1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
// This file is autogenerated, DO NOT EDIT
// mapping/types/sparse-vector.asciidoc:63
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"text": {
"type": "text",
"analyzer": "standard"
},
"impact": {
"type": "sparse_vector"
},
"positive": {
"type": "sparse_vector"
},
"negative": {
"type": "sparse_vector"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
document={
"text": "I had some terribly delicious carrots.",
"impact": [
{
"I": 0.55,
"had": 0.4,
"some": 0.28,
"terribly": 0.01,
"delicious": 1.2,
"carrots": 0.8
},
{
"I": 0.54,
"had": 0.4,
"some": 0.28,
"terribly": 2.01,
"delicious": 0.02,
"carrots": 0.4
}
],
"positive": {
"I": 0.55,
"had": 0.4,
"some": 0.28,
"terribly": 0.01,
"delicious": 1.2,
"carrots": 0.8
},
"negative": {
"I": 0.54,
"had": 0.4,
"some": 0.28,
"terribly": 2.01,
"delicious": 0.02,
"carrots": 0.4
}
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"term": {
"impact": {
"value": "delicious"
}
}
},
)
print(resp2)
----
|