1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
|
---
mapped_pages:
- https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/_how_to_guides.html
---
# How-To Guides [_how_to_guides]
## Search DSL [search_dsl]
### The `Search` object [_the_search_object]
The `Search` object represents the entire search request:
* queries
* filters
* aggregations
* k-nearest neighbor searches
* sort
* pagination
* highlighting
* suggestions
* collapsing
* additional parameters
* associated client
The API is designed to be chainable. With the exception of the aggregations functionality this means that the `Search` object is immutable -all changes to the object will result in a shallow copy being created which contains the changes. You can safely pass the `Search` object to foreign code without fear of it modifying your objects as long as it sticks to the `Search` object APIs.
You can pass an instance of the [elasticsearch client](https://elasticsearch-py.readthedocs.io/) when instantiating the `Search` object:
```python
from elasticsearch import Elasticsearch
from elasticsearch.dsl import Search
client = Elasticsearch()
s = Search(using=client)
```
You can also define the client at a later time (for more options see the `configuration` chapter):
```python
s = s.using(client)
```
::::{note}
All methods return a *copy* of the object, making it safe to pass to outside code.
::::
The API is chainable, allowing you to combine multiple method calls in one statement:
```python
s = Search().using(client).query(Match("title", "python"))
```
To send the request to Elasticsearch:
```python
response = s.execute()
```
If you just want to iterate over the hits returned by your search you can iterate over the `Search` object:
```python
for hit in s:
print(hit.title)
```
Search results will be cached. Subsequent calls to `execute` or trying to iterate over an already executed `Search` object will not trigger additional requests being sent to Elasticsearch. To force a new request to be issued specify `ignore_cache=True` when calling `execute`.
For debugging purposes you can serialize the `Search` object to a `dict` with the raw Elasticsearch request:
```python
print(s.to_dict())
```
#### Delete By Query [_delete_by_query]
You can delete the documents matching a search by calling `delete` on the `Search` object instead of `execute` like this:
```python
s = Search(index='i').query(Match("title", "python"))
response = s.delete()
```
To pass [deletion parameters](https://elasticsearch-py.readthedocs.io/en/latest/api/elasticsearch.html#elasticsearch.Elasticsearch.delete_by_query)
in your query, you can add them by calling ``params`` on the ``Search`` object before ``delete`` like this:
```python
s = Search(index='i').query("match", title="python")
s = s.params(ignore_unavailable=False, wait_for_completion=True)
response = s.delete()
```
#### Queries [_queries]
The `elasticsearch.dsl.query` module provides classes for all Elasticsearch query types. These classes accept keyword arguments in their constructors, which are serialized to the appropriate format to be sent to Elasticsearch. There is a clear one-to-one mapping between the raw query and its equivalent class-based version:
```python
>>> from elasticsearch.dsl.query import MultiMatch, Match
>>> q = MultiMatch(query='python django', fields=['title', 'body'])
>>> q.to_dict()
{'multi_match': {'query': 'python django', 'fields': ['title', 'body']}}
>>> q = Match("title", {"query": "web framework", "type": "phrase"})
>>> q.to_dict()
{'match': {'title': {'query': 'web framework', 'type': 'phrase'}}}
```
An alternative to the class-based queries is to use the `Q` shortcut, passing a query name followed by its parameters, or the raw query as a `dict`:
```python
from elasticsearch.dsl import Q
Q("multi_match", query='python django', fields=['title', 'body'])
Q({"multi_match": {"query": "python django", "fields": ["title", "body"]}})
```
To add a query to the `Search` object, use the `.query()` method. This works with class-based or `Q` queries:
```python
q = Q("multi_match", query='python django', fields=['title', 'body'])
s = s.query(q)
```
As a shortcut the `query()` method also accepts all the parameters of the `Q` shortcut directly:
```python
s = s.query("multi_match", query='python django', fields=['title', 'body'])
```
If you already have a query object, or a `dict` representing one, you can assign it to the `query` attribute of a `Search` object to add it to it, replacing any previously configured queries:
```python
s.query = Q('bool', must=[Q('match', title='python'), Q('match', body='best')])
```
#### Dotted fields [_dotted_fields]
Sometimes you want to refer to a field within another field, either as a multi-field (`title.keyword`) or in a structured `json` document like `address.city`. This is not a problem when using class-based queries, but when working without classes it is often required to pass field names as keyword arguments. To make this easier, you can use `__` (double underscore) in place of a dot in a keyword argument:
```python
s = Search()
s = s.filter('term', category__keyword='Python')
s = s.query('match', address__city='prague')
```
Alternatively you can use Python’s keyword argument unpacking:
```python
s = Search()
s = s.filter('term', **{'category.keyword': 'Python'})
s = s.query('match', **{'address.city': 'prague'})
```
#### Query combination [_query_combination]
Query objects can be combined using logical operators `|`, `&` and `~`:
```python
>>> q = Match("title", "python") | Match("title", "django")
>>> q.to_dict()
{'bool': {'should': [{'match': {'title': 'python'}}, {'match': {'title': 'django'}}]}}
>>> q = Match("title", "python") & Match("title", "django")
>>> q.to_dict()
{'bool': {'must': [{'match': {'title': 'python'}}, {'match': {'title': 'django'}}]}}
>>> q = ~Match("title", "python")
>>> q.to_dict()
{'bool': {'must_not': [{'match': {'title': 'python'}}]}}
```
When you call the `.query()` method multiple times, the `&` operator will be used internally to combine all the queries:
```python
s = s.query().query()
print(s.to_dict())
# {"query": {"bool": {...}}}
```
If you want to have precise control over the query form, use the `Q` shortcut to directly construct the combined query:
```python
q = Q('bool',
must=[Q('match', title='python')],
should=[Q(...), Q(...)],
minimum_should_match=1
)
s = Search().query(q)
```
#### Filters [_filters]
If you want to add a query in a [filter context](docs-content://explore-analyze/query-filter/languages/querydsl.md) you can use the `filter()` method to make things easier:
```python
from elasticsearch.dsl.query import Terms
s = Search()
s = s.filter(Terms("tags", ['search', 'python']))
```
Behind the scenes this will produce a `Bool` query and place the specified `terms` query into its `filter` branch, making it equivalent to:
```python
from elasticsearch.dsl.query import Terms, Bool
s = Search()
s = s.query(Bool(filter=[Terms("tags", ["search", "python"])]))
```
If you want to use the `post_filter` element for faceted navigation, use the `.post_filter()` method.
The `exclude()` method works like `filter()`, but it applies the query as negated:
```python
s = Search()
s = s.exclude(Terms("tags", ['search', 'python']))
```
which is shorthand for:
```python
s = s.query(Bool(filter=[~Terms("tags", ["search", "python"])]))
```
#### Aggregations [_aggregations]
As with queries, there are classes that represent each aggregation type, all accessible through the `elasticsearch.dsl.aggs` module:
```python
from elasticsearch.dsl import aggs
a = aggs.Terms(field="tags")
# {"terms": {"field": "tags"}}
```
It is also possible to define an aggregation using the `A` shortcut:
```python
from elasticsearch.dsl import A
A('terms', field='tags')
```
To nest aggregations, you can use the `.bucket()`, `.metric()` and `.pipeline()` methods:
```python
a = aggs.Terms(field="category")
# {'terms': {'field': 'category'}}
a.metric("clicks_per_category", aggs.Sum(field="clicks")) \
.bucket("tags_per_category", aggs.Terms(field="tags"))
# {
# 'terms': {'field': 'category'},
# 'aggs': {
# 'clicks_per_category': {'sum': {'field': 'clicks'}},
# 'tags_per_category': {'terms': {'field': 'tags'}}
# }
# }
```
To add aggregations to the `Search` object, use the `.aggs` property, which acts as a top-level aggregation:
```python
s = Search()
a = aggs.Terms(field="category")
s.aggs.bucket("category_terms", a)
# {
# 'aggs': {
# 'category_terms': {
# 'terms': {
# 'field': 'category'
# }
# }
# }
# }
```
or
```python
s = Search()
s.aggs.bucket("articles_per_day", aggs.DateHistogram(field="publish_date", interval="day")) \
.metric("clicks_per_day", aggs.Sum(field="clicks")) \
.pipeline("moving_click_average", aggs.MovingAvg(buckets_path="clicks_per_day")) \
.bucket("tags_per_day", aggs.Terms(field="tags"))
s.to_dict()
# {
# "aggs": {
# "articles_per_day": {
# "date_histogram": { "interval": "day", "field": "publish_date" },
# "aggs": {
# "clicks_per_day": { "sum": { "field": "clicks" } },
# "moving_click_average": { "moving_avg": { "buckets_path": "clicks_per_day" } },
# "tags_per_day": { "terms": { "field": "tags" } }
# }
# }
# }
# }
```
You can access an existing bucket by its name:
```python
s = Search()
s.aggs.bucket("per_category", aggs.Terms(field="category"))
s.aggs["per_category"].metric("clicks_per_category", aggs.Sum(field="clicks"))
s.aggs["per_category"].bucket("tags_per_category", aggs.Terms(field="tags"))
```
::::{note}
When chaining multiple aggregations, there is a difference between what `.bucket()` and `.metric()` methods return - `.bucket()` returns the newly defined bucket while `.metric()` returns its parent bucket to allow further chaining.
