1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
|
from . import stage1, solver
import re
import einx
import numpy as np
from collections import defaultdict
class Expression:
def __init__(self, ellipsis_indices):
self.ellipsis_indices = ellipsis_indices
self.parent = None
@property
def depth(self):
return len(self.ellipsis_indices)
@property
def shape(self):
return tuple(i[1] for i in self.ellipsis_indices) + (len(self),)
class Composition(Expression):
def __init__(self, inner, ellipsis_indices):
Expression.__init__(self, ellipsis_indices)
self.inner = inner
inner.parent = self
def __str__(self):
return f"({self.inner})"
def __len__(self):
return 1
def __iter__(self):
yield self
def __deepcopy__(self):
return Composition(self.inner.__deepcopy__(), ellipsis_indices=self.ellipsis_indices)
def all(self):
yield self
yield from self.inner.all()
class List(Expression):
@staticmethod
def maybe(l, *args, **kwargs):
if len(l) == 1:
return l[0]
else:
return List(l, *args, **kwargs)
def __init__(self, children, ellipsis_indices):
Expression.__init__(self, ellipsis_indices)
self.children = children
for c in children:
c.parent = self
def __str__(self):
return " ".join([str(c) for c in self.children])
def __len__(self):
return sum(len(c) for c in self.children)
def __iter__(self):
for c in self.children:
yield from c
def __deepcopy__(self):
return List(
[c.__deepcopy__() for c in self.children], ellipsis_indices=self.ellipsis_indices
)
def all(self):
yield self
for c in self.children:
yield from c.all()
class NamedAxis(Expression):
def __init__(self, name, ellipsis_indices):
Expression.__init__(self, ellipsis_indices)
self.name = name
postfix = ""
for idx, _num in self.ellipsis_indices:
postfix = postfix + "." + str(idx)
if not self.name.endswith(postfix):
self.name = self.name + postfix
def __str__(self):
return self.name
def __len__(self):
return 1
def __iter__(self):
yield self
def __deepcopy__(self):
return NamedAxis(self.name, ellipsis_indices=self.ellipsis_indices)
def all(self):
yield self
class UnnamedAxis(Expression):
def __init__(self, value, ellipsis_indices):
Expression.__init__(self, ellipsis_indices)
self.value = value
def __str__(self):
return str(self.value)
def __len__(self):
return 1
def __iter__(self):
yield self
def __deepcopy__(self):
return UnnamedAxis(self.value, ellipsis_indices=self.ellipsis_indices)
def all(self):
yield self
class Concatenation(Expression):
def __init__(self, children, ellipsis_indices):
Expression.__init__(self, ellipsis_indices)
for c in children:
if len(c) != 1:
raise ValueError(
"Concatenation can only be used on expressions of length 1, "
f"but got expression '{c}'"
)
self.children = children
for c in children:
c.parent = self
def __str__(self):
return "+".join([str(c) for c in self.children])
def __len__(self):
return 1
def __iter__(self):
yield self
def __deepcopy__(self):
return Concatenation(
[c.__deepcopy__() for c in self.children], ellipsis_indices=self.ellipsis_indices
)
def all(self):
yield self
for c in self.children:
yield from c.all()
class Marker(Expression):
@staticmethod
def maybe(inner, *args, **kwargs):
if len(inner) == 0:
return inner
else:
return Marker(inner, *args, **kwargs)
def __init__(self, inner, ellipsis_indices):
Expression.__init__(self, ellipsis_indices)
self.inner = inner
inner.parent = self
assert len(inner) > 0
def __str__(self):
return f"[{self.inner}]"
def __len__(self):
return len(self.inner)
def __iter__(self):
yield from self.inner
def __deepcopy__(self):
