File: flax.py

package info (click to toggle)
python-einx 0.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,112 kB
  • sloc: python: 11,619; makefile: 13
file content (354 lines) | stat: -rw-r--r-- 12,882 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import flax.linen as nn
import einx
import flax
from functools import partial
import jax.numpy as jnp
from typing import Callable, Union, Optional, Any

tnn = einx.tracer.import_("flax.linen", "nn")


class ParamFactory:
    class Concrete(einx.tracer.input.Input):
        def __init__(self, module, name, init, dtype, col, param_type):
            self.module = module
            self.name = name
            self.init = init

            if dtype is None:
                if hasattr(module, "dtype"):
                    dtype = module.dtype
                else:
                    dtype = "float32"
            self.dtype = dtype

            self.col = col

            if param_type == "param":
                if col is not None:
                    raise ValueError("col is not accepted for flax.linen.Module.param")
            elif param_type == "variable":
                if col is None:
                    raise ValueError("col must be specified for flax.linen.Module.variable")
            else:
                raise ValueError(f"Unknown tensor factory flax.linen.Module.{param_type}")
            self.param_type = param_type

        def to_value_and_key(self):
            return self.module, ParamFactory.CacheKey(
                self.name, self.init, self.dtype, self.col, self.param_type
            )

    class CacheKey(einx.tracer.input.CacheKey):
        def __init__(self, name, init, dtype, col, param_type):
            self.name = name
            self.init = init
            self.dtype = dtype
            self.col = col
            self.param_type = param_type

        def __hash__(self):
            return hash((self.name, self.init, self.dtype, self.col, self.param_type))

        def __eq__(self, other):
            return (
                isinstance(other, ParamFactory.CacheKey)
                and self.name == other.name
                and self.init == other.init
                and self.dtype == other.dtype
                and self.col == other.col
                and self.param_type == other.param_type
            )

        def to_tracer(self, backend, virtual_arg):
            x = ParamFactory.Tracer(self.name, self.init, self.dtype, self.col, self.param_type)
            return x, x

    class Tracer(einx.tracer.TensorFactory):
        def __init__(self, name, init, dtype, col, param_type):
            self.name = name
            self.init = init
            self.dtype = dtype
            self.col = col
            self.param_type = param_type

        def __call__(self, shape, kwargs):
            name = self.name if not self.name is None else kwargs.get("name", None)
            init = self.init if not self.init is None else kwargs.get("init", None)
            dtype = self.dtype if not self.dtype is None else kwargs.get("dtype", None)
            col = self.col

            if name is None:
                raise ValueError(
                    "Must specify name for tensor factory flax.linen.Module.{param|variable}"
                )

            if init is None:
                raise ValueError(
                    "Must specify init for tensor factory flax.linen.Module.{param|variable}"
                )
            elif isinstance(init, str):
                if init == "get_at" or init == "rearrange":
                    init = tnn.initializers.normal(stddev=0.02)
                elif init == "add":
                    init = tnn.initializers.zeros_init()
                elif init == "multiply":
                    init = tnn.initializers.ones_init()
                elif init == "dot":
                    init = tnn.initializers.lecun_normal(
                        kwargs["in_axis"], kwargs["out_axis"], kwargs["batch_axis"]
                    )
                else:
                    raise ValueError(f"Don't know which initializer to use for operation '{init}'")
            elif isinstance(init, (int, float)):
                init = tnn.initializers.constant(init, dtype=dtype)

            if self.param_type == "param":
                x = einx.tracer.apply(
                    self.param, args=[name, init, shape, dtype], output=einx.tracer.Tensor(shape)
                )
            else:
                assert self.param_type == "variable"
                # Assume that variable initialization does not need an rng key by passing None
                x = einx.tracer.apply(
                    self.variable,
                    args=[col, name, init, None, shape, dtype],
                )
                x = einx.tracer.apply(
                    einx.tracer.MemberAccess(), args=[x, "value"], output=einx.tracer.Tensor(shape)
                )
            return x


def param(
    x: Union[Callable, nn.Module],
    name: Optional[str] = None,
    init: Optional[Any] = None,
    dtype: Optional[nn.dtypes.Dtype] = None,
    col: Optional[str] = None,
):
    """Create a tensor factory for Flax parameters.

    Args:
        x: The bound method of a Flax module, i.e. ``nn.Module.param`` or
            ``nn.Module.variable``, or a module instance in which case its ``param`` method
            is used.
        name: Name of the parameter. If ``None``, uses a default name determined from the calling
            operation. Defaults to ``None``.
        init: Initializer for the parameter. If ``None``, uses a default init method determined
            from the calling operation. Defaults to ``None``.
        dtype: Data type of the parameter. If ``None``, uses the ``dtype`` member of the calling
            module or ``float32`` if it does not exist. Defaults to ``None``.
        col: The collection name to use when ``bound_method`` is ``nn.Module.variable``.

