File: torch.py

package info (click to toggle)
python-einx 0.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,112 kB
  • sloc: python: 11,619; makefile: 13
file content (330 lines) | stat: -rw-r--r-- 11,096 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import torch
import einx
import math
from functools import partial
import numpy as np
from typing import Callable, Union, Optional, Any

_version = tuple(int(i) for i in torch.__version__.split(".")[:2])
if _version < (2, 0):
    raise ImportError(f"einx.nn.torch requires PyTorch version >= 2, but found {torch.__version__}")


def _allow_in_graph(func):
    if "compiler" in dir(torch):
        return torch.compiler.allow_in_graph(func)
    else:
        import torch._dynamo as _dynamo

        return _dynamo.allow_in_graph(func)


ttorch = einx.tracer.import_("torch")


class ParamFactory:
    class Concrete(einx.tracer.input.Input):
        def __init__(self, param, init):
            self.param = param
            self.init = init

        def to_value_and_key(self):
            return self.param, ParamFactory.CacheKey(self.init)

    class CacheKey(einx.tracer.input.CacheKey):
        def __init__(self, init):
            self.init = init

        def __hash__(self):
            return hash(self.init)

        def __eq__(self, other):
            return isinstance(other, ParamFactory.CacheKey) and self.init == other.init

        def to_tracer(self, backend, virtual_arg):
            x = ParamFactory.Tracer(self.init)
            return x, x

    class Tracer(einx.tracer.TensorFactory):
        def __init__(self, init):
            self.init = init

        def __call__(self, shape, kwargs):
            init = self.init if not self.init is None else kwargs.get("init", None)

            x = self

            output = einx.tracer.Tensor(shape)
            x = einx.tracer.apply(
                x.materialize,
                args=[shape],
                output=output,
                inplace_updates=[(x, output)],
            )

            if init is None:
                raise ValueError(
                    "Must specify init for tensor factory torch.nn.parameter.Uninitialized*"
                )
            elif isinstance(init, str):
                if init == "get_at" or init == "rearrange":
                    init = partial(ttorch.nn.init.normal_, std=0.02)
                elif init == "add":
                    init = ttorch.nn.init.zeros_
                elif init == "multiply":
                    init = ttorch.nn.init.ones_
                elif init == "dot":
                    fan_in = np.prod([shape[i] for i in kwargs["in_axis"]])
                    std = np.sqrt(1.0 / fan_in) / 0.87962566103423978
                    init = partial(ttorch.nn.init.trunc_normal_, mean=0.0, std=std, a=-2.0, b=2.0)
                else:
                    raise ValueError(f"Don't know which initializer to use for operation '{init}'")
            elif isinstance(init, (int, float)):
                init = partial(ttorch.nn.init.constant_, val=init)

            output = einx.tracer.Tensor(shape)
            x = einx.tracer.apply(
                init,
                args=[x],
                output=output,
                inplace_updates=[(x, output)],
            )

            return x


def param(
    x: Union[
        torch.nn.parameter.UninitializedParameter,
        torch.nn.parameter.UninitializedBuffer,
        torch.nn.parameter.Parameter,
    ],
    init: Optional[Any] = None,
):
    """Create a tensor factory for an uninitialized PyTorch parameter or buffer.

    If the given parameter is not initialized, this returns a tensor factory that calls
    the ``materialize`` method of ``uninitialized`` with the given shape and returns
    ``uninitialized``. Otherwise, the parameter is returned as is.

    Args:
        x: An instance of ``torch.nn.parameter.UninitializedParameter``,
            ``torch.nn.parameter.UninitializedBuffer`` or ``torch.nn.parameter.Parameter``.
        init: Initializer for the parameter. If ``None``, uses a default init method determined
            from the calling operation. Defaults to ``None``.

    Returns:
        A tensor factory with the given default parameters, or the parameter itself if it is
        already materialized.
    """
    if isinstance(
        x, (torch.nn.parameter.UninitializedParameter, torch.nn.parameter.UninitializedBuffer)
    ) and not isinstance(x, torch._subclasses.FakeTensor):
        # Return
        return ParamFactory.Concrete(x, init)
    else:
        # If parameter is already materialized, return it as is
        return x


# Allow passing UninitializedParameter and UninitializedBuffer as tensor factory:
@einx.tracer.input.register_tensor_factory
def tensor_factory(x):
    if isinstance(
        x, (torch.nn.parameter.UninitializedParameter, torch.nn.parameter.UninitializedBuffer)
    ) and not isinstance(x, torch._subclasses.FakeTensor):
        return param(x).to_value_and_key()
    else:
        return None


class Norm(torch.nn.Module):
    """Normalization layer.

