File: stage2.py

package info (click to toggle)
python-einx 0.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,112 kB
  • sloc: python: 11,619; makefile: 13
file content (1111 lines) | stat: -rw-r--r-- 40,311 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
from . import stage1, solver
import re
import einx
import numpy as np
from collections import defaultdict


class Expression:
    def __init__(self, ellipsis_indices):
        self.ellipsis_indices = ellipsis_indices
        self.parent = None

    @property
    def depth(self):
        return len(self.ellipsis_indices)

    @property
    def shape(self):
        return tuple(i[1] for i in self.ellipsis_indices) + (len(self),)


class Composition(Expression):
    def __init__(self, inner, ellipsis_indices):
        Expression.__init__(self, ellipsis_indices)
        self.inner = inner
        inner.parent = self

    def __str__(self):
        return f"({self.inner})"

    def __len__(self):
        return 1

    def __iter__(self):
        yield self

    def __deepcopy__(self):
        return Composition(self.inner.__deepcopy__(), ellipsis_indices=self.ellipsis_indices)

    def all(self):
        yield self
        yield from self.inner.all()


class List(Expression):
    @staticmethod
    def maybe(l, *args, **kwargs):
        if len(l) == 1:
            return l[0]
        else:
            return List(l, *args, **kwargs)

    def __init__(self, children, ellipsis_indices):
        Expression.__init__(self, ellipsis_indices)
        self.children = children
        for c in children:
            c.parent = self

    def __str__(self):
        return " ".join([str(c) for c in self.children])

    def __len__(self):
        return sum(len(c) for c in self.children)

    def __iter__(self):
        for c in self.children:
            yield from c

    def __deepcopy__(self):
        return List(
            [c.__deepcopy__() for c in self.children], ellipsis_indices=self.ellipsis_indices
        )

    def all(self):
        yield self
        for c in self.children:
            yield from c.all()


class NamedAxis(Expression):
    def __init__(self, name, ellipsis_indices):
        Expression.__init__(self, ellipsis_indices)
        self.name = name

        postfix = ""
        for idx, _num in self.ellipsis_indices:
            postfix = postfix + "." + str(idx)
        if not self.name.endswith(postfix):
            self.name = self.name + postfix

    def __str__(self):
        return self.name

    def __len__(self):
        return 1

    def __iter__(self):
        yield self

    def __deepcopy__(self):
        return NamedAxis(self.name, ellipsis_indices=self.ellipsis_indices)

    def all(self):
        yield self


class UnnamedAxis(Expression):
    def __init__(self, value, ellipsis_indices):
        Expression.__init__(self, ellipsis_indices)
        self.value = value

    def __str__(self):
        return str(self.value)

    def __len__(self):
        return 1

    def __iter__(self):
        yield self

    def __deepcopy__(self):
        return UnnamedAxis(self.value, ellipsis_indices=self.ellipsis_indices)

    def all(self):
        yield self


class Concatenation(Expression):
    def __init__(self, children, ellipsis_indices):
        Expression.__init__(self, ellipsis_indices)
        for c in children:
            if len(c) != 1:
                raise ValueError(
                    "Concatenation can only be used on expressions of length 1, "
                    f"but got expression '{c}'"
                )
        self.children = children
        for c in children:
            c.parent = self

    def __str__(self):
        return "+".join([str(c) for c in self.children])

    def __len__(self):
        return 1

    def __iter__(self):
        yield self

    def __deepcopy__(self):
        return Concatenation(
            [c.__deepcopy__() for c in self.children], ellipsis_indices=self.ellipsis_indices
        )

    def all(self):
        yield self
        for c in self.children:
            yield from c.all()


class Marker(Expression):
    @staticmethod
    def maybe(inner, *args, **kwargs):
        if len(inner) == 0:
            return inner
        else:
            return Marker(inner, *args, **kwargs)

    def __init__(self, inner, ellipsis_indices):
        Expression.__init__(self, ellipsis_indices)
        self.inner = inner
        inner.parent = self
        assert len(inner) > 0

    def __str__(self):
        return f"[{self.inner}]"

    def __len__(self):
        return len(self.inner)

    def __iter__(self):
        yield from self.inner

    def __deepcopy__(self):
        return Marker(self.inner.__deepcopy__(), ellipsis_indices=self.ellipsis_indices)

    def all(self):
        yield self
        yield from self.inner.all()


