1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
// This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cartesian-centroid-aggregation.asciidoc:13
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "point"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"location": "POINT (491.2350 5237.4081)",
"city": "Amsterdam",
"name": "NEMO Science Museum"
},
{
"index": {
"_id": 2
}
},
{
"location": "POINT (490.1618 5236.9219)",
"city": "Amsterdam",
"name": "Museum Het Rembrandthuis"
},
{
"index": {
"_id": 3
}
},
{
"location": "POINT (491.4722 5237.1667)",
"city": "Amsterdam",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {
"_id": 4
}
},
{
"location": "POINT (440.5200 5122.2900)",
"city": "Antwerp",
"name": "Letterenhuis"
},
{
"index": {
"_id": 5
}
},
{
"location": "POINT (233.6389 4886.1111)",
"city": "Paris",
"name": "Musée du Louvre"
},
{
"index": {
"_id": 6
}
},
{
"location": "POINT (232.7000 4886.0000)",
"city": "Paris",
"name": "Musée d'Orsay"
}
],
)
print(resp1)
resp2 = client.search(
index="museums",
size="0",
aggs={
"centroid": {
"cartesian_centroid": {
"field": "location"
}
}
},
)
print(resp2)
----
|