File: equinox.py

package info (click to toggle)
python-einx 0.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,112 kB
  • sloc: python: 11,619; makefile: 13
file content (266 lines) | stat: -rw-r--r-- 9,311 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import einx
import jax
import equinox as eqx
from functools import partial
import jax.numpy as jnp
from typing import Optional, Callable, Any

# TODO: type annotations

tjax = einx.tracer.import_("jax")


def create_or_retrieve(concrete, name, shape, dtype, init):
    if name in vars(concrete.module) and vars(concrete.module)[name] is not None:
        tensor = vars(concrete.module)[name]
    else:
        tensor = vars(concrete.module)[name] = init(concrete.rng, shape, dtype)
    return tensor


class ParamFactory:
    class Concrete(einx.tracer.input.Input):
        def __init__(self, module, name, init, dtype, rng):
            self.module = module
            self.name = name
            self.init = init

            if dtype is None:
                if hasattr(module, "dtype"):
                    dtype = module.dtype
                else:
                    dtype = "float32"
            self.dtype = dtype

            self.rng = rng

        def to_value_and_key(self):
            return self, ParamFactory.CacheKey(self.name, self.init, self.dtype)

    class CacheKey(einx.tracer.input.CacheKey):
        def __init__(self, name, init, dtype):
            self.name = name
            self.init = init
            self.dtype = dtype

        def __hash__(self):
            return hash((self.name, self.init, self.dtype))

        def __eq__(self, other):
            return (
                isinstance(other, ParamFactory.CacheKey)
                and self.name == other.name
                and self.init == other.init
                and self.dtype == other.dtype
            )

        def to_tracer(self, backend, virtual_arg):
            x = ParamFactory.Tracer(self.name, self.init, self.dtype)
            return x, x

    class Tracer(einx.tracer.TensorFactory):
        def __init__(self, name, init, dtype):
            self.name = name
            self.init = init
            self.dtype = dtype

        def __call__(self, shape, kwargs):
            name = self.name if not self.name is None else kwargs.get("name", None)
            init = self.init if not self.init is None else kwargs.get("init", None)
            dtype = self.dtype if not self.dtype is None else kwargs.get("dtype", None)

            if name is None:
                raise ValueError("Must specify name for tensor factory eqx.Module")

            if init is None:
                raise ValueError("Must specify init for tensor factory eqx.Module")
            elif isinstance(init, str):
                if init == "get_at" or init == "rearrange":
                    init = tjax.nn.initializers.normal(stddev=0.02)
                elif init == "add":
                    init = tjax.nn.initializers.constant(0.0, dtype=dtype)
                elif init == "multiply":
                    init = tjax.nn.initializers.constant(1.0, dtype=dtype)
                elif init == "dot":
                    init = tjax.nn.initializers.lecun_normal(
                        kwargs["in_axis"], kwargs["out_axis"], kwargs["batch_axis"]
                    )
                else:
                    raise ValueError(f"Don't know which initializer to use for operation '{init}'")
            elif isinstance(init, (int, float)):
                init = tjax.nn.initializers.constant(init, dtype=dtype)

            return einx.tracer.apply(
                create_or_retrieve,  # TODO: make tracable
                args=[self, name, shape, dtype, init],
                output=einx.tracer.Tensor(shape),
            )


def param(module, name=None, init=None, dtype=None, rng=None):
    """Create a tensor factory for Equinox parameters.

    Args:
        module: The module to create the parameter in. Must be an instance of ``eqx.Module``.
        name: Name of the parameter. If ``None``, uses a default name determined from the calling
            operation. Defaults to ``None``.
        init: Initializer for the parameter. If ``None``, uses a default init method determined
            from the calling operation. Defaults to ``None``.
        dtype: Data type of the parameter. If ``None``, uses the ``dtype`` member of the calling
            module or ``float32`` if it does not exist. Defaults to ``None``.

    Returns:
        A tensor factory with the given default parameters.
    """
    return ParamFactory.Concrete(module, name, init, dtype, rng)


class Norm(eqx.Module):
    """Normalization layer.

