File: 36792c81c053e0555407d1e83e7e054f.asciidoc

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (82 lines) | stat: -rw-r--r-- 2,909 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:452

[source, python]
----
resp = client.search(
    index="movies",
    size=10,
    retriever={
        "rescorer": {
            "rescore": {
                "window_size": 50,
                "query": {
                    "rescore_query": {
                        "script_score": {
                            "query": {
                                "match_all": {}
                            },
                            "script": {
                                "source": "cosineSimilarity(params.queryVector, 'product-vector_final_stage') + 1.0",
                                "params": {
                                    "queryVector": [
                                        -0.5,
                                        90,
                                        -10,
                                        14.8,
                                        -156
                                    ]
                                }
                            }
                        }
                    }
                }
            },
            "retriever": {
                "rrf": {
                    "rank_window_size": 100,
                    "retrievers": [
                        {
                            "standard": {
                                "query": {
                                    "sparse_vector": {
                                        "field": "plot_embedding",
                                        "inference_id": "my-elser-model",
                                        "query": "films that explore psychological depths"
                                    }
                                }
                            }
                        },
                        {
                            "standard": {
                                "query": {
                                    "multi_match": {
                                        "query": "crime",
                                        "fields": [
                                            "plot",
                                            "title"
                                        ]
                                    }
                                }
                            }
                        },
                        {
                            "knn": {
                                "field": "vector",
                                "query_vector": [
                                    10,
                                    22,
                                    77
                                ],
                                "k": 10,
                                "num_candidates": 10
                            }
                        }
                    ]
                }
            }
        }
    },
)
print(resp)
----