return Marker(self.inner.__deepcopy__(), ellipsis_indices=self.ellipsis_indices)
def all(self):
yield self
yield from self.inner.all()
class SolveDepthException(solver.SolveException):
def __init__(self, exprs1, exprs2, expansions1, expansions2, depths1, depths2, message):
assert (
len({
len(exprs1),
len(exprs2),
len(expansions1),
len(expansions2),
len(depths1),
len(depths2),
})
== 1
)
self.exprs1 = exprs1
self.exprs2 = exprs2
self.expansions1 = expansions1
self.expansions2 = expansions2
self.depths1 = depths1
self.depths2 = depths2
message_in = message
message = (
"Failed to solve for the depth of axes, i.e. the number of outer ellipses.\n"
"Equations:\n"
)
for expr1, expr2 in zip(exprs1, exprs2):
if expr1 is not None and expr2 is not None:
message += " "
message += f"{einx.expr.util._to_str(expr1)}"
message += " = "
message += f"{einx.expr.util._to_str(expr2)}"
message += "\n"
message += f"Reason: {message_in}"
super().__init__(message)
class SolveExpansionException(solver.SolveException):
def __init__(self, exprs1, exprs2, expansions1, expansions2, depths1, depths2, message):
assert (
len({
len(exprs1),
len(exprs2),
len(expansions1),
len(expansions2),
len(depths1),
len(depths2),
})
== 1
)
self.exprs1 = exprs1
self.exprs2 = exprs2
self.expansions1 = expansions1
self.expansions2 = expansions2
self.depths1 = depths1
self.depths2 = depths2
message_in = message
message = "Failed to solve for the number of axes in the expressions.\nEquations:\n"
for expr1, expr2 in zip(exprs1, exprs2):
if expr1 is not None and expr2 is not None:
message += " "
message += f"{einx.expr.util._to_str(expr1)}"
message += " = "
message += f"{einx.expr.util._to_str(expr2)}"
message += "\n"
message += f"Reason: {message_in}"
super().__init__(message)
def solve(exprs1, exprs2, expansions1, expansions2, depths1, depths2):
exprs1 = list(exprs1)
exprs2 = list(exprs2)
expansions1 = list(expansions1)
expansions2 = list(expansions2)
depths1 = list(depths1)
depths2 = list(depths2)
if any(
expr is not None and not isinstance(expr, stage1.Expression) for expr in exprs1 + exprs2
):
raise ValueError("Can only expand stage1.Expression")
if (
len({
len(exprs1),
len(exprs2),
len(expansions1),
len(expansions2),
len(depths1),
len(depths2),
})
!= 1
):
raise ValueError("Number of expressions, expansions and depths must be equal")
# ##### 1. Find expression depths #####
equations = []
symbolic_expr_depths = {}
for root in exprs1 + exprs2:
if root is not None:
for expr in root.all():
symbolic_expr_depths[id(expr)] = solver.Variable(
f"symbolic_expr_depths[{id(expr)}]", str(expr)
)
# Add equations: Depth relations between subexpressions
for root in exprs1 + exprs2:
if root is not None:
for expr in root.all():
if isinstance(expr, stage1.Ellipsis):
# Ellipsis increases depth by one
equations.append((
symbolic_expr_depths[id(expr)] + 1,
symbolic_expr_depths[id(expr.inner)],
))
else:
# All other expressions have the same depth as their children
for child in expr.direct_children:
equations.append((
symbolic_expr_depths[id(expr)],
symbolic_expr_depths[id(child)],
))
# Add equations: Depth arguments
for root, depth in zip(exprs1 + exprs2, depths1 + depths2):
if root is not None and depth is not None:
equations.append((symbolic_expr_depths[id(root)], depth))
# Add equations: Root depths
for root1, root2, expansion1, expansion2 in zip(exprs1, exprs2, expansions1, expansions2):
if (
root1 is not None
and root2 is not None
and expansion1 is not None
and expansion2 is not None
):
equations.append((
symbolic_expr_depths[id(root1)] + len(expansion1),
