File: ffda10edaa7ce087703193c3cb95a426.asciidoc

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (146 lines) | stat: -rw-r--r-- 3,610 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:14

[source, python]
----
resp = client.indices.create(
    index="retrievers_example",
    settings={
        "number_of_shards": 1
    },
    mappings={
        "properties": {
            "vector": {
                "type": "dense_vector",
                "dims": 3,
                "similarity": "l2_norm",
                "index": True,
                "index_options": {
                    "type": "flat"
                }
            },
            "text": {
                "type": "text"
            },
            "year": {
                "type": "integer"
            },
            "topic": {
                "type": "keyword"
            },
            "timestamp": {
                "type": "date"
            }
        }
    },
)
print(resp)

resp1 = client.index(
    index="retrievers_example",
    id="1",
    document={
        "vector": [
            0.23,
            0.67,
            0.89
        ],
        "text": "Large language models are revolutionizing information retrieval by boosting search precision, deepening contextual understanding, and reshaping user experiences in data-rich environments.",
        "year": 2024,
        "topic": [
            "llm",
            "ai",
            "information_retrieval"
        ],
        "timestamp": "2021-01-01T12:10:30"
    },
)
print(resp1)

resp2 = client.index(
    index="retrievers_example",
    id="2",
    document={
        "vector": [
            0.12,
            0.56,
            0.78
        ],
        "text": "Artificial intelligence is transforming medicine, from advancing diagnostics and tailoring treatment plans to empowering predictive patient care for improved health outcomes.",
        "year": 2023,
        "topic": [
            "ai",
            "medicine"
        ],
        "timestamp": "2022-01-01T12:10:30"
    },
)
print(resp2)

resp3 = client.index(
    index="retrievers_example",
    id="3",
    document={
        "vector": [
            0.45,
            0.32,
            0.91
        ],
        "text": "AI is redefining security by enabling advanced threat detection, proactive risk analysis, and dynamic defenses against increasingly sophisticated cyber threats.",
        "year": 2024,
        "topic": [
            "ai",
            "security"
        ],
        "timestamp": "2023-01-01T12:10:30"
    },
)
print(resp3)

resp4 = client.index(
    index="retrievers_example",
    id="4",
    document={
        "vector": [
            0.34,
            0.21,
            0.98
        ],
        "text": "Elastic introduces Elastic AI Assistant, the open, generative AI sidekick powered by ESRE to democratize cybersecurity and enable users of every skill level.",
        "year": 2023,
        "topic": [
            "ai",
            "elastic",
            "assistant"
        ],
        "timestamp": "2024-01-01T12:10:30"
    },
)
print(resp4)

resp5 = client.index(
    index="retrievers_example",
    id="5",
    document={
        "vector": [
            0.11,
            0.65,
            0.47
        ],
        "text": "Learn how to spin up a deployment of our hosted Elasticsearch Service and use Elastic Observability to gain deeper insight into the behavior of your applications and systems.",
        "year": 2024,
        "topic": [
            "documentation",
            "observability",
            "elastic"
        ],
        "timestamp": "2025-01-01T12:10:30"
    },
)
print(resp5)

resp6 = client.indices.refresh(
    index="retrievers_example",
)
print(resp6)
----