class SolveDepthException(solver.SolveException):
    def __init__(self, exprs1, exprs2, expansions1, expansions2, depths1, depths2, message):
        assert (
            len({
                len(exprs1),
                len(exprs2),
                len(expansions1),
                len(expansions2),
                len(depths1),
                len(depths2),
            })
            == 1
        )
        self.exprs1 = exprs1
        self.exprs2 = exprs2
        self.expansions1 = expansions1
        self.expansions2 = expansions2
        self.depths1 = depths1
        self.depths2 = depths2
        message_in = message
        message = (
            "Failed to solve for the depth of axes, i.e. the number of outer ellipses.\n"
            "Equations:\n"
        )
        for expr1, expr2 in zip(exprs1, exprs2):
            if expr1 is not None and expr2 is not None:
                message += "    "
                message += f"{einx.expr.util._to_str(expr1)}"
                message += " = "
                message += f"{einx.expr.util._to_str(expr2)}"
                message += "\n"
        message += f"Reason: {message_in}"
        super().__init__(message)


class SolveExpansionException(solver.SolveException):
    def __init__(self, exprs1, exprs2, expansions1, expansions2, depths1, depths2, message):
        assert (
            len({
                len(exprs1),
                len(exprs2),
                len(expansions1),
                len(expansions2),
                len(depths1),
                len(depths2),
            })
            == 1
        )
        self.exprs1 = exprs1
        self.exprs2 = exprs2
        self.expansions1 = expansions1
        self.expansions2 = expansions2
        self.depths1 = depths1
        self.depths2 = depths2
        message_in = message
        message = "Failed to solve for the number of axes in the expressions.\nEquations:\n"
        for expr1, expr2 in zip(exprs1, exprs2):
            if expr1 is not None and expr2 is not None:
                message += "    "
                message += f"{einx.expr.util._to_str(expr1)}"
                message += " = "
                message += f"{einx.expr.util._to_str(expr2)}"
                message += "\n"
        message += f"Reason: {message_in}"
        super().__init__(message)


def solve(exprs1, exprs2, expansions1, expansions2, depths1, depths2):
    exprs1 = list(exprs1)
    exprs2 = list(exprs2)
    expansions1 = list(expansions1)
    expansions2 = list(expansions2)
    depths1 = list(depths1)
    depths2 = list(depths2)
    if any(
        expr is not None and not isinstance(expr, stage1.Expression) for expr in exprs1 + exprs2
    ):
        raise ValueError("Can only expand stage1.Expression")
    if (
        len({
            len(exprs1),
            len(exprs2),
            len(expansions1),
            len(expansions2),
            len(depths1),
            len(depths2),
        })
        != 1
    ):
        raise ValueError("Number of expressions, expansions and depths must be equal")

    # ##### 1. Find expression depths #####
    equations = []

    symbolic_expr_depths = {}
    for root in exprs1 + exprs2:
        if root is not None:
            for expr in root.all():
                symbolic_expr_depths[id(expr)] = solver.Variable(
                    f"symbolic_expr_depths[{id(expr)}]", str(expr)
                )

    # Add equations: Depth relations between subexpressions
    for root in exprs1 + exprs2:
        if root is not None:
            for expr in root.all():
                if isinstance(expr, stage1.Ellipsis):
                    # Ellipsis increases depth by one
                    equations.append((
                        symbolic_expr_depths[id(expr)] + 1,
                        symbolic_expr_depths[id(expr.inner)],
                    ))
                else:
                    # All other expressions have the same depth as their children
                    for child in expr.direct_children:
                        equations.append((
                            symbolic_expr_depths[id(expr)],
                            symbolic_expr_depths[id(child)],
                        ))

    # Add equations: Depth arguments
    for root, depth in zip(exprs1 + exprs2, depths1 + depths2):
        if root is not None and depth is not None:
            equations.append((symbolic_expr_depths[id(root)], depth))

    # Add equations: Root depths
    for root1, root2, expansion1, expansion2 in zip(exprs1, exprs2, expansions1, expansions2):
        if (
            root1 is not None
            and root2 is not None
            and expansion1 is not None
            and expansion2 is not None
        ):
            equations.append((
                symbolic_expr_depths[id(root1)] + len(expansion1),
                symbolic_expr_depths[id(root2)] + len(expansion2),
            ))