symbolic_expr_depths[id(root2)] + len(expansion2),
))
# Add equations: Multiple occurrences of the same named axis must have the same depth
symbolic_axis_depths = {}
for root in exprs1 + exprs2:
if root is not None:
for axis in root.all():
if isinstance(axis, stage1.NamedAxis):
if axis.name not in symbolic_axis_depths:
symbolic_axis_depths[axis.name] = solver.Variable(
f"symbolic_axis_depths[{axis.name}]", axis.name
)
equations.append((
symbolic_expr_depths[id(axis)],
symbolic_axis_depths[axis.name],
))
# Add equations: Ellipses with the same id must have the same depth
symbolic_ellipsis_depths = {}
for root in exprs1 + exprs2:
if root is not None:
for ellipsis in root.all():
if isinstance(ellipsis, stage1.Ellipsis):
if ellipsis.ellipsis_id not in symbolic_ellipsis_depths:
symbolic_ellipsis_depths[ellipsis.ellipsis_id] = solver.Variable(
f"symbolic_ellipsis_depths[{ellipsis.ellipsis_id}]", str(ellipsis)
)
equations.append((
symbolic_expr_depths[id(ellipsis)],
symbolic_ellipsis_depths[ellipsis.ellipsis_id],
))
# Solve
try:
solutions = solver.solve(equations)
except solver.SolveException as e:
raise SolveDepthException(
exprs1, exprs2, expansions1, expansions2, depths1, depths2, str(e)
) from e
expr_depths = {}
for k, v in solutions.items():
if k.startswith("symbolic_expr_depths["):
expr_depths[int(k[len("symbolic_expr_depths[") : -1])] = int(v)
# Raise exception on missing depths
failed_exprs = set()
for root in exprs1 + exprs2:
if root is not None:
for expr in root.all():
if id(expr) not in expr_depths:
failed_exprs.add(str(expr))
if len(failed_exprs) > 0:
raise SolveDepthException(
exprs1,
exprs2,
expansions1,
expansions2,
depths1,
depths2,
f"Found no unique solutions for {failed_exprs}",
)
# Raise exception on negative depths
failed_exprs = set()
for root in exprs1 + exprs2:
if root is not None:
for expr in root.all():
if expr_depths[id(expr)] < 0:
failed_exprs.add(str(expr))
if len(failed_exprs) > 0:
raise SolveDepthException(
exprs1,
exprs2,
expansions1,
expansions2,
depths1,
depths2,
f"Got negative depths for {failed_exprs}",
)
for exprs, expansions, _depths in zip(
[exprs1, exprs2], [expansions1, expansions2], [depths1, depths2]
):
for i in range(len(exprs)):
if exprs[i] is not None:
missing_depth = expr_depths[id(exprs[i])]
assert missing_depth >= 0
# Add missing dimensions to expansions
if expansions[i] is not None:
assert len(expansions[i]) >= 1
if missing_depth > 0:
expansions[i] = [None] * missing_depth + list(expansions[i])
# Add missing ellipses around root expressions
if missing_depth > 0:
for _ in range(missing_depth):
exprs[i] = stage1.Ellipsis(exprs[i], exprs[i].begin_pos, exprs[i].end_pos)
expr_depths[id(exprs[i])] = expr_depths[id(exprs[i].inner)] - 1
# ##### 2. Find ellipsis expansions #####
equations = []
symbolic_expr_expansions = {}
for root in exprs1 + exprs2:
if root is not None:
for expr in root.all():
for depth in range(expr_depths[id(expr)] + 1):
key = (id(expr), depth)
symbolic_expr_expansions[key] = solver.Variable(
f"symbolic_expr_expansions[{id(expr)},{depth}]", f"{expr} at depth {depth}"
)
# Add equations: Expansion of an expression at depth d (less than own depth)
# is equal to the expansion of each child at depth d
for root in exprs1 + exprs2:
if root is not None:
for expr in root.all():
for depth in range(expr_depths[id(expr)]):
for child in expr.direct_children:
equations.append((
symbolic_expr_expansions[(id(expr), depth)],
symbolic_expr_expansions[(id(child), depth)],
))
# Add equations: Relations between expressions and their children
for root in exprs1 + exprs2:
