1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
import einx
import einx.op.util as util
import numpy as np
from functools import partial
from typing import Callable, Union, Any
import numpy.typing as npt
tP = einx.tracer.import_("PartitionSpec", "P", from_="jax.sharding")
tNamedSharding = einx.tracer.import_("NamedSharding", from_="jax.sharding")
tMesh = einx.tracer.import_("Mesh", from_="jax.sharding")
tjax = einx.tracer.import_("jax")
tnp = einx.tracer.import_("numpy", as_="np")
def _is_composed(expr):
node = expr
while node is not None:
if isinstance(node, einx.expr.stage3.Composition):
return True
node = node.parent
return False
@einx.jit(
trace=lambda t, c: lambda expr_in, tensor_in, expr_out, backend=None: c(
expr_in,
t(tensor_in),
expr_out,
)
)
def shard_stage3(expr_in, tensor_in, expr_out, mesh=None, backend=None):
import jax
for root in [expr_in, expr_out]:
for expr in root.all():
if isinstance(expr, einx.expr.stage3.Concatenation):
raise ValueError("Concatenation not allowed")
if isinstance(expr, einx.expr.stage3.Marker):
child = expr
while child.parent is not None:
if (
isinstance(child.parent, einx.expr.stage3.List)
and _is_composed(child.parent)
and child is not child.parent.children[0]
):
raise ValueError(
"If device axes are used within a composition they "
"must appear as the left-most member of the composition"
)
child = child.parent
# Call tensor factories
tensor_in = einx.tracer.call_factory(tensor_in, expr_in.shape, backend=backend)
(tensor_in,) = backend.all_to_tensor([tensor_in])
# Flatten expressions
(expr_in,), (tensor_in,) = util.flatten([expr_in], [tensor_in], backend=backend)
marked_axes = tuple(
axis
for axis in expr_in
if isinstance(axis, einx.expr.stage3.Axis) and einx.expr.stage3.is_marked(axis)
)
if mesh is None:
# Construct new mesh
devices = tnp.array(tjax.devices()).reshape(tuple(a.value for a in marked_axes))
mesh = tMesh(devices, axis_names=tuple(a.name for a in marked_axes))
elif isinstance(mesh, jax.sharding.Mesh):
# Got mesh -> check that marked axes match mesh
marked_names = set(a.name for a in marked_axes)
mesh_names = set(str(a) for a in mesh.axis_names)
if not marked_names.issubset(mesh_names):
raise ValueError(
f"Marked axes must be subset of mesh axes. Got marked axes {marked_names} and mesh axes {mesh_names}"
)
else:
# Got list of devices -> construct new mesh
devices = tnp.array(mesh).reshape(tuple(a.value for a in marked_axes))
mesh = tMesh(devices, axis_names=tuple(a.name for a in marked_axes))
# Construct partition spec
axes = tuple(axis for axis in expr_in if isinstance(axis, einx.expr.stage3.Axis))
partition_spec = [axis.name if einx.expr.stage3.is_marked(axis) else None for axis in axes]
partition_spec = tP(*partition_spec)
# Shard tensor
sharding = tNamedSharding(mesh, partition_spec)
tensor_in = tjax.device_put(tensor_in, sharding)
# Unflatten output expressions
(tensor_in,) = util.unflatten([expr_in], [tensor_in], [expr_out], backend=backend)
return tensor_in, expr_in
@einx.lru_cache
def parse(description, tensor_shape, cse=True, mesh=None, jax_devices=None, **parameters):
import jax
description, parameters = einx.op.util._clean_description_and_parameters(
description, parameters
)
op = einx.expr.stage1.parse_op(description)
if len(op) != 1:
raise ValueError(f"Expected exactly one expression, got {len(op)}")
def solve(eqs):
return einx.expr.solve(
[einx.expr.Equation(op[0][0], tensor_shape)]
+ eqs
+ [
einx.expr.Equation(k, np.asarray(v)[..., np.newaxis], depth1=None, depth2=None)
for k, v in parameters.items()
],
cse=cse,
)[0]
if mesh is None:
# If no mesh is given, create new mesh of all devices
try:
expr_in = solve([])
except einx.expr.SolveException as e:
# Try with additional constraint of total number of devices
expr_mesh = einx.expr.stage1.Composition(einx.expr.stage1.get_marked(op[0][0]))
mesh_eq = einx.expr.Equation(expr_mesh, [len(jax.devices())])
try:
expr_in = solve([mesh_eq])