    # Add equations: Multiple occurrences of the same named axis must have the same depth
    symbolic_axis_depths = {}
    for root in exprs1 + exprs2:
        if root is not None:
            for axis in root.all():
                if isinstance(axis, stage1.NamedAxis):
                    if axis.name not in symbolic_axis_depths:
                        symbolic_axis_depths[axis.name] = solver.Variable(
                            f"symbolic_axis_depths[{axis.name}]", axis.name
                        )
                    equations.append((
                        symbolic_expr_depths[id(axis)],
                        symbolic_axis_depths[axis.name],
                    ))

    # Add equations: Ellipses with the same id must have the same depth
    symbolic_ellipsis_depths = {}
    for root in exprs1 + exprs2:
        if root is not None:
            for ellipsis in root.all():
                if isinstance(ellipsis, stage1.Ellipsis):
                    if ellipsis.ellipsis_id not in symbolic_ellipsis_depths:
                        symbolic_ellipsis_depths[ellipsis.ellipsis_id] = solver.Variable(
                            f"symbolic_ellipsis_depths[{ellipsis.ellipsis_id}]", str(ellipsis)
                        )
                    equations.append((
                        symbolic_expr_depths[id(ellipsis)],
                        symbolic_ellipsis_depths[ellipsis.ellipsis_id],
                    ))

    # Solve
    try:
        solutions = solver.solve(equations)
    except solver.SolveException as e:
        raise SolveDepthException(
            exprs1, exprs2, expansions1, expansions2, depths1, depths2, str(e)
        ) from e
    expr_depths = {}
    for k, v in solutions.items():
        if k.startswith("symbolic_expr_depths["):
            expr_depths[int(k[len("symbolic_expr_depths[") : -1])] = int(v)

    # Raise exception on missing depths
    failed_exprs = set()
    for root in exprs1 + exprs2:
        if root is not None:
            for expr in root.all():
                if id(expr) not in expr_depths:
                    failed_exprs.add(str(expr))
    if len(failed_exprs) > 0:
        raise SolveDepthException(
            exprs1,
            exprs2,
            expansions1,
            expansions2,
            depths1,
            depths2,
            f"Found no unique solutions for {failed_exprs}",
        )

    # Raise exception on negative depths
    failed_exprs = set()
    for root in exprs1 + exprs2:
        if root is not None:
            for expr in root.all():
                if expr_depths[id(expr)] < 0:
                    failed_exprs.add(str(expr))
    if len(failed_exprs) > 0:
        raise SolveDepthException(
            exprs1,
            exprs2,
            expansions1,
            expansions2,
            depths1,
            depths2,
            f"Got negative depths for {failed_exprs}",
        )

    for exprs, expansions, _depths in zip(
        [exprs1, exprs2], [expansions1, expansions2], [depths1, depths2]
    ):
        for i in range(len(exprs)):
            if exprs[i] is not None:
                missing_depth = expr_depths[id(exprs[i])]
                assert missing_depth >= 0

                # Add missing dimensions to expansions
                if expansions[i] is not None:
                    assert len(expansions[i]) >= 1
                    if missing_depth > 0:
                        expansions[i] = [None] * missing_depth + list(expansions[i])

                # Add missing ellipses around root expressions
                if missing_depth > 0:
                    for _ in range(missing_depth):
                        exprs[i] = stage1.Ellipsis(exprs[i], exprs[i].begin_pos, exprs[i].end_pos)
                        expr_depths[id(exprs[i])] = expr_depths[id(exprs[i].inner)] - 1

    # ##### 2. Find ellipsis expansions #####
    equations = []

    symbolic_expr_expansions = {}
    for root in exprs1 + exprs2:
        if root is not None:
            for expr in root.all():
                for depth in range(expr_depths[id(expr)] + 1):
                    key = (id(expr), depth)
                    symbolic_expr_expansions[key] = solver.Variable(
                        f"symbolic_expr_expansions[{id(expr)},{depth}]", f"{expr} at depth {depth}"
                    )

    # Add equations: Expansion of an expression at depth d (less than own depth)
    # is equal to the expansion of each child at depth d
    for root in exprs1 + exprs2:
        if root is not None:
            for expr in root.all():
                for depth in range(expr_depths[id(expr)]):
                    for child in expr.direct_children:
                        equations.append((
                            symbolic_expr_expansions[(id(expr), depth)],
                            symbolic_expr_expansions[(id(child), depth)],
                        ))