if root is not None:
for expr in root.all():
depth = expr_depths[id(expr)]
if isinstance(expr, stage1.List):
v = sum(symbolic_expr_expansions[(id(child), depth)] for child in expr.children)
elif isinstance(expr, stage1.Concatenation):
v = 1
elif isinstance(expr, stage1.NamedAxis):
v = 1
elif isinstance(expr, stage1.UnnamedAxis):
v = 1
elif isinstance(expr, stage1.Composition):
v = 1
elif isinstance(expr, stage1.Marker):
v = symbolic_expr_expansions[(id(expr.inner), depth)]
elif isinstance(expr, stage1.Ellipsis):
v = symbolic_expr_expansions[(id(expr.inner), depth)]
else:
raise AssertionError(f"{expr}")
equations.append((symbolic_expr_expansions[(id(expr), depth)], v))
# Add equations: Expansions stored in "expansions"
for expansion1, expansion2, expr1, expr2 in zip(expansions1, expansions2, exprs1, exprs2):
if expansion1 is not None and expansion2 is not None:
if len(expansion1) != len(expansion2) or any(
e1 is not None and e2 is not None and e1 != e2
for e1, e2 in zip(expansion1, expansion2)
):
raise SolveExpansionException(
exprs1,
exprs2,
expansions1,
expansions2,
depths1,
depths2,
f"Expansion '{expansion1}' of expression '{expr1}' does not match expansion "
f"'{expansion2}' of expression '{expr2}'",
)
if expansion1 is not None and expansion2 is not None:
expansion = [e1 if e1 is not None else e2 for e1, e2 in zip(expansion1, expansion2)]
elif expansion1 is not None:
expansion = expansion1
elif expansion2 is not None:
expansion = expansion2
else:
expansion = None
if expansion is not None:
for depth, e in enumerate(expansion):
if e is not None:
if expr1 is not None and depth <= expr_depths[id(expr1)]:
equations.append((symbolic_expr_expansions[(id(expr1), depth)], int(e)))
if expr2 is not None and depth <= expr_depths[id(expr2)]:
equations.append((symbolic_expr_expansions[(id(expr2), depth)], int(e)))
# Add equations: Multiple occurrences of the same named axis must have the same expansions
symbolic_axis_expansions = {}
for root in exprs1 + exprs2:
if root is not None:
for axis in root.all():
if isinstance(axis, stage1.NamedAxis):
for depth in range(expr_depths[id(axis)] + 1):
if axis.name not in symbolic_axis_expansions:
symbolic_axis_expansions[(axis.name, depth)] = solver.Variable(
f"symbolic_axis_expansions[{axis.name},{depth}]",
f"{axis.name} at depth {depth}",
)
equations.append((
symbolic_expr_expansions[(id(axis), depth)],
symbolic_axis_expansions[(axis.name, depth)],
))
# Add equations: Ellipses with the same id must have the same expansions
symbolic_ellipsis_expansions = {}
for root in exprs1 + exprs2:
if root is not None:
for ellipsis in root.all():
if isinstance(ellipsis, stage1.Ellipsis):
for depth in range(expr_depths[id(ellipsis)] + 1):
if ellipsis.ellipsis_id not in symbolic_ellipsis_expansions:
symbolic_ellipsis_expansions[(ellipsis.ellipsis_id, depth)] = (
solver.Variable(
f"symbolic_ellipsis_expansions[{ellipsis.ellipsis_id},{depth}]",
f"{ellipsis} at depth {depth}",
)
)
equations.append((
symbolic_expr_expansions[(id(ellipsis), depth)],
symbolic_ellipsis_expansions[(ellipsis.ellipsis_id, depth)],
))
# Add equations: Same root expansions
for root1, root2 in zip(exprs1, exprs2):
if root1 is not None and root2 is not None:
assert expr_depths[id(root1)] == expr_depths[id(root2)]
for depth in range(expr_depths[id(root1)] + 1):
equations.append((
symbolic_expr_expansions[(id(root1), depth)],
symbolic_expr_expansions[(id(root2), depth)],
))
# Solve
try:
solutions = solver.solve(equations)
except solver.SolveException as e:
raise SolveExpansionException(
exprs1, exprs2, expansions1, expansions2, depths1, depths2, str(e)
) from e
def to_key(k):
return int(id_expr), int(depth)
expansion_values = {}
for k, v in solutions.items():
if k.startswith("symbolic_expr_expansions["):
k = k[len("symbolic_expr_expansions[") : -1]
id_expr, depth = str(k).split(",")
try:
id_expr = int(id_expr)
except ValueError:
continue
depth = int(depth)
expansion_values[(id_expr, depth)] = int(v)
failed_exprs = set()
for root in exprs1 + exprs2:
if root is not None:
for expr in root.all():
if (id(root), expr_depths[id(root)]) not in expansion_values:
failed_exprs.add(str(expr))
if len(failed_exprs) == 1:
raise SolveExpansionException(
exprs1,
exprs2,
expansions1,
expansions2,
depths1,
depths2,
f"Found no unique solution for '{failed_exprs.pop()}'",
)
elif len(failed_exprs) > 1:
raise SolveExpansionException(
exprs1,
exprs2,
expansions1,
expansions2,
depths1,
depths2,
f"Found no unique solutions for {failed_exprs}",
)
def is_unnamed(expr):
for expr in expr.all():
if isinstance(expr, stage1.NamedAxis):
return False
return True
def get_unnamed_value(expr):
if isinstance(expr, stage1.List):
return np.prod([get_unnamed_value(child) for child in expr.children]).astype("int")
elif isinstance(expr, stage1.Concatenation):
return np.sum([get_unnamed_value(child) for child in expr.children])
elif isinstance(expr, stage1.NamedAxis):
raise AssertionError()
elif isinstance(expr, stage1.UnnamedAxis):
return expr.value
elif isinstance(expr, stage1.Composition):
return get_unnamed_value(expr.inner)
elif isinstance(expr, stage1.Marker):
return get_unnamed_value(expr.inner)
elif isinstance(expr, stage1.Ellipsis):
value = get_unnamed_value(expr.inner)
if value != 1: # TODO: implement this
raise NotImplementedError(
f"Found unnamed and unexpanded ellipsis '{expr}'. We currently disallow this "
"case, since it could can take on multiple values ('2...' could have values "
"2, 4, ...) that should be resolved in the solver and then checked to be "
"consistent with these constraints."
)
return 1
else:
raise AssertionError(f"{expr}")
# Expand ellipses and map stage1 expressions to stage2 expressions
def map(expr, ellipsis_indices):
if isinstance(expr, list):
return [c for expr in expr for c in map(expr, ellipsis_indices=ellipsis_indices)]
elif isinstance(expr, stage1.NamedAxis):
return [NamedAxis(expr.name, ellipsis_indices=ellipsis_indices)]
elif isinstance(expr, stage1.UnnamedAxis):
return [UnnamedAxis(expr.value, ellipsis_indices=ellipsis_indices)]
elif isinstance(expr, stage1.List):
return map(expr.children, ellipsis_indices=ellipsis_indices)
elif isinstance(expr, stage1.Concatenation):
return [
Concatenation(
[
List.maybe(
map(c, ellipsis_indices=ellipsis_indices),
ellipsis_indices=ellipsis_indices,
)
for c in expr.children
],
ellipsis_indices=ellipsis_indices,
)
]
elif isinstance(expr, stage1.Composition):
return [
Composition(
List.maybe(
map(expr.inner, ellipsis_indices=ellipsis_indices),
ellipsis_indices=ellipsis_indices,
),
ellipsis_indices=ellipsis_indices,
)
]
elif isinstance(expr, stage1.Marker):
return [
Marker.maybe(
List.maybe(
map(expr.inner, ellipsis_indices=ellipsis_indices),
ellipsis_indices=ellipsis_indices,
),
ellipsis_indices=ellipsis_indices,
)
]
elif isinstance(expr, stage1.Ellipsis):
key = (id(expr), expr_depths[id(expr)])
if key in expansion_values:
# Ellipsis is expanded
expansion = expansion_values[key]
if expansion < 0:
raise SolveExpansionException(
exprs1,
exprs2,
expansions1,
expansions2,
