1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
// This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:715
[source, python]
----
resp = client.indices.create(
index="retrievers_example_nested",
settings={
"number_of_shards": 1
},
mappings={
"properties": {
"nested_field": {
"type": "nested",
"properties": {
"paragraph_id": {
"type": "keyword"
},
"nested_vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "l2_norm",
"index": True,
"index_options": {
"type": "flat"
}
}
}
},
"topic": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.index(
index="retrievers_example_nested",
id="1",
document={
"nested_field": [
{
"paragraph_id": "1a",
"nested_vector": [
-1.12,
-0.59,
0.78
]
},
{
"paragraph_id": "1b",
"nested_vector": [
-0.12,
1.56,
0.42
]
},
{
"paragraph_id": "1c",
"nested_vector": [
1,
-1,
0
]
}
],
"topic": [
"ai"
]
},
)
print(resp1)
resp2 = client.index(
index="retrievers_example_nested",
id="2",
document={
"nested_field": [
{
"paragraph_id": "2a",
"nested_vector": [
0.23,
1.24,
0.65
]
}
],
"topic": [
"information_retrieval"
]
},
)
print(resp2)
resp3 = client.index(
index="retrievers_example_nested",
id="3",
document={
"topic": [
"ai"
]
},
)
print(resp3)
resp4 = client.indices.refresh(
index="retrievers_example_nested",
)
print(resp4)
----
|