    # Add equations: Relations between expressions and their children
    for root in exprs1 + exprs2:
        if root is not None:
            for expr in root.all():
                depth = expr_depths[id(expr)]
                if isinstance(expr, stage1.List):
                    v = sum(symbolic_expr_expansions[(id(child), depth)] for child in expr.children)
                elif isinstance(expr, stage1.Concatenation):
                    v = 1
                elif isinstance(expr, stage1.NamedAxis):
                    v = 1
                elif isinstance(expr, stage1.UnnamedAxis):
                    v = 1
                elif isinstance(expr, stage1.Composition):
                    v = 1
                elif isinstance(expr, stage1.Marker):
                    v = symbolic_expr_expansions[(id(expr.inner), depth)]
                elif isinstance(expr, stage1.Ellipsis):
                    v = symbolic_expr_expansions[(id(expr.inner), depth)]
                else:
                    raise AssertionError(f"{expr}")
                equations.append((symbolic_expr_expansions[(id(expr), depth)], v))

    # Add equations: Expansions stored in "expansions"
    for expansion1, expansion2, expr1, expr2 in zip(expansions1, expansions2, exprs1, exprs2):
        if expansion1 is not None and expansion2 is not None:
            if len(expansion1) != len(expansion2) or any(
                e1 is not None and e2 is not None and e1 != e2
                for e1, e2 in zip(expansion1, expansion2)
            ):
                raise SolveExpansionException(
                    exprs1,
                    exprs2,
                    expansions1,
                    expansions2,
                    depths1,
                    depths2,
                    f"Expansion '{expansion1}' of expression '{expr1}' does not match expansion "
                    f"'{expansion2}' of expression '{expr2}'",
                )

        if expansion1 is not None and expansion2 is not None:
            expansion = [e1 if e1 is not None else e2 for e1, e2 in zip(expansion1, expansion2)]
        elif expansion1 is not None:
            expansion = expansion1
        elif expansion2 is not None:
            expansion = expansion2
        else:
            expansion = None

        if expansion is not None:
            for depth, e in enumerate(expansion):
                if e is not None:
                    if expr1 is not None and depth <= expr_depths[id(expr1)]:
                        equations.append((symbolic_expr_expansions[(id(expr1), depth)], int(e)))
                    if expr2 is not None and depth <= expr_depths[id(expr2)]:
                        equations.append((symbolic_expr_expansions[(id(expr2), depth)], int(e)))

    # Add equations: Multiple occurrences of the same named axis must have the same expansions
    symbolic_axis_expansions = {}
    for root in exprs1 + exprs2:
        if root is not None:
            for axis in root.all():
                if isinstance(axis, stage1.NamedAxis):
                    for depth in range(expr_depths[id(axis)] + 1):
                        if axis.name not in symbolic_axis_expansions:
                            symbolic_axis_expansions[(axis.name, depth)] = solver.Variable(
                                f"symbolic_axis_expansions[{axis.name},{depth}]",
                                f"{axis.name} at depth {depth}",
                            )
                        equations.append((
                            symbolic_expr_expansions[(id(axis), depth)],
                            symbolic_axis_expansions[(axis.name, depth)],
                        ))

    # Add equations: Ellipses with the same id must have the same expansions
    symbolic_ellipsis_expansions = {}
    for root in exprs1 + exprs2:
        if root is not None:
            for ellipsis in root.all():
                if isinstance(ellipsis, stage1.Ellipsis):
                    for depth in range(expr_depths[id(ellipsis)] + 1):
                        if ellipsis.ellipsis_id not in symbolic_ellipsis_expansions:
                            symbolic_ellipsis_expansions[(ellipsis.ellipsis_id, depth)] = (
                                solver.Variable(
                                    f"symbolic_ellipsis_expansions[{ellipsis.ellipsis_id},{depth}]",
                                    f"{ellipsis} at depth {depth}",
                                )
                            )
                        equations.append((
                            symbolic_expr_expansions[(id(ellipsis), depth)],
                            symbolic_ellipsis_expansions[(ellipsis.ellipsis_id, depth)],
                        ))

    # Add equations: Same root expansions
    for root1, root2 in zip(exprs1, exprs2):
        if root1 is not None and root2 is not None:
            assert expr_depths[id(root1)] == expr_depths[id(root2)]
            for depth in range(expr_depths[id(root1)] + 1):
                equations.append((
                    symbolic_expr_expansions[(id(root1), depth)],
                    symbolic_expr_expansions[(id(root2), depth)],
                ))

