File: keras.py

package info (click to toggle)
python-einx 0.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,112 kB
  • sloc: python: 11,619; makefile: 13
file content (297 lines) | stat: -rw-r--r-- 10,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import keras
import einx
import inspect
import numpy as np
from typing import Any, Callable, Optional

_version = tuple(int(i) for i in keras.__version__.split(".")[:2])
if _version < (3, 0):
    raise ImportError(f"einx.nn.keras requires Keras version >= 3, but found {keras.__version__}")


tkeras = einx.tracer.import_("keras")


def create_or_retrieve(layer, name, shape, dtype, init, trainable):
    if name in vars(layer):
        tensor = vars(layer)[name]
    else:
        tensor = vars(layer)[name] = layer.add_weight(
            shape=shape,
            dtype=dtype,
            initializer=init,
            name=name,
            trainable=trainable,
        )
    return tensor


class ParamFactory:
    class Concrete(einx.tracer.input.Input):
        def __init__(self, layer, name, init, dtype, trainable):
            self.layer = layer
            self.name = name
            self.init = init

            if dtype is None:
                if hasattr(layer, "dtype"):
                    dtype = layer.dtype
                else:
                    dtype = "float32"
            self.dtype = dtype

            self.trainable = trainable

        def to_value_and_key(self):
            return self.layer, ParamFactory.CacheKey(
                self.name, self.init, self.dtype, self.trainable
            )

    class CacheKey(einx.tracer.input.CacheKey):
        def __init__(self, name, init, dtype, trainable):
            self.name = name
            self.init = init
            self.dtype = dtype
            self.trainable = trainable

        def __hash__(self):
            return hash((self.name, self.init, self.dtype, self.trainable))

        def __eq__(self, other):
            return (
                isinstance(other, ParamFactory.CacheKey)
                and self.name == other.name
                and self.init == other.init
                and self.dtype == other.dtype
                and self.trainable == other.trainable
            )

        def to_tracer(self, backend, virtual_arg):
            x = ParamFactory.Tracer(self.name, self.init, self.dtype, self.trainable)
            return x, x

    class Tracer(einx.tracer.TensorFactory):
        def __init__(self, name, init, dtype, trainable):
            self.name = name
            self.init = init
            self.dtype = dtype
            self.trainable = trainable

        def __call__(self, shape, kwargs):
            name = self.name if not self.name is None else kwargs.get("name", None)
            init = self.init if not self.init is None else kwargs.get("init", None)
            dtype = self.dtype if not self.dtype is None else kwargs.get("dtype", None)

            if name is None:
                raise ValueError("Must specify name for tensor factory keras.layers.Layer")

            if init is None:
                raise ValueError("Must specify init for tensor factory keras.layers.Layer")
            elif isinstance(init, str):
                if init == "get_at" or init == "rearrange":
                    init = tkeras.initializers.TruncatedNormal(stddev=0.02)
                elif init == "add":
                    init = tkeras.initializers.Constant(0.0)
                elif init == "multiply":
                    init = tkeras.initializers.Constant(1.0)
                elif init == "dot":
                    fan_in = np.prod([shape[i] for i in kwargs["in_axis"]])
                    std = np.sqrt(1.0 / fan_in) / 0.87962566103423978
                    init = tkeras.initializers.TruncatedNormal(mean=0.0, stddev=std)
                else:
                    raise ValueError(f"Don't know which initializer to use for operation '{init}'")
            elif isinstance(init, (int, float)):
                init = tkeras.initializers.Constant(init)

            return einx.tracer.apply(
                create_or_retrieve,  # TODO: make tracable
                args=[self, name, shape, dtype, init, self.trainable],
                output=einx.tracer.Tensor(shape),
            )


def param(
    layer: keras.layers.Layer,
    name: Optional[str] = None,
    init: Optional[Any] = None,
    dtype: Optional[Any] = None,
    trainable: bool = True,
):
    """Create a tensor factory for Keras parameters.

    Args:
        layer: The layer to create the parameter in. Must be an instance of ``keras.layers.Layer``.
        name: Name of the parameter. If ``None``, uses a default name determined from the
            calling operation. Defaults to ``None``.
        init: Initializer for the parameter. If ``None``, uses a default init method determined
            from the calling operation. Defaults to ``None``.
        dtype: Data type of the parameter. If ``None``, uses the ``dtype`` member of the calling
            module or ``float32`` if it does not exist. Defaults to ``None``.
        trainable: Whether the parameter is trainable. Defaults to ``True``.

