1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
import sys
import einx
import threading
import importlib
import numpy as np
from .base import Backend
backends = []
backend_factories = {} # module-name: [backend-factory]
tensortype_to_backend = {}
name_to_backend = {}
lock = threading.RLock()
def register_for_module(module_name, backend_factory):
with lock:
if module_name in sys.modules:
# Module is already imported -> create backend now
register(backend_factory())
else:
# Module is not yet imported -> register factory
if not module_name in backend_factories:
backend_factories[module_name] = []
backend_factories[module_name].append(backend_factory)
def register(backend):
with lock:
if not isinstance(backend, Backend):
raise ValueError("Backend must be an instance of einx.backend.Backend")
backends.append(backend)
for type in backend.tensor_types:
tensortype_to_backend[type] = backend
name_to_backend[backend.name] = backend
return backend
from . import _numpy
from . import _torch
from . import _tensorflow
from . import _jax
from . import _dask
from . import _mlx
from . import _tinygrad
# Create numpy backend now
numpy = register(_numpy.create())
# Register other backends to be created after the corresponding modules are imported
register_for_module("torch", _torch.create)
register_for_module("tensorflow", _tensorflow.create)
register_for_module("jax", _jax.create)
register_for_module("dask.array", _dask.create)
register_for_module("mlx", _mlx.create)
register_for_module("tinygrad", _tinygrad.create)
# Check if any new modules have been imported and construct backends that have been
# registered for them
def _update():
for module_name in list(backend_factories.keys()):
if module_name in sys.modules:
for factory in list(backend_factories[module_name]):
register(factory())
del backend_factories[module_name]
def _get1(tensor):
backend = tensortype_to_backend.get(type(tensor), None)
if not backend is None:
return backend
_update()
for backend in backends:
if any(isinstance(tensor, type) for type in backend.tensor_types) and not isinstance(
tensor, np.ndarray
):
# Found matching backend
break
else:
return None
tensortype_to_backend[type(tensor)] = backend
return backend
def get(arg):
with lock:
if isinstance(arg, str):
if arg in name_to_backend:
return name_to_backend[arg]
_update()
if arg in name_to_backend:
return name_to_backend[arg]
raise ValueError(f"Backend {arg} not found")
else:
tensors = arg
if len(tensors) == 1:
return _get1(tensors[0])
backend = None
for tensor in tensors:
if tensor is not None:
backend2 = _get1(tensor)
if not backend2 is None:
if (
backend is not None
and backend != backend2
and backend != numpy
and backend2 != numpy
):
raise ValueError(
"Got tensors with conflicting backends: "
f"{backend.__name__} and {backend2.__name__}"
)
if backend is None or backend2 != numpy:
backend = backend2
if backend is None:
raise ValueError(f"Could not determine the backend to use in this operation")
else:
return backend
|