1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|
// This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:452
[source, python]
----
resp = client.search(
index="movies",
size=10,
retriever={
"rescorer": {
"rescore": {
"window_size": 50,
"query": {
"rescore_query": {
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "cosineSimilarity(params.queryVector, 'product-vector_final_stage') + 1.0",
"params": {
"queryVector": [
-0.5,
90,
-10,
14.8,
-156
]
}
}
}
}
}
},
"retriever": {
"rrf": {
"rank_window_size": 100,
"retrievers": [
{
"standard": {
"query": {
"sparse_vector": {
"field": "plot_embedding",
"inference_id": "my-elser-model",
"query": "films that explore psychological depths"
}
}
}
},
{
"standard": {
"query": {
"multi_match": {
"query": "crime",
"fields": [
"plot",
"title"
]
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
10,
22,
77
],
"k": 10,
"num_candidates": 10
}
}
]
}
}
}
},
)
print(resp)
----
|