    # Solve
    try:
        solutions = solver.solve(equations)
    except solver.SolveException as e:
        raise SolveExpansionException(
            exprs1, exprs2, expansions1, expansions2, depths1, depths2, str(e)
        ) from e

    def to_key(k):
        return int(id_expr), int(depth)

    expansion_values = {}
    for k, v in solutions.items():
        if k.startswith("symbolic_expr_expansions["):
            k = k[len("symbolic_expr_expansions[") : -1]
            id_expr, depth = str(k).split(",")
            try:
                id_expr = int(id_expr)
            except ValueError:
                continue
            depth = int(depth)
            expansion_values[(id_expr, depth)] = int(v)

    failed_exprs = set()
    for root in exprs1 + exprs2:
        if root is not None:
            for expr in root.all():
                if (id(root), expr_depths[id(root)]) not in expansion_values:
                    failed_exprs.add(str(expr))
    if len(failed_exprs) == 1:
        raise SolveExpansionException(
            exprs1,
            exprs2,
            expansions1,
            expansions2,
            depths1,
            depths2,
            f"Found no unique solution for '{failed_exprs.pop()}'",
        )
    elif len(failed_exprs) > 1:
        raise SolveExpansionException(
            exprs1,
            exprs2,
            expansions1,
            expansions2,
            depths1,
            depths2,
            f"Found no unique solutions for {failed_exprs}",
        )

    def is_unnamed(expr):
        for expr in expr.all():
            if isinstance(expr, stage1.NamedAxis):
                return False
        return True

    def get_unnamed_value(expr):
        if isinstance(expr, stage1.List):
            return np.prod([get_unnamed_value(child) for child in expr.children]).astype("int")
        elif isinstance(expr, stage1.Concatenation):
            return np.sum([get_unnamed_value(child) for child in expr.children])
        elif isinstance(expr, stage1.NamedAxis):
            raise AssertionError()
        elif isinstance(expr, stage1.UnnamedAxis):
            return expr.value
        elif isinstance(expr, stage1.Composition):
            return get_unnamed_value(expr.inner)
        elif isinstance(expr, stage1.Marker):
            return get_unnamed_value(expr.inner)
        elif isinstance(expr, stage1.Ellipsis):
            value = get_unnamed_value(expr.inner)
            if value != 1:  # TODO: implement this
                raise NotImplementedError(
                    f"Found unnamed and unexpanded ellipsis '{expr}'. We currently disallow this "
                    "case, since it could can take on multiple values ('2...' could have values "
                    "2, 4, ...) that should be resolved in the solver and then checked to be "
                    "consistent with these constraints."
                )
            return 1
        else:
            raise AssertionError(f"{expr}")

    # Expand ellipses and map stage1 expressions to stage2 expressions
    def map(expr, ellipsis_indices):
        if isinstance(expr, list):
            return [c for expr in expr for c in map(expr, ellipsis_indices=ellipsis_indices)]
        elif isinstance(expr, stage1.NamedAxis):
            return [NamedAxis(expr.name, ellipsis_indices=ellipsis_indices)]
        elif isinstance(expr, stage1.UnnamedAxis):
            return [UnnamedAxis(expr.value, ellipsis_indices=ellipsis_indices)]
        elif isinstance(expr, stage1.List):
            return map(expr.children, ellipsis_indices=ellipsis_indices)
        elif isinstance(expr, stage1.Concatenation):
            return [
                Concatenation(
                    [
                        List.maybe(
                            map(c, ellipsis_indices=ellipsis_indices),
                            ellipsis_indices=ellipsis_indices,
                        )
                        for c in expr.children
                    ],
                    ellipsis_indices=ellipsis_indices,
                )
            ]
        elif isinstance(expr, stage1.Composition):
            return [
                Composition(
                    List.maybe(
                        map(expr.inner, ellipsis_indices=ellipsis_indices),
                        ellipsis_indices=ellipsis_indices,
                    ),
                    ellipsis_indices=ellipsis_indices,
                )
            ]
        elif isinstance(expr, stage1.Marker):
            return [
                Marker.maybe(
                    List.maybe(
                        map(expr.inner, ellipsis_indices=ellipsis_indices),
                        ellipsis_indices=ellipsis_indices,
                    ),
                    ellipsis_indices=ellipsis_indices,
                )
            ]
        elif isinstance(expr, stage1.Ellipsis):
            key = (id(expr), expr_depths[id(expr)])
            if key in expansion_values:
                # Ellipsis is expanded
                expansion = expansion_values[key]
                if expansion < 0:
                    raise SolveExpansionException(
                        exprs1,
                        exprs2,
                        expansions1,
                        expansions2,
                        depths1,
                        depths2,
                        f"Ellipsis '{expr}' has negative expansion {expansion}",
                    )
                return [
                    c
                    for i in range(expansion)
                    for c in map(expr.inner, ellipsis_indices=ellipsis_indices + [(i, expansion)])
                ]
            else:
                # Ellipsis is not expanded
                if is_unnamed(expr):
                    # Contains no named axes -> convert to unnamed axis
                    return [UnnamedAxis(get_unnamed_value(expr), ellipsis_indices=ellipsis_indices)]
                else:
                    # Contains named axes -> convert to named axis
                    return [NamedAxis(str(expr), ellipsis_indices=ellipsis_indices)]
        else:
            raise AssertionError(f"{expr}")