::::
As opposed to other methods on the `Search` objects, aggregations are defined in-place, without returning a new copy.
#### K-Nearest Neighbor Searches [_k_nearest_neighbor_searches]
To issue a kNN search, use the `.knn()` method:
```python
s = Search()
vector = get_embedding("search text")
s = s.knn(
field="embedding",
k=5,
num_candidates=10,
query_vector=vector
)
```
The `field`, `k` and `num_candidates` arguments can be given as positional or keyword arguments and are required. In addition to these, `query_vector` or `query_vector_builder` must be given as well.
The `.knn()` method can be invoked multiple times to include multiple kNN searches in the request.
#### Sorting [_sorting]
To specify sorting order, use the `.sort()` method:
```python
s = Search().sort(
'category',
'-title',
{"lines" : {"order" : "asc", "mode" : "avg"}}
)
```
It accepts positional arguments which can be either strings or dictionaries. String value is a field name, optionally prefixed by the `-` sign to specify a descending order.
To reset the sorting, just call the method with no arguments:
```python
s = s.sort()
```
#### Pagination [_pagination]
To specify the from/size parameters, apply the standard Python slicing operator on the `Search` instance:
```python
s = s[10:20]
# {"from": 10, "size": 10}
s = s[:20]
# {"size": 20}
s = s[10:]
# {"from": 10}
s = s[10:20][2:]
# {"from": 12, "size": 8}
```
If you want to access all the documents matched by your query you can use the `scan` method which uses the scan/scroll elasticsearch API:
```python
for hit in s.scan():
print(hit.title)
```
Note that in this case the results won’t be sorted.
#### Highlighting [_highlighting]
To set common attributes for highlighting use the `highlight_options` method:
```python
s = s.highlight_options(order='score')
```
Enabling highlighting for individual fields is done using the `highlight` method:
```python
s = s.highlight('title')
# or, including parameters:
s = s.highlight('title', fragment_size=50)
```
The fragments in the response will then be available on each `Result` object as `.meta.highlight.FIELD` which will contain the list of fragments:
```python
response = s.execute()
for hit in response:
for fragment in hit.meta.highlight.title:
print(fragment)
```
#### Suggestions [_suggestions]
To specify a suggest request on your `Search` object use the `suggest` method:
```python
# check for correct spelling
s = s.suggest('my_suggestion', 'pyhton', term={'field': 'title'})
```
The first argument is the name of the suggestions (name under which it will be returned), second is the actual text you wish the suggester to work on and the keyword arguments will be added to the suggest’s json as-is which means that it should be one of `term`, `phrase` or `completion` to indicate which type of suggester should be used.
#### Collapsing [_collapsing]
To collapse search results use the `collapse` method on your `Search` object:
```python
s = Search().query(Match("message", "GET /search"))
# collapse results by user_id
s = s.collapse("user_id")
```
The top hits will only include one result per `user_id`. You can also expand each collapsed top hit with the `inner_hits` parameter, `max_concurrent_group_searches` being the number of concurrent requests allowed to retrieve the inner hits per group:
```python
inner_hits = {"name": "recent_search", "size": 5, "sort": [{"@timestamp": "desc"}]}
s = s.collapse("user_id", inner_hits=inner_hits, max_concurrent_group_searches=4)
```
#### More Like This Query [_more_like_this_query]
To use Elasticsearch’s `more_like_this` functionality, you can use the MoreLikeThis query type.
