1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
import einx
from typing import Union, Optional, Any
@einx.jit(
trace=lambda t, c: lambda x,
stats,
params="b... [c]",
mean=True,
var=True,
scale=None,
bias=None,
epsilon=0,
fastvar=True,
backend=None,
**kwargs: c(
t(x),
stats,
params,
t(mean) if not isinstance(mean, bool) and mean is not None else mean,
t(var) if not isinstance(var, bool) and var is not None else var,
t(scale) if scale is not None else scale,
t(bias) if bias is not None else bias,
epsilon,
fastvar,
**kwargs,
)
)
def norm(
x: einx.Tensor,
stats: str,
params: str = "b... [c]",
mean: Union[einx.Tensor, bool] = True,
var: Union[einx.Tensor, bool] = True,
scale: Optional[einx.Tensor] = None,
bias: Optional[einx.Tensor] = None,
epsilon: float = 0,
fastvar: bool = True,
backend: Union[einx.Backend, str, None] = None,
**kwargs: Any,
):
if mean is None or var is None:
raise ValueError("mean and var cannot be None")
expr_in, expr_stats = einx.reduce.parse(stats, einx.tracer.get_shape(x), **kwargs)
expr_in = einx.expr.stage3.demark(expr_in)
expr_stats = einx.expr.stage3.demark(expr_stats)
# Instantiate moving averages
if not isinstance(mean, bool) and mean is not None:
mean = einx.tracer.call_factory(mean, shape=expr_stats.shape, backend=backend, init="add")
if not isinstance(var, bool) and var is not None:
var = einx.tracer.call_factory(
var, shape=expr_stats.shape, backend=backend, init="multiply"
)
# Compute mean and variance
if isinstance(mean, bool):
if mean:
mean = einx.mean(stats, x, backend=backend, **kwargs)
else:
mean = None
if isinstance(var, bool):
if var:
if mean is None:
# RMS norm
var = einx.mean(stats, backend.square(x), backend=backend, **kwargs)
else:
if fastvar:
mean_of_squares = einx.mean(stats, backend.square(x), backend=backend, **kwargs)
var = mean_of_squares - backend.square(mean)
var = backend.maximum(var, 0)
else:
var = einx.var(stats, x, backend=backend, **kwargs)
else:
var = None
# Normalize mean and variance
if mean is not None:
x, _ = einx.subtract_stage3([expr_in, expr_stats], [x, mean], expr_in, backend=backend)
if var is not None:
inv_std = backend.rsqrt(var + epsilon)
x, _ = einx.multiply_stage3([expr_in, expr_stats], [x, inv_std], expr_in, backend=backend)
# Apply scale and bias
if scale is not None:
x = einx.multiply(params, x, scale, backend=backend, **kwargs)
if bias is not None:
x = einx.add(params, x, bias, backend=backend, **kwargs)
return x, mean, var
@einx.jit(
trace=lambda t, c: lambda x, expr, weight, bias=None, **kwargs: c(
t(x), expr, t(weight), t(bias) if bias is not None else None, **kwargs
)
)
def linear(
x: einx.Tensor,
expr: str,
weight: einx.Tensor,
bias: Optional[einx.Tensor],
backend: Union[einx.Backend, str, None] = None,
**kwargs: Any,
):
(_expr_in1, expr_in2), expr_afterdot = einx.dot.parse(
expr, einx.tracer.get_shape(x), einx.tracer.get_shape(weight), **kwargs
)
# Weight matrix multiplication
x = einx.dot(expr, x, weight, backend=backend, **kwargs)
if bias is not None:
# Bias expression includes all axes in output that are also in weight matrix
weight_axes_names = {a.name for a in expr_in2.all() if isinstance(a, einx.expr.stage3.Axis)}
expr_bias = []
for a in expr_afterdot.all():
if isinstance(a, einx.expr.stage3.Axis) and a.name in weight_axes_names:
expr_bias.append(a.__deepcopy__())
expr_bias = einx.expr.stage3.List(expr_bias)
x, _ = einx.add_stage3(
[expr_afterdot, expr_bias], [x, bias], expr_afterdot, backend=backend
)
return x
@einx.jit(
trace=lambda t, c: lambda x, expr, drop_rate, rng=None, **kwargs: c(
t(x), expr, drop_rate, t(rng) if rng is not None else None, **kwargs
)
)
def dropout(
x: einx.Tensor,
expr: str,
drop_rate: float,
rng: Any = None,
backend: Union[einx.Backend, str, None] = None,
**kwargs: Any,
):
keep_rate = 1 - drop_rate
(expr_in, expr_mask), expr_out = einx.elementwise.parse(
expr, einx.tracer.get_shape(x), None, **kwargs
)
with einx.tracer.depend_on(x):
drop_mask = backend.random.bernoulli(rng=rng, p=keep_rate, shape=expr_mask.shape)
x, _ = einx.where_stage3(
[expr_mask, expr_in, einx.expr.stage3.List([])],
[drop_mask, x, 0],
expr_out,
backend=backend,
)
return x * (1 / keep_rate)
|