    exprs1 = [
        List.maybe(map(root, ellipsis_indices=[]), ellipsis_indices=[])
        if root is not None
        else None
        for root in exprs1
    ]
    exprs2 = [
        List.maybe(map(root, ellipsis_indices=[]), ellipsis_indices=[])
        if root is not None
        else None
        for root in exprs2
    ]

    return exprs1, exprs2


def cse(expressions, cse_concat=True, cse_in_markers=False, verbose=False):
    expressions = list(expressions)
    if any(expr is not None and not isinstance(expr, Expression) for expr in expressions):
        raise TypeError("Expected expressions to be of type Expression")

    # Find possible expressions, identified by their string representation
    str_to_common_expr = defaultdict(list)
    for root in expressions:
        if root is not None:
            for expr in root.all():
                if expr.parent is not None:
                    str_expr = str(expr)
                    str_to_common_expr[str_expr].append([expr])

                    if isinstance(expr, List):
                        for start_index in range(len(expr.children)):
                            for end_index in range(start_index, len(expr.children)):
                                children = expr.children[start_index : end_index + 1]
                                str_expr = " ".join([str(c) for c in children])
                                str_to_common_expr[str_expr].append(children)

    if verbose:
        print("CSE: All subexpressions")
        for k in str_to_common_expr.keys():
            print(f"    {k}")

    # Keep only expressions
    # 1. with at least one named axis
    # 2. where named axes are not also used outside the expression
    common_exprs = set()
    for str_expr in str_to_common_expr.keys():
        used_axis_ids = set()
        used_axis_names = set()
        for exprlist in str_to_common_expr[str_expr]:
            for expr in exprlist:
                for v in expr.all():
                    if isinstance(v, NamedAxis):
                        used_axis_ids.add(id(v))
                        used_axis_names.add(v.name)

        if len(used_axis_ids) == 0:
            continue

        axes_used_only_in_this_subexpression = True
        for root in expressions:
            if root is not None:
                for global_axis in root.all():
                    if isinstance(global_axis, NamedAxis) and global_axis.name in used_axis_names:
                        axes_used_only_in_this_subexpression = (
                            axes_used_only_in_this_subexpression
                            and id(global_axis) in used_axis_ids
                        )

        if axes_used_only_in_this_subexpression:
            common_exprs.add(str_expr)

    common_exprs = [
        str_to_common_expr[k] for k in common_exprs
    ]  # list of common_expr(=list of exprlist)

    if verbose:
        print("CSE: Removed expressions with axes that are also used outside the expression")
        for v in common_exprs:
            print(f"    {[' '.join([str(y) for y in x]) for x in v]}")

    def remove_duplicates(common_expr):
        new_common_expr = []
        for exprlist1 in common_expr:
            is_duplicate = False
            for exprlist2 in new_common_expr:
                is_duplicate = is_duplicate or (
                    len(exprlist1) == len(exprlist2)
                    and all(id(expr1) == id(expr2) for expr1, expr2 in zip(exprlist1, exprlist2))
                )
            if not is_duplicate:
                new_common_expr.append(exprlist1)
        return new_common_expr

    common_exprs = [remove_duplicates(exprlists) for exprlists in common_exprs]

    if verbose:
        print("CSE: Removed duplicates")
        for v in common_exprs:
            print(
                f"    {[' '.join([str(y) for y in x]) for x in v]} "
                f"{[[id(y) for y in x] for x in v]}"
            )