A simple example is below
```python
from elasticsearch.dsl.query import MoreLikeThis
from elasticsearch.dsl import Search
my_text = 'I want to find something similar'
s = Search()
# We're going to match based only on two fields, in this case text and title
s = s.query(MoreLikeThis(like=my_text, fields=['text', 'title']))
# You can also exclude fields from the result to make the response quicker in the normal way
s = s.source(exclude=["text"])
response = s.execute()
for hit in response:
print(hit.title)
```
#### Extra properties and parameters [_extra_properties_and_parameters]
To set extra properties of the search request, use the `.extra()` method. This can be used to define keys in the body that cannot be defined via a specific API method like `explain` or `search_after`:
```python
s = s.extra(explain=True)
```
To set query parameters, use the `.params()` method:
```python
s = s.params(routing="42")
```
If you need to limit the fields being returned by elasticsearch, use the `source()` method:
```python
# only return the selected fields
s = s.source(['title', 'body'])
# don't return any fields, just the metadata
s = s.source(False)
# explicitly include/exclude fields
s = s.source(includes=["title"], excludes=["user.*"])
# reset the field selection
s = s.source(None)
```
#### Serialization and Deserialization [_serialization_and_deserialization]
The search object can be serialized into a dictionary by using the `.to_dict()` method.
You can also create a `Search` object from a `dict` using the `from_dict` class method. This will create a new `Search` object and populate it using the data from the dict:
```python
s = Search.from_dict({"query": {"match": {"title": "python"}}})
```
If you wish to modify an existing `Search` object, overriding it’s properties, instead use the `update_from_dict` method that alters an instance **in-place**:
```python
s = Search(index='i')
s.update_from_dict({"query": {"match": {"title": "python"}}, "size": 42})
```
### Response [_response]
You can execute your search by calling the `.execute()` method that will return a `Response` object. The `Response` object allows you access to any key from the response dictionary via attribute access. It also provides some convenient helpers:
```python
response = s.execute()
print(response.success())
# True
print(response.took)
# 12
print(response.hits.total.relation)
# eq
print(response.hits.total.value)
# 142
print(response.suggest.my_suggestions)
```
If you want to inspect the contents of the `response` objects, just use its `to_dict` method to get access to the raw data for pretty printing.
#### Hits [_hits]
To access the hits returned by the search, use the `hits` property or just iterate over the `Response` object:
```python
response = s.execute()
print(f"Total {response.hits.total} hits found.")
for h in response:
print(h.title, h.body)
```
::::{note}
If you are only seeing partial results (e.g. 10000 or even 10 results), consider using the option `s.extra(track_total_hits=True)` to get a full hit count.
::::
#### Result [_result]
The individual hits is wrapped in a convenience class that allows attribute access to the keys in the returned dictionary. All the metadata for the results are accessible via `meta` (without the leading `_`):
```python
response = s.execute()
h = response.hits[0]
print(f"/{h.meta.index}/{h.meta.doc_type}/{h.meta.id} returned with score {h.meta.score}")
```
::::{note}
If your document has a field called `meta` you have to access it using the get item syntax: `hit['meta']`.
::::
#### Aggregations [_aggregations_2]
Aggregations are available through the `aggregations` property:
```python
for tag in response.aggregations.per_tag.buckets:
print(tag.key, tag.max_lines.value)
```
### `MultiSearch` [_multisearch]
If you need to execute multiple searches at the same time you can use the `MultiSearch` class which will use the `_msearch` API:
```python
from elasticsearch.dsl import MultiSearch, Search
from elasticsearch.dsl.query import Term
ms = MultiSearch(index='blogs')
ms = ms.add(Search().filter(Term("tags", "python")))
ms = ms.add(Search().filter(Term("tags", 'elasticsearch')))
responses = ms.execute()
for response in responses:
print("Results for query %r." % response._search.query)
for hit in response:
print(hit.title)
```
### `EmptySearch` [_emptysearch]
The `EmptySearch` class can be used as a fully compatible version of `Search` that will return no results, regardless of any queries configured.
## Persistence [_persistence_2]
You can use the DSL module to define your mappings and a basic persistent layer for your application.
