File: ac22cc2b0f4ad659055feed2852a2d59.asciidoc

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (39 lines) | stat: -rw-r--r-- 1,340 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:1485

[source, python]
----
resp = client.search(
    index="retrievers_example",
    retriever={
        "text_similarity_reranker": {
            "retriever": {
                "text_similarity_reranker": {
                    "retriever": {
                        "knn": {
                            "field": "vector",
                            "query_vector": [
                                0.23,
                                0.67,
                                0.89
                            ],
                            "k": 3,
                            "num_candidates": 5
                        }
                    },
                    "rank_window_size": 100,
                    "field": "text",
                    "inference_id": "my-rerank-model",
                    "inference_text": "What are the state of the art applications of AI in information retrieval?"
                }
            },
            "rank_window_size": 10,
            "field": "text",
            "inference_id": "my-other-more-expensive-rerank-model",
            "inference_text": "Applications of Large Language Models in technology and their impact on user satisfaction"
        }
    },
    source=False,
)
print(resp)
----