    # Remove singletons
    def is_singleton(expr):
        if isinstance(expr, list):
            return len(expr) == 1 and is_singleton(expr[0])
        elif isinstance(expr, List):
            return is_singleton(expr.children)
        elif isinstance(expr, NamedAxis):
            return True
        elif isinstance(expr, UnnamedAxis):
            return True
        elif isinstance(expr, Marker):
            return is_singleton(expr.inner)
        else:
            return False

    common_exprs = [common_expr for common_expr in common_exprs if not is_singleton(common_expr[0])]

    if verbose:
        print("CSE: Removed singletons")
        for v in common_exprs:
            print(f"    {[' '.join([str(y) for y in x]) for x in v]}")

    # Remove expressions with/ in markers
    if cse_in_markers:
        common_exprs = [
            common_expr
            for common_expr in common_exprs
            if not any(
                isinstance(expr, Marker)
                for exprlist in common_expr
                for expr in exprlist
                for expr in expr.all()
            )
        ]
    else:
        common_exprs = [
            common_expr
            for common_expr in common_exprs
            if not any(
                einx.expr.stage2.is_marked(expr)
                for exprlist in common_expr
                for expr in exprlist
                for expr in expr.all()
            )
        ]

    # Remove expressions that contain concatenations
    if not cse_concat:
        common_exprs = [
            common_expr
            for common_expr in common_exprs
            if not any(
                isinstance(expr, Concatenation)
                for exprlist in common_expr
                for expr in exprlist
                for expr in expr.all()
            )
        ]

    if verbose:
        print("CSE: Removed expressions with markers")
        for v in common_exprs:
            print(f"    {[' '.join([str(y) for y in x]) for x in v]}")

    # Remove expressions at root level with len > 1
    common_exprs = [
        common_expr
        for common_expr in common_exprs
        if not (
            is_at_root(common_expr[0][0])
            and (len(common_expr[0]) > 1 or len(common_expr[0][0]) > 1)
        )
    ]

    if verbose:
        print("CSE: Removed subexpressions of root with len > 1")
        for v in common_exprs:
            print(f"    {[' '.join([str(y) for y in x]) for x in v]}")

    # Remove subexpressions of subexpressions
    def any_is_parent_of(parent, child):
        if isinstance(parent, list):
            return any(any_is_parent_of(p, child) for p in parent)
        elif isinstance(child, list):
            return any(any_is_parent_of(parent, c) for c in child)
        else:
            return child.parent is not None and (
                id(child.parent) == id(parent) or any_is_parent_of(parent, child.parent)
            )

    common_exprs = [
        common_expr
        for common_expr in common_exprs
        if not any(
            id(common_expr) != id(common_expr2) and any_is_parent_of(common_expr2, common_expr)
            for common_expr2 in common_exprs
        )
    ]

    if verbose:
        print("CSE: Removed subexpressions of subexpressions")
        for v in common_exprs:
            print(f"    {[' '.join([str(y) for y in x]) for x in v]}")

    # All subexpressions have been found. Now replace them with new Axis objects.
    def replace(expr):
        if isinstance(expr, list) and len(expr) == 1:
            return replace(expr[0])
        if not isinstance(expr, list):
            for idx, common_expr in enumerate(common_exprs):
                for exprlist in common_expr:
                    if len(exprlist) == 1 and id(expr) == id(exprlist[0]):
                        return [NamedAxis(f"cse.{idx}", expr.ellipsis_indices)]

        if isinstance(expr, list):
            result = []
            i = 0
            while i < len(expr):
                # Check if a subexpression starts at position i
                exprlist_found = None
                for idx, common_expr in enumerate(common_exprs):
                    for exprlist in common_expr:
                        for j in range(len(exprlist)):
                            if i + j >= len(expr) or id(exprlist[j]) != id(expr[i + j]):
                                break
                        else:
                            exprlist_found = exprlist
                    if exprlist_found is not None:
                        break
                exprlist = exprlist_found

                if exprlist is not None:
                    assert len(exprlist) > 0
                    result.append(NamedAxis(f"cse.{idx}", exprlist[0].ellipsis_indices))
                    i += len(exprlist)
                else:
                    result.extend(replace(expr[i]))
                    i += 1