For more comprehensive examples have a look at the [DSL examples](https://github.com/elastic/elasticsearch-py/tree/main/examples/dsl) directory in the repository.
### Document [doc_type]
If you want to create a model-like wrapper around your documents, use the `Document` class. It can also be used to create all the necessary mappings and settings in elasticsearch (see `life-cycle` for details).
```python
from datetime import datetime
from elasticsearch.dsl import Document, Date, Nested, Boolean, \
analyzer, InnerDoc, Completion, Keyword, Text
html_strip = analyzer('html_strip',
tokenizer="standard",
filter=["standard", "lowercase", "stop", "snowball"],
char_filter=["html_strip"]
)
class Comment(InnerDoc):
author = Text(fields={'raw': Keyword()})
content = Text(analyzer='snowball')
created_at = Date()
def age(self):
return datetime.now() - self.created_at
class Post(Document):
title = Text()
title_suggest = Completion()
created_at = Date()
published = Boolean()
category = Text(
analyzer=html_strip,
fields={'raw': Keyword()}
)
comments = Nested(Comment)
class Index:
name = 'blog'
def add_comment(self, author, content):
self.comments.append(
Comment(author=author, content=content, created_at=datetime.now()))
def save(self, ** kwargs):
self.created_at = datetime.now()
return super().save(** kwargs)
```
#### Data types [_data_types]
The `Document` instances use native python types such as `str` and `datetime` for its attributes. In case of `Object` or `Nested` fields an instance of the `InnerDoc` subclass is used, as in the `add_comment` method in the above example, where we are creating an instance of the `Comment` class.
There are some specific types that were created to make working with some field types easier, for example the `Range` object used in any of the [range fields](elasticsearch://reference/elasticsearch/mapping-reference/range.md):
```python
from elasticsearch.dsl import Document, DateRange, Keyword, Range
class RoomBooking(Document):
room = Keyword()
dates = DateRange()
rb = RoomBooking(
room='Conference Room II',
dates=Range(
gte=datetime(2018, 11, 17, 9, 0, 0),
lt=datetime(2018, 11, 17, 10, 0, 0)
)
)
# Range supports the in operator correctly:
datetime(2018, 11, 17, 9, 30, 0) in rb.dates # True
# you can also get the limits and whether they are inclusive or exclusive:
rb.dates.lower # datetime(2018, 11, 17, 9, 0, 0), True
rb.dates.upper # datetime(2018, 11, 17, 10, 0, 0), False
# empty range is unbounded
Range().lower # None, False
```
#### Python Type Hints [_python_type_hints]
Document fields can be defined using standard Python type hints if desired. Here are some simple examples:
```python
from typing import Optional
class Post(Document):
title: str # same as title = Text(required=True)
created_at: Optional[datetime] # same as created_at = Date(required=False)
published: bool # same as published = Boolean(required=True)
```
It is important to note that when using `Field` subclasses such as `Text`, `Date` and `Boolean`, they must be given in the right-side of an assignment, as shown in examples above. Using these classes as type hints will result in errors.
Python types are mapped to their corresponding field types according to the following table:
| Python type | DSL field |
| --- | --- |
| `str` | `Text(required=True)` |
| `bool` | `Boolean(required=True)` |
| `int` | `Integer(required=True)` |
| `float` | `Float(required=True)` |
| `bytes` | `Binary(required=True)` |
| `datetime` | `Date(required=True)` |
| `date` | `Date(format="yyyy-MM-dd", required=True)` |
To type a field as optional, the standard `Optional` modifier from the Python `typing` package can be used. When using Python 3.10 or newer, "pipe" syntax can also be used, by adding `| None` to a type. The `List` modifier can be added to a field to convert it to an array, similar to using the `multi=True` argument on the field object.
```python
from typing import Optional, List
class MyDoc(Document):
pub_date: Optional[datetime] # same as pub_date = Date()
middle_name: str | None # same as middle_name = Text()
authors: List[str] # same as authors = Text(multi=True, required=True)
comments: Optional[List[str]] # same as comments = Text(multi=True)
```
A field can also be given a type hint of an `InnerDoc` subclass, in which case it becomes an `Object` field of that class. When the `InnerDoc` subclass is wrapped with `List`, a `Nested` field is created instead.