    Args:
        stats: Einstein string determining the axes along which mean and variance are computed.
            Will be passed to ``einx.reduce``.
        params: Einstein string determining the axes along which learnable parameters are applied.
            Will be passed to ``einx.elementwise``. Defaults to ``"b... [c]"``.
        mean: Whether to apply mean normalization. Defaults to ``True``.
        var: Whether to apply variance normalization. Defaults to ``True``.
        scale: Whether to apply a learnable scale according to ``params``. Defaults to ``True``.
        bias: Whether to apply a learnable bias according to ``params``. Defaults to ``True``.
        epsilon: A small float added to the variance to avoid division by zero. Defaults
            to ``1e-5``.
        fastvar: Whether to use a fast variance computation. Defaults to ``True``.
        dtype: Data type of the weights. Defaults to ``"float32"``.
        decay_rate: Decay rate for exponential moving average of mean and variance. If ``None``,
            no moving average is applied. Defaults to ``None``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    def __init__(
        self,
        stats: str,
        params: str = "b... [c]",
        mean: bool = True,
        var: bool = True,
        scale: bool = True,
        bias: bool = True,
        epsilon: float = 1e-5,
        fastvar: bool = True,
        dtype: Union[torch.dtype, str] = "float32",
        decay_rate: Optional[float] = None,
        **kwargs: Any,
    ):
        super().__init__()
        self.stats = stats
        self.params = params
        self.use_mean = mean
        self.use_var = var
        self.epsilon = epsilon
        self.fastvar = fastvar
        self.decay_rate = decay_rate
        self.kwargs = kwargs

        if mean and decay_rate is not None:
            self.register_buffer(
                "mean", torch.nn.parameter.UninitializedBuffer(dtype=vars(torch)[dtype])
            )
        else:
            self.mean = None
        if var and decay_rate is not None:
            self.register_buffer(
                "var", torch.nn.parameter.UninitializedBuffer(dtype=vars(torch)[dtype])
            )
        else:
            self.var = None
        self.scale = (
            torch.nn.parameter.UninitializedParameter(dtype=vars(torch)[dtype]) if scale else None
        )
        self.bias = (
            torch.nn.parameter.UninitializedParameter(dtype=vars(torch)[dtype]) if bias else None
        )

        self.initialized = False

    def forward(self, x):
        use_ema = self.decay_rate is not None and (not self.training or not self.initialized)
        x, mean, var = _norm(
            x,
            self.stats,
            self.params,
            mean=self.mean if use_ema and self.use_mean else self.use_mean,
            var=self.var if use_ema and self.use_var else self.use_var,
            scale=self.scale if self.scale is not None else None,
            bias=self.bias if self.bias is not None else None,
            epsilon=self.epsilon,
            fastvar=self.fastvar,
            kwargs=self.kwargs,
        )
        update_ema = self.decay_rate is not None and self.training
        if update_ema:
            with torch.no_grad():
                if mean is not None:
                    self.mean.copy_(self.decay_rate * self.mean + (1 - self.decay_rate) * mean)
                if var is not None:
                    self.var.copy_(self.decay_rate * self.var + (1 - self.decay_rate) * var)
        if not self.initialized:
            self.initialized = True
        return x


@_allow_in_graph
def _norm(x, stats, params, mean, var, scale, bias, epsilon, fastvar, kwargs):
    with x.device:
        return einx.nn.norm(
            x,
            stats,
            params,
            mean=mean,
            var=var,
            scale=scale,
            bias=bias,
            epsilon=epsilon,
            fastvar=fastvar,
            backend="torch",
            **kwargs,
        )


class Linear(torch.nn.Module):
    """Linear layer.

    Args:
        expr: Einstein string determining the axes along which the weight matrix is multiplied.
            Will be passed to ``einx.dot``.
        bias: Whether to apply a learnable bias. Defaults to ``True``.
        dtype: Data type of the weights. Defaults to ``"float32"``.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    def __init__(
        self,
        expr: str,
        bias: bool = True,
        dtype: Union[torch.dtype, str] = "float32",
        **kwargs: Any,
    ):
        super().__init__()

        self.weight = torch.nn.parameter.UninitializedParameter(dtype=vars(torch)[dtype])
        if bias:
            self.bias = torch.nn.parameter.UninitializedParameter(dtype=vars(torch)[dtype])
        else:
            self.bias = None

        self.expr = expr
        self.kwargs = kwargs

    def forward(self, x):
        return _linear(x, self.expr, self.weight, self.bias, self.kwargs)


@_allow_in_graph
def _linear(x, expr, weight, bias, kwargs):
    with x.device:
        return einx.nn.linear(
            x,
            expr,
            weight,
            bias,
            backend="torch",
            **kwargs,
        )


class Dropout(torch.nn.Module):
    """Dropout layer.

    Args:
        expr: Einstein string determining the axes along which dropout is applied. Will be
            passed to ``einx.elementwise``.
        drop_rate: Drop rate.
        **kwargs: Additional parameters that specify values for single axes, e.g. ``a=4``.
    """

    def __init__(self, expr: str, drop_rate: float, **kwargs: Any):
        super().__init__()

        self.expr = expr
        self.drop_rate = drop_rate
        self.kwargs = kwargs

    def forward(self, x):
        if self.training:
            return _dropout(x, self.expr, self.drop_rate, self.kwargs)
        else:
            return x


@_allow_in_graph
def _dropout(x, expr, drop_rate, kwargs):
    with x.device:
        return einx.nn.dropout(
            x,
            expr,
            drop_rate=drop_rate,
            backend="torch",
            **kwargs,
        )