depths1,
depths2,
f"Ellipsis '{expr}' has negative expansion {expansion}",
)
return [
c
for i in range(expansion)
for c in map(expr.inner, ellipsis_indices=ellipsis_indices + [(i, expansion)])
]
else:
# Ellipsis is not expanded
if is_unnamed(expr):
# Contains no named axes -> convert to unnamed axis
return [UnnamedAxis(get_unnamed_value(expr), ellipsis_indices=ellipsis_indices)]
else:
# Contains named axes -> convert to named axis
return [NamedAxis(str(expr), ellipsis_indices=ellipsis_indices)]
else:
raise AssertionError(f"{expr}")
exprs1 = [
List.maybe(map(root, ellipsis_indices=[]), ellipsis_indices=[])
if root is not None
else None
for root in exprs1
]
exprs2 = [
List.maybe(map(root, ellipsis_indices=[]), ellipsis_indices=[])
if root is not None
else None
for root in exprs2
]
return exprs1, exprs2
def cse(expressions, cse_concat=True, cse_in_markers=False, verbose=False):
expressions = list(expressions)
if any(expr is not None and not isinstance(expr, Expression) for expr in expressions):
raise TypeError("Expected expressions to be of type Expression")
# Find possible expressions, identified by their string representation
str_to_common_expr = defaultdict(list)
for root in expressions:
if root is not None:
for expr in root.all():
if expr.parent is not None:
str_expr = str(expr)
str_to_common_expr[str_expr].append([expr])
if isinstance(expr, List):
for start_index in range(len(expr.children)):
for end_index in range(start_index, len(expr.children)):
children = expr.children[start_index : end_index + 1]
str_expr = " ".join([str(c) for c in children])
str_to_common_expr[str_expr].append(children)
if verbose:
print("CSE: All subexpressions")
for k in str_to_common_expr.keys():
print(f" {k}")
# Keep only expressions
# 1. with at least one named axis
# 2. where named axes are not also used outside the expression
common_exprs = set()
for str_expr in str_to_common_expr.keys():
used_axis_ids = set()
used_axis_names = set()
for exprlist in str_to_common_expr[str_expr]:
for expr in exprlist:
for v in expr.all():
if isinstance(v, NamedAxis):
used_axis_ids.add(id(v))
used_axis_names.add(v.name)
if len(used_axis_ids) == 0:
continue
axes_used_only_in_this_subexpression = True
for root in expressions:
if root is not None:
for global_axis in root.all():
if isinstance(global_axis, NamedAxis) and global_axis.name in used_axis_names:
axes_used_only_in_this_subexpression = (
axes_used_only_in_this_subexpression
and id(global_axis) in used_axis_ids
)
if axes_used_only_in_this_subexpression:
common_exprs.add(str_expr)
common_exprs = [
str_to_common_expr[k] for k in common_exprs
] # list of common_expr(=list of exprlist)
if verbose:
print("CSE: Removed expressions with axes that are also used outside the expression")
for v in common_exprs:
print(f" {[' '.join([str(y) for y in x]) for x in v]}")
def remove_duplicates(common_expr):
new_common_expr = []
for exprlist1 in common_expr:
is_duplicate = False
for exprlist2 in new_common_expr:
is_duplicate = is_duplicate or (
len(exprlist1) == len(exprlist2)
and all(id(expr1) == id(expr2) for expr1, expr2 in zip(exprlist1, exprlist2))
)
if not is_duplicate:
new_common_expr.append(exprlist1)
return new_common_expr
common_exprs = [remove_duplicates(exprlists) for exprlists in common_exprs]
if verbose:
print("CSE: Removed duplicates")
for v in common_exprs:
print(
f" {[' '.join([str(y) for y in x]) for x in v]} "
f"{[[id(y) for y in x] for x in v]}"
)
# Remove singletons
def is_singleton(expr):
if isinstance(expr, list):
return len(expr) == 1 and is_singleton(expr[0])