except einx.expr.SolveException:
# If it still fails, reraise original exception
raise e
elif isinstance(mesh, jax.sharding.Mesh):
# Add constraints for existing mesh axes
expr_mesh = einx.expr.stage1.Marker(
einx.expr.stage1.List.maybe([
einx.expr.stage1.NamedAxis(name) for name in mesh.axis_names
])
)
mesh_eq = einx.expr.Equation(expr_mesh, mesh.devices.shape)
expr_in = solve([mesh_eq])
elif isinstance(mesh, (list, tuple)):
# Add constraint for number of devices
expr_mesh = einx.expr.stage1.Composition(einx.expr.stage1.get_marked(op[0][0]))
mesh_eq = einx.expr.Equation(expr_mesh, [len(mesh)])
expr_in = solve([mesh_eq])
expr_out = expr_in.__deepcopy__()
return expr_in, expr_out
@einx.traceback_util.filter
@einx.jit(
trace=lambda t, c: lambda description, tensor, mesh=None, backend=None, **kwargs: c(
description, t(tensor), mesh=mesh, **kwargs
)
)
def shard(
description: str,
tensor: einx.Tensor,
mesh: Any = None,
backend: Union[einx.Backend, str, None] = "jax",
cse: bool = True,
**parameters: npt.ArrayLike,
) -> einx.Tensor:
"""Shards a tensor over a mesh of devices.
*This function is currently experimental and will likely change in future versions.*
*This function is currently only supported for Jax: A sharding is created
based on the given expression, and applied to the tensor using* ``jax.device_put``.
The tensor is sharded across the marked axes in the input expression. The marked axes
match the axis names and shape of the mesh:
>>> x = jnp.ones((2, 4, 128))
>>> x = einx.experimental.shard("[d1 d2] c")
>>> x.sharding
NamedSharding(mesh=Mesh('d1': 2, 'd2': 4), spec=PartitionSpec('d1', 'd2', None))
Axis compositions can be used to apply the
`sharding rules of Jax <https://jax.readthedocs.io/en/latest/notebooks/Distributed_arrays_and_automatic_parallelization.html>`_,
where tensor axes are evenly divided by the number of shards:
>>> x = jnp.ones((128, 640, 480, 3))
>>> x = einx.experimental.shard("([batch] _) ...", x)
>>> x.sharding
NamedSharding(mesh=Mesh('batch': 8), spec=PartitionSpec('batch',))
If possible, the sharding is created over all devices. ``_`` is a regular axis name,
and its value is determined by :doc:`einx's expression solver </faq/solver>`.
Optionally, an existing mesh can be passed:
>>> from jax.sharding import Mesh
>>> devices = np.asarray(jax.devices()).reshape(4, 2)
>>> mesh = Mesh(devices, axis_names=("d1", "d2"))
>>> x = jnp.ones((4, 1024, 1024))
>>> x = einx.experimental.shard("a ([d2] b) ([d1] c)", x, mesh=mesh)
>>> x.sharding
NamedSharding(mesh=Mesh('d1': 4, 'd2': 2), spec=PartitionSpec(None, 'd2', 'd1'))
The array is replicated over all mesh axes that are not part of the expression:
>>> x = jnp.ones((1024, 1024))
>>> x = einx.experimental.shard("a ([d1] b)", x, mesh=mesh)
>>> x.sharding
NamedSharding(mesh=Mesh('d1': 4, 'd2': 2), spec=PartitionSpec(None, 'd1',))
Args:
description: Description string in Einstein notation (see above).
tensor: Input tensor or tensor factory matching the description string.
mesh: Mesh or list of devices to shard the tensor over. If not given, a new mesh over all
available devices will be created matching the axes in the given expression.
Defaults to ``None``.
cse: Whether to apply common subexpression elimination to the expressions. Defaults
to True.
graph: Whether to return the graph representation of the operation instead of
computing the result. Defaults to False.
**parameters: Additional parameters that specify values for single axes, e.g. ``a=4``.
Returns:
The sharded tensor if ``graph=False``, otherwise the graph
representation of the operation.
"""
if backend.name != "jax":
raise NotImplementedError("einx.experimental.shard is currently only supported for Jax")
expr_in, expr_out = parse(
description, einx.tracer.get_shape(tensor), mesh=mesh, cse=cse, **parameters
)
tensor, expr_out = shard_stage3(expr_in, tensor, expr_out, mesh=mesh, backend=backend)
return tensor
shard.parse = parse
|