    Returns:
        A tensor factory with the given default parameters.
    """
    return ParamFactory.Concrete(layer, name, init, dtype, trainable)


def is_leaf(x):
    return isinstance(x, tuple) and all(isinstance(y, int) for y in x)


class Layer(keras.layers.Layer):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def build(self, inputs_shape):
        tracers = einx.tree_util.tree_map(
            lambda shape: keras.ops.zeros(shape, dtype="float32"), inputs_shape, is_leaf=is_leaf
        )

        if "is_initializing" in inspect.signature(self.call).parameters:
            self.call(tracers, is_initializing=True)
        else:
            self.call(tracers)


class Norm(Layer):
    """Normalization layer.

    Args:
        stats: Einstein string determining the axes along which mean and variance are computed.
            Will be passed to ``einx.reduce``.
        params: Einstein string determining the axes along which learnable parameters are applied.
            Will be passed to ``einx.elementwise``. Defaults to ``"b... [c]"``.
        mean: Whether to apply mean normalization. Defaults to ``True``.
        var: Whether to apply variance normalization. Defaults to ``True``.
        scale: Whether to apply a learnable scale according to ``params``. Defaults to ``True``.
        bias: Whether to apply a learnable bias according to ``params``. Defaults to ``True``.
        epsilon: A small float added to the variance to avoid division by zero. Defaults
            to ``1e-5``.
        fastvar: Whether to use a fast variance computation. Defaults to ``True``.
        dtype: Data type of the weights. Defaults to ``"float32"``.
        decay_rate: Decay rate for exponential moving average of mean and variance. If ``None``,
            no moving average is applied. Defaults to ``None``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    def __init__(
        self,
        stats: str,
        params: str = "b... [c]",
        mean: bool = True,
        var: bool = True,
        scale: bool = True,
        bias: bool = True,
        epsilon: float = 1e-5,
        fastvar: bool = True,
        dtype: Any = "float32",
        decay_rate: Optional[float] = None,
        **kwargs: Any,
    ):
        super().__init__(dtype=dtype)
        self.stats = stats
        self.params = params
        self.use_mean = mean
        self.use_var = var
        self.use_scale = scale
        self.use_bias = bias
        self.epsilon = epsilon
        self.fastvar = fastvar
        self.decay_rate = decay_rate
        self.kwargs = kwargs

    def call(self, x, training=None, is_initializing=False):
        use_ema = self.decay_rate is not None and (not training or is_initializing)
        x, mean, var = einx.nn.norm(
            x,
            self.stats,
            self.params,
            mean=param(self, name="mean", trainable=False)
            if use_ema and self.use_mean
            else self.use_mean,
            var=param(self, name="var", trainable=False)
            if use_ema and self.use_var
            else self.use_var,
            scale=param(self, name="scale", trainable=True) if self.use_scale else None,
            bias=param(self, name="bias", trainable=True) if self.use_bias else None,
            epsilon=self.epsilon,
            fastvar=self.fastvar,
            **(self.kwargs if self.kwargs is not None else {}),
        )

        update_ema = self.decay_rate is not None and training and not is_initializing
        if update_ema:
            if self.use_mean:
                self.mean.assign(
                    keras.ops.cast(
                        self.decay_rate * self.mean.value + (1 - self.decay_rate) * mean,
                        self.mean.dtype,
                    )
                )
            if self.use_var:
                self.var.assign(
                    keras.ops.cast(
                        self.decay_rate * self.var.value + (1 - self.decay_rate) * var,
                        self.var.dtype,
                    )
                )

        return x


class Linear(Layer):
    """Linear layer.

    Args:
        expr: Einstein string determining the axes along which the weight matrix is multiplied.
            Will be passed to ``einx.dot``.
        bias: Whether to apply a learnable bias. Defaults to ``True``.
        dtype: Data type of the weights. Defaults to ``"float32"``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    def __init__(self, expr: str, bias: bool = True, dtype: Any = "float32", **kwargs: Any):
        super().__init__(dtype=dtype)

        self.expr = expr
        self.use_bias = bias
        self.kwargs = kwargs

    def call(self, x):
        return einx.nn.linear(
            x,
            self.expr,
            bias=param(self, name="bias") if self.use_bias else None,
            weight=param(self, name="weight"),
            **self.kwargs,
        )


class Dropout(Layer):
    """Dropout layer.

    Args:
        expr: Einstein string determining the axes along which dropout is applied. Will be
            passed to ``einx.elementwise``.
        drop_rate: Drop rate.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    def __init__(self, expr: str, drop_rate: float, **kwargs: Any):
        super().__init__()

        self.expr = expr
        self.drop_rate = drop_rate
        self.kwargs = kwargs

    def call(self, x, training=None):
        if training:
            return einx.nn.dropout(
                x,
                self.expr,
                drop_rate=self.drop_rate,
                **self.kwargs,
            )
        else:
            return x