    Args:
        stats: Einstein string determining the axes along which mean and variance are computed.
            Will be passed to ``einx.reduce``.
        params: Einstein string determining the axes along which learnable parameters are applied.
            Will be passed to ``einx.elementwise``. Defaults to ``"b... [c]"``.
        mean: Whether to apply mean normalization. Defaults to ``True``.
        var: Whether to apply variance normalization. Defaults to ``True``.
        scale: Whether to apply a learnable scale according to ``params``. Defaults to ``True``.
        bias: Whether to apply a learnable bias according to ``params``. Defaults to ``True``.
        epsilon: A small float added to the variance to avoid division by zero. Defaults
            to ``1e-5``.
        fastvar: Whether to use a fast variance computation. Defaults to ``True``.
        dtype: Data type of the weights. Defaults to ``"float32"``.
        decay_rate: Decay rate for exponential moving average of mean and variance. If ``None``,
            no moving average is applied. Defaults to ``None``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    stats: str
    params: str
    mean: bool
    var: bool
    use_scale: bool
    use_bias: bool
    scale: Optional[jax.Array]
    bias: Optional[jax.Array]
    decay_rate: Optional[float]
    epsilon: float
    fastvar: bool
    dtype: str
    kwargs: dict

    def __init__(
        self,
        stats: str,
        params: str = "b... [c]",
        mean: bool = True,
        var: bool = True,
        scale: bool = True,
        bias: bool = True,
        decay_rate: Optional[float] = None,
        epsilon: float = 1e-5,
        fastvar: bool = True,
        dtype: Any = "float32",
        **kwargs: Any,
    ):
        if decay_rate is not None:
            raise ValueError("Stateful layers are currently not supported in Equinox")
        self.stats = stats
        self.params = params
        self.mean = mean
        self.var = var
        self.use_scale = scale
        self.use_bias = bias
        self.scale = None
        self.bias = None
        self.decay_rate = decay_rate
        self.epsilon = epsilon
        self.fastvar = fastvar
        self.dtype = dtype
        self.kwargs = kwargs

    def __call__(self, x, rng=None):
        x, _mean, _var = einx.nn.norm(
            x,
            self.stats,
            self.params,
            mean=self.mean,
            var=self.var,
            scale=param(self, name="scale", rng=rng) if self.use_scale else None,
            bias=param(self, name="bias", rng=rng) if self.use_bias else None,
            epsilon=self.epsilon,
            fastvar=self.fastvar,
            **self.kwargs,
        )
        return x


class Linear(eqx.Module):
    """Linear layer.

    Args:
        expr: Einstein string determining the axes along which the weight matrix is multiplied.
            Will be passed to ``einx.dot``.
        bias: Whether to apply a learnable bias. Defaults to ``True``.
        dtype: Data type of the weights. Defaults to ``"float32"``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    expr: str
    weight: jax.Array
    bias: Optional[jax.Array]
    use_bias: bool
    kwargs: dict

    def __init__(self, expr: str, bias: bool = True, dtype: Any = "float32", **kwargs: Any):
        self.expr = expr
        self.use_bias = bias
        self.weight = None
        self.bias = None
        self.kwargs = kwargs

    def __call__(self, x, rng=None):
        return einx.nn.linear(
            x,
            self.expr,
            bias=param(self, name="bias", rng=rng) if self.use_bias is not None else None,
            weight=param(self, name="weight", rng=rng),
            **self.kwargs,
        )


class Dropout(eqx.Module):
    """Dropout layer.

    Args:
        expr: Einstein string determining the axes along which dropout is applied. Will be
            passed to ``einx.elementwise``.
        drop_rate: Drop rate.
        inference: Whether the layer is used in inference mode (i.e. not apply dropout). Defaults
            to ``False``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    expr: str
    drop_rate: float
    kwargs: dict
    inference: bool

    def __init__(self, expr: str, drop_rate: float, inference: bool = False, **kwargs: Any):
        self.expr = expr
        self.drop_rate = drop_rate
        self.kwargs = kwargs
        self.inference = inference

    def __call__(self, x, rng):
        if not self.inference:
            return einx.nn.dropout(
                x,
                self.expr,
                drop_rate=self.drop_rate,
                rng=rng,
                **self.kwargs,
            )
        else:
            return x