File: 948418e0ef1b7e7cfee2f11be715d7d2.asciidoc

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (111 lines) | stat: -rw-r--r-- 2,401 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:715

[source, python]
----
resp = client.indices.create(
    index="retrievers_example_nested",
    settings={
        "number_of_shards": 1
    },
    mappings={
        "properties": {
            "nested_field": {
                "type": "nested",
                "properties": {
                    "paragraph_id": {
                        "type": "keyword"
                    },
                    "nested_vector": {
                        "type": "dense_vector",
                        "dims": 3,
                        "similarity": "l2_norm",
                        "index": True,
                        "index_options": {
                            "type": "flat"
                        }
                    }
                }
            },
            "topic": {
                "type": "keyword"
            }
        }
    },
)
print(resp)

resp1 = client.index(
    index="retrievers_example_nested",
    id="1",
    document={
        "nested_field": [
            {
                "paragraph_id": "1a",
                "nested_vector": [
                    -1.12,
                    -0.59,
                    0.78
                ]
            },
            {
                "paragraph_id": "1b",
                "nested_vector": [
                    -0.12,
                    1.56,
                    0.42
                ]
            },
            {
                "paragraph_id": "1c",
                "nested_vector": [
                    1,
                    -1,
                    0
                ]
            }
        ],
        "topic": [
            "ai"
        ]
    },
)
print(resp1)

resp2 = client.index(
    index="retrievers_example_nested",
    id="2",
    document={
        "nested_field": [
            {
                "paragraph_id": "2a",
                "nested_vector": [
                    0.23,
                    1.24,
                    0.65
                ]
            }
        ],
        "topic": [
            "information_retrieval"
        ]
    },
)
print(resp2)

resp3 = client.index(
    index="retrievers_example_nested",
    id="3",
    document={
        "topic": [
            "ai"
        ]
    },
)
print(resp3)

resp4 = client.indices.refresh(
    index="retrievers_example_nested",
)
print(resp4)
----