elif isinstance(expr, List):
return is_singleton(expr.children)
elif isinstance(expr, NamedAxis):
return True
elif isinstance(expr, UnnamedAxis):
return True
elif isinstance(expr, Marker):
return is_singleton(expr.inner)
else:
return False
common_exprs = [common_expr for common_expr in common_exprs if not is_singleton(common_expr[0])]
if verbose:
print("CSE: Removed singletons")
for v in common_exprs:
print(f" {[' '.join([str(y) for y in x]) for x in v]}")
# Remove expressions with/ in markers
if cse_in_markers:
common_exprs = [
common_expr
for common_expr in common_exprs
if not any(
isinstance(expr, Marker)
for exprlist in common_expr
for expr in exprlist
for expr in expr.all()
)
]
else:
common_exprs = [
common_expr
for common_expr in common_exprs
if not any(
einx.expr.stage2.is_marked(expr)
for exprlist in common_expr
for expr in exprlist
for expr in expr.all()
)
]
# Remove expressions that contain concatenations
if not cse_concat:
common_exprs = [
common_expr
for common_expr in common_exprs
if not any(
isinstance(expr, Concatenation)
for exprlist in common_expr
for expr in exprlist
for expr in expr.all()
)
]
if verbose:
print("CSE: Removed expressions with markers")
for v in common_exprs:
print(f" {[' '.join([str(y) for y in x]) for x in v]}")
# Remove expressions at root level with len > 1
common_exprs = [
common_expr
for common_expr in common_exprs
if not (
is_at_root(common_expr[0][0])
and (len(common_expr[0]) > 1 or len(common_expr[0][0]) > 1)
)
]
if verbose:
print("CSE: Removed subexpressions of root with len > 1")
for v in common_exprs:
print(f" {[' '.join([str(y) for y in x]) for x in v]}")
# Remove subexpressions of subexpressions
def any_is_parent_of(parent, child):
if isinstance(parent, list):
return any(any_is_parent_of(p, child) for p in parent)
elif isinstance(child, list):
return any(any_is_parent_of(parent, c) for c in child)
else:
return child.parent is not None and (
id(child.parent) == id(parent) or any_is_parent_of(parent, child.parent)
)
common_exprs = [
common_expr
for common_expr in common_exprs
if not any(
id(common_expr) != id(common_expr2) and any_is_parent_of(common_expr2, common_expr)
for common_expr2 in common_exprs
)
]
if verbose:
print("CSE: Removed subexpressions of subexpressions")
for v in common_exprs:
print(f" {[' '.join([str(y) for y in x]) for x in v]}")
# All subexpressions have been found. Now replace them with new Axis objects.
def replace(expr):
if isinstance(expr, list) and len(expr) == 1:
return replace(expr[0])
if not isinstance(expr, list):
for idx, common_expr in enumerate(common_exprs):
for exprlist in common_expr:
if len(exprlist) == 1 and id(expr) == id(exprlist[0]):
return [NamedAxis(f"cse.{idx}", expr.ellipsis_indices)]
if isinstance(expr, list):
result = []
i = 0
while i < len(expr):
# Check if a subexpression starts at position i
exprlist_found = None
for idx, common_expr in enumerate(common_exprs):
for exprlist in common_expr:
for j in range(len(exprlist)):
if i + j >= len(expr) or id(exprlist[j]) != id(expr[i + j]):
break
else:
exprlist_found = exprlist
if exprlist_found is not None:
break
exprlist = exprlist_found
if exprlist is not None:
assert len(exprlist) > 0
result.append(NamedAxis(f"cse.{idx}", exprlist[0].ellipsis_indices))
i += len(exprlist)
else:
result.extend(replace(expr[i]))
i += 1
return result
elif isinstance(expr, NamedAxis):
return [expr.__deepcopy__()]
elif isinstance(expr, UnnamedAxis):
return [expr.__deepcopy__()]
elif isinstance(expr, List):
return replace(expr.children)
