1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
import importlib
import numpy as np
import types
import einx
import threading
import multiprocessing
import os
tests = []
class WrappedEinx:
def __init__(self, wrap, name, inline_args):
import einx
self.einx = einx
self.in_func = False
self.wrap = wrap
self.name = name
self.inline_args = inline_args
def __enter__(self):
assert not self.in_func
self.in_func = True
def __exit__(self, *args):
assert self.in_func
self.in_func = False
def __getattr__(self, attr):
op = getattr(self.einx, attr)
if self.in_func or attr in {"matches", "solve", "check", "trace"}:
return op
if self.inline_args:
def op3(*args, **kwargs):
with self:
def op2():
return op(*args, **kwargs)
op2 = self.wrap(op2)
op2()
return op2()
return op3
else:
def op3(*args, **kwargs):
with self:
op2 = self.wrap(op)
op2(*args, **kwargs)
return op2(*args, **kwargs)
return op3
def in_new_thread(op):
def inner(*args, **kwargs):
result = [None, None]
def run(result):
try:
result[0] = op(*args, **kwargs)
except Exception as e:
result[1] = e
thread = threading.Thread(target=run, args=(result,))
thread.start()
thread.join()
if result[1] is not None:
raise result[1]
else:
return result[0]
return inner
einx_multithread = WrappedEinx(in_new_thread, "multithreading", inline_args=True)
def in_new_process(op):
def inner(*args, **kwargs):
result = multiprocessing.Queue()
exception = multiprocessing.Queue()
def run(result, exception):
try:
result.put(op(*args, **kwargs))
except Exception as e:
exception.put(e)
process = multiprocessing.Process(target=run, args=(result, exception))
process.start()
process.join()
if not exception.empty():
raise exception.get()
else:
return result.get()
return inner
einx_multiprocess = WrappedEinx(in_new_process, "multiprocessing", inline_args=True)
# numpy is always available
import numpy as np
backend = einx.backend.numpy.create()
test = types.SimpleNamespace(
full=lambda shape, value=0.0, dtype="float32": np.full(shape, value, dtype=dtype),
to_tensor=np.asarray,
to_numpy=np.asarray,
)
tests.append((einx, backend, test))
tests.append((einx_multithread, backend, test))
# tests.append((einx_multiprocess, backend, test)) # too slow
if importlib.util.find_spec("jax"):
os.environ["XLA_FLAGS"] = (
os.environ.get("XLA_FLAGS", "") + " --xla_force_host_platform_device_count=8"
)
import jax
import jax.numpy as jnp
einx_jit = WrappedEinx(jax.jit, "jax.jit", inline_args=True)
backend = einx.backend.jax.create()
test_cpu = types.SimpleNamespace(
full=lambda shape, value=0.0, dtype="float32": jax.device_put(
jnp.full(shape, value, dtype=dtype), device=jax.devices("cpu")[0]
),
to_tensor=lambda x: jax.device_put(jnp.asarray(x), device=jax.devices("cpu")[0]),
to_numpy=np.asarray,
)
tests.append((einx, backend, test_cpu))
tests.append((einx_jit, backend, test_cpu))
try:
jax.devices("gpu")
has_gpu = True
except:
has_gpu = False
if has_gpu:
test_gpu = types.SimpleNamespace(
full=lambda shape, value=0.0, dtype="float32": jax.device_put(
jnp.full(shape, value, dtype=dtype), device=jax.devices("gpu")[0]
),
to_tensor=lambda x: jax.device_put(jnp.asarray(x), device=jax.devices("gpu")[0]),
to_numpy=np.asarray,
)
tests.append((einx, backend, test_gpu))
tests.append((einx_jit, backend, test_gpu))
if importlib.util.find_spec("torch"):
import torch
version = tuple(int(i) for i in torch.__version__.split(".")[:2])
def wrap(op):
torch.compiler.reset()
return torch.compile(op)
einx_torchcompile = WrappedEinx(wrap, "torch.compile", inline_args=False)
backend = einx.backend.torch.create()
dtypes = {
"float32": torch.float32,
"long": torch.long,
"bool": torch.bool,
}
test_cpu = types.SimpleNamespace(
full=lambda shape, value=0.0, dtype="float32", backend=backend: torch.full(
backend.to_tuple(shape), value, dtype=dtypes[dtype]
),
to_tensor=lambda tensor: torch.asarray(tensor, device=torch.device("cpu")),
to_numpy=lambda tensor: tensor.numpy(),
)
tests.append((einx, backend, test_cpu))
if version >= (2, 1):
tests.append((einx_torchcompile, backend, test_cpu))
if torch.cuda.is_available():
test_gpu = types.SimpleNamespace(
full=lambda shape, value=1.0, dtype="float32", backend=backend: torch.full(
backend.to_tuple(shape), value, dtype=dtypes[dtype], device=torch.device("cuda")
),
to_tensor=lambda tensor: torch.asarray(tensor, device=torch.device("cuda")),
to_numpy=lambda tensor: tensor.cpu().numpy(),
)
tests.append((einx, backend, test_gpu))
if version >= (2, 1):
tests.append((einx_torchcompile, backend, test_gpu))
if importlib.util.find_spec("tensorflow"):
import os
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
import tensorflow as tf
import tensorflow.experimental.numpy as tnp
tnp.experimental_enable_numpy_behavior()
backend = einx.backend.tensorflow.create()
test = types.SimpleNamespace(
full=lambda shape, value=0.0, dtype="float32": tnp.full(shape, value, dtype=dtype),
to_tensor=tf.convert_to_tensor,
to_numpy=lambda x: x.numpy(),
)
tests.append((einx, backend, test))
if importlib.util.find_spec("mlx"):
import mlx.core as mx
backend = einx.backend.mlx.create()
test = types.SimpleNamespace(
full=lambda shape, value=0.0, dtype="float32", backend=backend: mx.full(
shape, value, dtype=backend.to_dtype(dtype)
),
to_tensor=mx.array,
to_numpy=np.asarray,
)
tests.append((einx, backend, test))
if importlib.util.find_spec("dask"):
import dask.array as da
backend = einx.backend.dask.create()
test = types.SimpleNamespace(
full=lambda shape, value=0.0, dtype="float32": da.full(shape, value, dtype=dtype),
to_tensor=np.asarray,
to_numpy=np.asarray,
)
tests.append((einx, backend, test))
if importlib.util.find_spec("tinygrad"):
import os
os.environ["PYTHON"] = "1"
from tinygrad import Tensor
backend = einx.backend.tinygrad.create()
test = types.SimpleNamespace(
full=lambda shape, value=0.0, dtype="float32": Tensor.full(
shape, value, dtype=backend.to_dtype(dtype)
),
to_tensor=Tensor,
to_numpy=lambda x: x.numpy(),
)
tests.append((einx, backend, test))
|