            return result
        elif isinstance(expr, NamedAxis):
            return [expr.__deepcopy__()]
        elif isinstance(expr, UnnamedAxis):
            return [expr.__deepcopy__()]
        elif isinstance(expr, List):
            return replace(expr.children)
        elif isinstance(expr, Concatenation):
            return [
                Concatenation(
                    [c2 for c1 in expr.children for c2 in replace(c1)], expr.ellipsis_indices
                )
            ]
        elif isinstance(expr, Marker):
            return [
                Marker.maybe(
                    List.maybe(replace(expr.inner), expr.ellipsis_indices), expr.ellipsis_indices
                )
            ]
        elif isinstance(expr, Composition):
            return [
                Composition(
                    List.maybe(replace(expr.inner), expr.ellipsis_indices), expr.ellipsis_indices
                )
            ]
        else:
            raise AssertionError()

    return [
        List.maybe(replace(root), ellipsis_indices=[]) if root is not None else None
        for root in expressions
    ]


def expr_map(f):
    def outer(expr, *args, **kwargs):
        # Wrap the user function to return a list of expressions
        def f2(expr):
            t = f(expr, *args, **kwargs)
            if t is None:
                return None, expr_map.CONTINUE
            expr, signal = t

            if isinstance(expr, list) or expr is None:
                return expr, signal
            if isinstance(expr, List):
                return expr.children, signal
            elif isinstance(expr, Expression):
                return [expr], signal
            else:
                raise TypeError(f"Invalid return type {type(expr)}")

        return List.maybe(_expr_map(expr, f2))

    return outer


expr_map.CONTINUE = 1
expr_map.COPY_AND_STOP = 2
expr_map.REPLACE_AND_STOP = 3
expr_map.REPLACE_AND_CONTINUE = 4


def _expr_map(expr, f):
    exprs, signal = f(expr)
    if signal == expr_map.REPLACE_AND_STOP:
        assert isinstance(exprs, list)
        return exprs
    elif signal == expr_map.COPY_AND_STOP:
        return [expr.__deepcopy__()]
    elif signal == expr_map.REPLACE_AND_CONTINUE:
        return [c for expr in exprs for c in _expr_map(expr, f)]

    if isinstance(expr, NamedAxis):
        return [expr.__deepcopy__()]
    elif isinstance(expr, UnnamedAxis):
        return [expr.__deepcopy__()]
    elif isinstance(expr, Composition):
        return [Composition(List.maybe(_expr_map(expr.inner, f)))]
    elif isinstance(expr, List):
        return [c2 for c1 in expr.children for c2 in _expr_map(c1, f)]
    elif isinstance(expr, Concatenation):
        return [Concatenation([List.maybe(_expr_map(c, f)) for c in expr.children])]
    elif isinstance(expr, Marker):
        x = _expr_map(expr.inner, f)
        if len(x) == 0:
            # Drop empty marker
            return []
        else:
            return [Marker.maybe(List.maybe(x))]
    else:
        raise TypeError(f"Invalid expression type {type(expr)}")


@expr_map
def demark(expr):
    if isinstance(expr, Marker):
        return expr.inner, expr_map.REPLACE_AND_CONTINUE


def any_parent_is(expr, pred, include_self=True):
    if not include_self:
        if expr.parent is None:
            return False
        expr = expr.parent
    while expr is not None:
        if pred(expr):
            return True
        expr = expr.parent
    return False


def is_at_root(expr):
    return not any_parent_is(expr, lambda expr: isinstance(expr, Composition), include_self=False)


def is_marked(expr):
    return any_parent_is(expr, lambda expr: isinstance(expr, Marker))


def _get_marked(expr):
    if isinstance(expr, NamedAxis):
        return []
    elif isinstance(expr, UnnamedAxis):
        return []
    elif isinstance(expr, Marker):
        return [expr.inner.__deepcopy__()]
    elif isinstance(expr, Concatenation):
        return [Concatenation.maybe([x for c in expr.children for x in _get_marked(c)])]
    elif isinstance(expr, Composition):
        return [Composition(List.maybe(_get_marked(expr.inner)))]
    elif isinstance(expr, List):
        return [List.maybe([x for c in expr.children for x in _get_marked(c)])]
    else:
        raise TypeError(f"Invalid expression type {type(expr)}")


def get_marked(expr):
    return List.maybe(_get_marked(expr))


def get_unmarked(expr):
    return remove(expr, lambda expr: not is_marked(expr))


@expr_map
def replace(expr, f):
    expr = f(expr)
    if expr is not None:
        return expr, expr_map.REPLACE_AND_STOP


@expr_map
def remove(expr, pred):
    if pred(expr):
        return [], expr_map.REPLACE_AND_STOP