1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
import flax.linen as nn
import einx
import flax
from functools import partial
import jax.numpy as jnp
from typing import Callable, Union, Optional, Any
tnn = einx.tracer.import_("flax.linen", "nn")
class ParamFactory:
class Concrete(einx.tracer.input.Input):
def __init__(self, module, name, init, dtype, col, param_type):
self.module = module
self.name = name
self.init = init
if dtype is None:
if hasattr(module, "dtype"):
dtype = module.dtype
else:
dtype = "float32"
self.dtype = dtype
self.col = col
if param_type == "param":
if col is not None:
raise ValueError("col is not accepted for flax.linen.Module.param")
elif param_type == "variable":
if col is None:
raise ValueError("col must be specified for flax.linen.Module.variable")
else:
raise ValueError(f"Unknown tensor factory flax.linen.Module.{param_type}")
self.param_type = param_type
def to_value_and_key(self):
return self.module, ParamFactory.CacheKey(
self.name, self.init, self.dtype, self.col, self.param_type
)
class CacheKey(einx.tracer.input.CacheKey):
def __init__(self, name, init, dtype, col, param_type):
self.name = name
self.init = init
self.dtype = dtype
self.col = col
self.param_type = param_type
def __hash__(self):
return hash((self.name, self.init, self.dtype, self.col, self.param_type))
def __eq__(self, other):
return (
isinstance(other, ParamFactory.CacheKey)
and self.name == other.name
and self.init == other.init
and self.dtype == other.dtype
and self.col == other.col
and self.param_type == other.param_type
)
def to_tracer(self, backend, virtual_arg):
x = ParamFactory.Tracer(self.name, self.init, self.dtype, self.col, self.param_type)
return x, x
class Tracer(einx.tracer.TensorFactory):
def __init__(self, name, init, dtype, col, param_type):
self.name = name
self.init = init
self.dtype = dtype
self.col = col
self.param_type = param_type
def __call__(self, shape, kwargs):
name = self.name if not self.name is None else kwargs.get("name", None)
init = self.init if not self.init is None else kwargs.get("init", None)
dtype = self.dtype if not self.dtype is None else kwargs.get("dtype", None)
col = self.col
if name is None:
raise ValueError(
"Must specify name for tensor factory flax.linen.Module.{param|variable}"
)
if init is None:
raise ValueError(
"Must specify init for tensor factory flax.linen.Module.{param|variable}"
)
elif isinstance(init, str):
if init == "get_at" or init == "rearrange":
init = tnn.initializers.normal(stddev=0.02)
elif init == "add":
init = tnn.initializers.zeros_init()
elif init == "multiply":
init = tnn.initializers.ones_init()
elif init == "dot":
init = tnn.initializers.lecun_normal(
kwargs["in_axis"], kwargs["out_axis"], kwargs["batch_axis"]
)
else:
raise ValueError(f"Don't know which initializer to use for operation '{init}'")
elif isinstance(init, (int, float)):
init = tnn.initializers.constant(init, dtype=dtype)
if self.param_type == "param":
x = einx.tracer.apply(
self.param, args=[name, init, shape, dtype], output=einx.tracer.Tensor(shape)
)
else:
assert self.param_type == "variable"
# Assume that variable initialization does not need an rng key by passing None
x = einx.tracer.apply(
self.variable,
args=[col, name, init, None, shape, dtype],
)
x = einx.tracer.apply(
einx.tracer.MemberAccess(), args=[x, "value"], output=einx.tracer.Tensor(shape)
)
return x
def param(
x: Union[Callable, nn.Module],
name: Optional[str] = None,
init: Optional[Any] = None,
dtype: Optional[nn.dtypes.Dtype] = None,
col: Optional[str] = None,
):
"""Create a tensor factory for Flax parameters.
Args:
x: The bound method of a Flax module, i.e. ``nn.Module.param`` or
``nn.Module.variable``, or a module instance in which case its ``param`` method
is used.
name: Name of the parameter. If ``None``, uses a default name determined from the calling
operation. Defaults to ``None``.
init: Initializer for the parameter. If ``None``, uses a default init method determined
from the calling operation. Defaults to ``None``.
dtype: Data type of the parameter. If ``None``, uses the ``dtype`` member of the calling
module or ``float32`` if it does not exist. Defaults to ``None``.
col: The collection name to use when ``bound_method`` is ``nn.Module.variable``.
Returns:
A tensor factory with the given default parameters.
"""
if hasattr(x, "__func__") and x.__func__ == nn.Module.param:
module = x.__self__
param_type = "param"
elif hasattr(x, "__func__") and x.__func__ == nn.Module.variable:
module = x.__self__
param_type = "variable"
elif isinstance(x, nn.Module):
module = x
param_type = "param"
else:
raise ValueError("x must be a bound method of a Flax module or a Flax module instance")
return ParamFactory.Concrete(module, name, init, dtype, col, param_type)
# Allow passing nn.Module, nn.Module.param, nn.Module.variable as tensor factory:
@einx.tracer.input.register_tensor_factory
def tensor_factory(x):
if isinstance(x, nn.Module) or (
hasattr(x, "__func__")
and (x.__func__ == nn.Module.param or x.__func__ == nn.Module.variable)
):
return param(x).to_value_and_key()
else:
return None
# Using _ prefix on classes and a separater constructor, since dataclass/nn.Module does
# not support **kwargs parameter.
class _Norm(nn.Module):
stats: str
params: str = "b... [c]"
mean: bool = True
var: bool = True
scale: bool = True
bias: bool = True
decay_rate: float = None
epsilon: float = 1e-5
fastvar: bool = True
dtype: nn.dtypes.Dtype = "float32"
kwargs: dict = None
@nn.compact
def __call__(self, x, training=None):
if self.decay_rate is not None and training is None:
raise ValueError("training must be specified when decay_rate is used")
use_ema = self.decay_rate is not None and (not training or self.is_initializing())
x, mean, var = einx.nn.norm(
x,
self.stats,
self.params,
mean=param(self.variable, col="stats", name="mean", dtype=self.dtype)
if use_ema and self.mean
else self.mean,
var=param(self.variable, col="stats", name="var", dtype=self.dtype)
if use_ema and self.var
else self.var,
scale=param(self.param, name="scale", dtype=self.dtype) if self.scale else None,
bias=param(self.param, name="bias", dtype=self.dtype) if self.bias else None,
epsilon=self.epsilon,
fastvar=self.fastvar,
**(self.kwargs if self.kwargs is not None else {}),
)
update_ema = self.decay_rate is not None and training and not self.is_initializing()
if update_ema:
if self.mean:
mean_ema = self.variable("stats", "mean", None)
mean_ema.value = self.decay_rate * mean_ema.value + (1 - self.decay_rate) * mean
if self.var:
var_ema = self.variable("stats", "var", None)
var_ema.value = self.decay_rate * var_ema.value + (1 - self.decay_rate) * var
return x
def Norm(
stats: str,
params: str = "b... [c]",
mean: bool = True,
var: bool = True,
scale: bool = True,
bias: bool = True,
decay_rate: Optional[float] = None,
epsilon: float = 1e-5,
fastvar: bool = True,
dtype: nn.dtypes.Dtype = "float32",
name: Optional[str] = None,
**kwargs: Any,
):
"""Normalization layer.
Args:
stats: Einstein string determining the axes along which mean and variance are computed.
Will be passed to ``einx.reduce``.
params: Einstein string determining the axes along which learnable parameters are applied.
Will be passed to ``einx.elementwise``. Defaults to ``"b... [c]"``.
mean: Whether to apply mean normalization. Defaults to ``True``.
var: Whether to apply variance normalization. Defaults to ``True``.
scale: Whether to apply a learnable scale according to ``params``. Defaults to ``True``.
bias: Whether to apply a learnable bias according to ``params``. Defaults to ``True``.
epsilon: A small float added to the variance to avoid division by zero. Defaults
to ``1e-5``.
fastvar: Whether to use a fast variance computation. Defaults to ``True``.
dtype: Data type of the weights. Defaults to ``"float32"``.
decay_rate: Decay rate for exponential moving average of mean and variance. If ``None``,
no moving average is applied. Defaults to ``None``.
name: Name of the module. Defaults to ``None``.
**kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
"""
return _Norm(
stats,
params=params,
mean=mean,
var=var,
scale=scale,
bias=bias,
decay_rate=decay_rate,
epsilon=epsilon,
fastvar=fastvar,
dtype=dtype,
name=name,
kwargs=kwargs,
)
class _Linear(nn.Module):
expr: str
bias: bool = True
dtype: nn.dtypes.Dtype = "float32"
kwargs: dict = None
@nn.compact
def __call__(self, x):
return einx.nn.linear(
x,
self.expr,
bias=param(self.param, name="bias", dtype=self.dtype) if self.bias else None,
weight=param(self.param, name="weight", dtype=self.dtype),
**(self.kwargs if self.kwargs is not None else {}),
)
def Linear(
expr: str,
bias: bool = True,
dtype: nn.dtypes.Dtype = "float32",
name: Optional[str] = None,
**kwargs: Any,
):
"""Linear layer.
Args:
expr: Einstein string determining the axes along which the weight matrix is
multiplied. Will be passed to ``einx.dot``.
bias: Whether to apply a learnable bias. Defaults to ``True``.
dtype: Data type of the weights. Defaults to ``"float32"``.
name: Name of the module. Defaults to ``None``.
**kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
"""
return _Linear(expr, bias=bias, dtype=dtype, name=name, kwargs=kwargs)
class _Dropout(nn.Module):
expr: str
drop_rate: float
rng_collection: str = "dropout"
kwargs: dict = None
@nn.compact
def __call__(self, x, training):
if training:
return einx.nn.dropout(
x,
self.expr,
drop_rate=self.drop_rate,
rng=self.make_rng(self.rng_collection),
**(self.kwargs if self.kwargs is not None else {}),
)
else:
return x
def Dropout(
expr: str,
drop_rate: float,
rng_collection: str = "dropout",
name: Optional[str] = None,
**kwargs: Any,
):
"""Dropout layer.
Args:
expr: Einstein string determining the axes along which dropout is applied. Will be passed
to ``einx.elementwise``.
drop_rate: Drop rate.
rng_collection: the rng collection name to use when requesting an rng key. Defaults
to ``"dropout"``.
name: Name of the module. Defaults to ``None``.
**kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
"""
return _Dropout(expr, drop_rate, rng_collection=rng_collection, name=name, kwargs=kwargs)
|