    Returns:
        A tensor factory with the given default parameters.
    """
    if hasattr(x, "__func__") and x.__func__ == nn.Module.param:
        module = x.__self__
        param_type = "param"
    elif hasattr(x, "__func__") and x.__func__ == nn.Module.variable:
        module = x.__self__
        param_type = "variable"
    elif isinstance(x, nn.Module):
        module = x
        param_type = "param"
    else:
        raise ValueError("x must be a bound method of a Flax module or a Flax module instance")

    return ParamFactory.Concrete(module, name, init, dtype, col, param_type)


# Allow passing nn.Module, nn.Module.param, nn.Module.variable as tensor factory:
@einx.tracer.input.register_tensor_factory
def tensor_factory(x):
    if isinstance(x, nn.Module) or (
        hasattr(x, "__func__")
        and (x.__func__ == nn.Module.param or x.__func__ == nn.Module.variable)
    ):
        return param(x).to_value_and_key()
    else:
        return None


# Using _ prefix on classes and a separater constructor, since dataclass/nn.Module does
# not support **kwargs parameter.


class _Norm(nn.Module):
    stats: str
    params: str = "b... [c]"
    mean: bool = True
    var: bool = True
    scale: bool = True
    bias: bool = True
    decay_rate: float = None
    epsilon: float = 1e-5
    fastvar: bool = True
    dtype: nn.dtypes.Dtype = "float32"
    kwargs: dict = None

    @nn.compact
    def __call__(self, x, training=None):
        if self.decay_rate is not None and training is None:
            raise ValueError("training must be specified when decay_rate is used")

        use_ema = self.decay_rate is not None and (not training or self.is_initializing())
        x, mean, var = einx.nn.norm(
            x,
            self.stats,
            self.params,
            mean=param(self.variable, col="stats", name="mean", dtype=self.dtype)
            if use_ema and self.mean
            else self.mean,
            var=param(self.variable, col="stats", name="var", dtype=self.dtype)
            if use_ema and self.var
            else self.var,
            scale=param(self.param, name="scale", dtype=self.dtype) if self.scale else None,
            bias=param(self.param, name="bias", dtype=self.dtype) if self.bias else None,
            epsilon=self.epsilon,
            fastvar=self.fastvar,
            **(self.kwargs if self.kwargs is not None else {}),
        )

        update_ema = self.decay_rate is not None and training and not self.is_initializing()
        if update_ema:
            if self.mean:
                mean_ema = self.variable("stats", "mean", None)
                mean_ema.value = self.decay_rate * mean_ema.value + (1 - self.decay_rate) * mean
            if self.var:
                var_ema = self.variable("stats", "var", None)
                var_ema.value = self.decay_rate * var_ema.value + (1 - self.decay_rate) * var

        return x


def Norm(
    stats: str,
    params: str = "b... [c]",
    mean: bool = True,
    var: bool = True,
    scale: bool = True,
    bias: bool = True,
    decay_rate: Optional[float] = None,
    epsilon: float = 1e-5,
    fastvar: bool = True,
    dtype: nn.dtypes.Dtype = "float32",
    name: Optional[str] = None,
    **kwargs: Any,
):
    """Normalization layer.

    Args:
        stats: Einstein string determining the axes along which mean and variance are computed.
            Will be passed to ``einx.reduce``.
        params: Einstein string determining the axes along which learnable parameters are applied.
            Will be passed to ``einx.elementwise``. Defaults to ``"b... [c]"``.
        mean: Whether to apply mean normalization. Defaults to ``True``.
        var: Whether to apply variance normalization. Defaults to ``True``.
        scale: Whether to apply a learnable scale according to ``params``. Defaults to ``True``.
        bias: Whether to apply a learnable bias according to ``params``. Defaults to ``True``.
        epsilon: A small float added to the variance to avoid division by zero. Defaults
            to ``1e-5``.
        fastvar: Whether to use a fast variance computation. Defaults to ``True``.
        dtype: Data type of the weights. Defaults to ``"float32"``.
        decay_rate: Decay rate for exponential moving average of mean and variance. If ``None``,
            no moving average is applied. Defaults to ``None``.
        name: Name of the module. Defaults to ``None``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    return _Norm(
        stats,
        params=params,
        mean=mean,
        var=var,
        scale=scale,
        bias=bias,
        decay_rate=decay_rate,
        epsilon=epsilon,
        fastvar=fastvar,
        dtype=dtype,
        name=name,
        kwargs=kwargs,
    )


class _Linear(nn.Module):
    expr: str
    bias: bool = True
    dtype: nn.dtypes.Dtype = "float32"
    kwargs: dict = None

    @nn.compact
    def __call__(self, x):
        return einx.nn.linear(
            x,
            self.expr,
            bias=param(self.param, name="bias", dtype=self.dtype) if self.bias else None,
            weight=param(self.param, name="weight", dtype=self.dtype),
            **(self.kwargs if self.kwargs is not None else {}),
        )


def Linear(
    expr: str,
    bias: bool = True,
    dtype: nn.dtypes.Dtype = "float32",
    name: Optional[str] = None,
    **kwargs: Any,
):
    """Linear layer.

    Args:
        expr: Einstein string determining the axes along which the weight matrix is
            multiplied. Will be passed to ``einx.dot``.
        bias: Whether to apply a learnable bias. Defaults to ``True``.
        dtype: Data type of the weights. Defaults to ``"float32"``.
        name: Name of the module. Defaults to ``None``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    return _Linear(expr, bias=bias, dtype=dtype, name=name, kwargs=kwargs)


class _Dropout(nn.Module):
    expr: str
    drop_rate: float
    rng_collection: str = "dropout"
    kwargs: dict = None

    @nn.compact
    def __call__(self, x, training):
        if training:
            return einx.nn.dropout(
                x,
                self.expr,
                drop_rate=self.drop_rate,
                rng=self.make_rng(self.rng_collection),
                **(self.kwargs if self.kwargs is not None else {}),
            )
        else:
            return x


def Dropout(
    expr: str,
    drop_rate: float,
    rng_collection: str = "dropout",
    name: Optional[str] = None,
    **kwargs: Any,
):
    """Dropout layer.

    Args:
        expr: Einstein string determining the axes along which dropout is applied. Will be passed
            to ``einx.elementwise``.
        drop_rate: Drop rate.
        rng_collection: the rng collection name to use when requesting an rng key. Defaults
            to ``"dropout"``.
        name: Name of the module. Defaults to ``None``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    return _Dropout(expr, drop_rate, rng_collection=rng_collection, name=name, kwargs=kwargs)