal = elementwise(tracer.Operator("=="))
        not_equal = elementwise(tracer.Operator("!="))
        maximum = associative_binary_to_nary(elementwise(tTensor.maximum))
        minimum = associative_binary_to_nary(elementwise(tTensor.minimum))

        sum = reduce(tTensor.sum)
        mean = reduce(tTensor.mean)
        var = reduce(tTensor.var)
        std = reduce(tTensor.std)

        count_nonzero = reduce(tTensor.sum)
        min = reduce(tTensor.min)
        max = reduce(tTensor.max)
        # tinygrad's logsumexp currently does not support multiple axes, so
        # we use our custom implementation instead:
        # logsumexp = reduce(tTensor.logsumexp)

        log = op.elementwise(tTensor.log)
        exp = op.elementwise(tTensor.exp)
        sqrt = op.elementwise(tTensor.sqrt)
        rsqrt = op.elementwise(tTensor.rsqrt)
        square = op.elementwise(tTensor.square)

        @staticmethod
        @einx.trace
        def get_at(tensor, coordinates):
            raise NotImplementedError()

        @staticmethod
        @einx.trace
        def set_at(tensor, coordinates, updates):
            raise NotImplementedError()

        @staticmethod
        @einx.trace
        def add_at(tensor, coordinates, updates):
            raise NotImplementedError()

        @staticmethod
        @einx.trace
        def subtract_at(tensor, coordinates, updates):
            raise NotImplementedError()

        flip = op.keep_shape(tTensor.flip)
        softmax = op.keep_shape(tTensor.softmax)
        log_softmax = op.keep_shape(tTensor.log_softmax)

        @staticmethod
        @einx.trace
        def stop_gradient(tensor):
            return tensor  # TODO: set requires_grad to False?

        @staticmethod
        @einx.trace
        def vmap(op, in_axes, out_axes, input_shapes, output_shapes):
            raise NotImplementedError(
                "Functions relying on vmap are not supported for the tinygrad backend"
            )

        class random:
            @einx.trace
            def bernoulli(rng, p, shape):
                return (
                    einx.tracer.apply(
                        tTensor.rand,
                        args=[*shape],
                        output=einx.tracer.Tensor(shape),
                    )
                    <= p
                )

    return tinygrad()