elif isinstance(expr, Concatenation):
return [
Concatenation(
[c2 for c1 in expr.children for c2 in replace(c1)], expr.ellipsis_indices
)
]
elif isinstance(expr, Marker):
return [
Marker.maybe(
List.maybe(replace(expr.inner), expr.ellipsis_indices), expr.ellipsis_indices
)
]
elif isinstance(expr, Composition):
return [
Composition(
List.maybe(replace(expr.inner), expr.ellipsis_indices), expr.ellipsis_indices
)
]
else:
raise AssertionError()
return [
List.maybe(replace(root), ellipsis_indices=[]) if root is not None else None
for root in expressions
]
def expr_map(f):
def outer(expr, *args, **kwargs):
# Wrap the user function to return a list of expressions
def f2(expr):
t = f(expr, *args, **kwargs)
if t is None:
return None, expr_map.CONTINUE
expr, signal = t
if isinstance(expr, list) or expr is None:
return expr, signal
if isinstance(expr, List):
return expr.children, signal
elif isinstance(expr, Expression):
return [expr], signal
else:
raise TypeError(f"Invalid return type {type(expr)}")
return List.maybe(_expr_map(expr, f2))
return outer
expr_map.CONTINUE = 1
expr_map.COPY_AND_STOP = 2
expr_map.REPLACE_AND_STOP = 3
expr_map.REPLACE_AND_CONTINUE = 4
def _expr_map(expr, f):
exprs, signal = f(expr)
if signal == expr_map.REPLACE_AND_STOP:
assert isinstance(exprs, list)
return exprs
elif signal == expr_map.COPY_AND_STOP:
return [expr.__deepcopy__()]
elif signal == expr_map.REPLACE_AND_CONTINUE:
return [c for expr in exprs for c in _expr_map(expr, f)]
if isinstance(expr, NamedAxis):
return [expr.__deepcopy__()]
elif isinstance(expr, UnnamedAxis):
return [expr.__deepcopy__()]
elif isinstance(expr, Composition):
return [Composition(List.maybe(_expr_map(expr.inner, f)))]
elif isinstance(expr, List):
return [c2 for c1 in expr.children for c2 in _expr_map(c1, f)]
elif isinstance(expr, Concatenation):
return [Concatenation([List.maybe(_expr_map(c, f)) for c in expr.children])]
elif isinstance(expr, Marker):
x = _expr_map(expr.inner, f)
if len(x) == 0:
# Drop empty marker
return []
else:
return [Marker.maybe(List.maybe(x))]
else:
raise TypeError(f"Invalid expression type {type(expr)}")
@expr_map
def demark(expr):
if isinstance(expr, Marker):
return expr.inner, expr_map.REPLACE_AND_CONTINUE
def any_parent_is(expr, pred, include_self=True):
if not include_self:
if expr.parent is None:
return False
expr = expr.parent
while expr is not None:
if pred(expr):
return True
expr = expr.parent
return False
def is_at_root(expr):
return not any_parent_is(expr, lambda expr: isinstance(expr, Composition), include_self=False)
def is_marked(expr):
return any_parent_is(expr, lambda expr: isinstance(expr, Marker))
def _get_marked(expr):
if isinstance(expr, NamedAxis):
return []
elif isinstance(expr, UnnamedAxis):
return []
elif isinstance(expr, Marker):
return [expr.inner.__deepcopy__()]
elif isinstance(expr, Concatenation):
return [Concatenation.maybe([x for c in expr.children for x in _get_marked(c)])]
elif isinstance(expr, Composition):
return [Composition(List.maybe(_get_marked(expr.inner)))]
elif isinstance(expr, List):
return [List.maybe([x for c in expr.children for x in _get_marked(c)])]
else:
raise TypeError(f"Invalid expression type {type(expr)}")
def get_marked(expr):
return List.maybe(_get_marked(expr))
def get_unmarked(expr):
return remove(expr, lambda expr: not is_marked(expr))
@expr_map
def replace(expr, f):
expr = f(expr)
if expr is not None:
return expr, expr_map.REPLACE_AND_STOP
@expr_map
def remove(expr, pred):
if pred(expr):
return [], expr_map.REPLACE_AND_STOP
|