```python
from typing import List
class Address(InnerDoc):
...
class Comment(InnerDoc):
...
class Post(Document):
address: Address # same as address = Object(Address, required=True)
comments: List[Comment] # same as comments = Nested(Comment, required=True)
```
Unfortunately it is impossible to have Python type hints that uniquely identify every possible Elasticsearch field type. To choose a field type that is different than the one that is assigned according to the table above, the desired field instance can be added explicitly as a right-side assignment in the field declaration. The next example creates a field that is typed as `Optional[str]`, but is mapped to `Keyword` instead of `Text`:
```python
class MyDocument(Document):
category: Optional[str] = Keyword()
```
This form can also be used when additional options need to be given to initialize the field, such as when using custom analyzer settings:
```python
class Comment(InnerDoc):
content: str = Text(analyzer='snowball')
```
When using type hints as above, subclasses of `Document` and `InnerDoc` inherit some of the behaviors associated with Python dataclasses, as defined by [PEP 681](https://peps.python.org/pep-0681/) and the [dataclass_transform decorator](https://typing.readthedocs.io/en/latest/spec/dataclasses.html#dataclass-transform). To add per-field dataclass options such as `default` or `default_factory`, the `mapped_field()` wrapper can be used on the right side of a typed field declaration:
```python
class MyDocument(Document):
title: str = mapped_field(default="no title")
created_at: datetime = mapped_field(default_factory=datetime.now)
published: bool = mapped_field(default=False)
category: str = mapped_field(Keyword(), default="general")
```
When using the `mapped_field()` wrapper function, an explicit field type instance can be passed as a first positional argument, as the `category` field does in the example above.
Static type checkers such as [mypy](https://mypy-lang.org/) and [pyright](https://github.com/microsoft/pyright) can use the type hints and the dataclass-specific options added to the `mapped_field()` function to improve type inference and provide better real-time code completion and suggestions in IDEs.
One situation in which type checkers can’t infer the correct type is when using fields as class attributes. Consider the following example:
```python
class MyDocument(Document):
title: str
doc = MyDocument()
# doc.title is typed as "str" (correct)
# MyDocument.title is also typed as "str" (incorrect)
```
To help type checkers correctly identify class attributes as such, the `M` generic must be used as a wrapper to the type hint, as shown in the next examples:
```python
from elasticsearch.dsl import M
class MyDocument(Document):
title: M[str]
created_at: M[datetime] = mapped_field(default_factory=datetime.now)
doc = MyDocument()
# doc.title is typed as "str"
# doc.created_at is typed as "datetime"
# MyDocument.title is typed as "InstrumentedField"
# MyDocument.created_at is typed as "InstrumentedField"
```
Note that the `M` type hint does not provide any runtime behavior and its use is not required, but it can be useful to eliminate spurious type errors in IDEs or type checking builds.
The `InstrumentedField` objects returned when fields are accessed as class attributes are proxies for the field instances that can be used anywhere a field needs to be referenced, such as when specifying sort options in a `Search` object:
```python
# sort by creation date descending, and title ascending
s = MyDocument.search().sort(-MyDocument.created_at, MyDocument.title)
```
When specifying sorting order, the `+` and `-` unary operators can be used on the class field attributes to indicate ascending and descending order.
Finally, the `ClassVar` annotation can be used to define a regular class attribute that should not be mapped to the Elasticsearch index:
```python
from typing import ClassVar
class MyDoc(Document):
title: M[str] created_at: M[datetime] = mapped_field(default_factory=datetime.now)
my_var: ClassVar[str] # regular class variable, ignored by Elasticsearch
```
#### Note on dates [_note_on_dates]
The DSL module will always respect the timezone information (or lack thereof) on the `datetime` objects passed in or stored in Elasticsearch. Elasticsearch itself interprets all datetimes with no timezone information as `UTC`. If you wish to reflect this in your python code, you can specify `default_timezone` when instantiating a `Date` field:
```python
class Post(Document):
created_at = Date(default_timezone='UTC')
```
In that case any `datetime` object passed in (or parsed from elasticsearch) will be treated as if it were in `UTC` timezone.
#### Document life cycle [life-cycle]
Before you first use the `Post` document type, you need to create the mappings in Elasticsearch. For that you can either use the `index` object or create the mappings directly by calling the `init` class method:
```python
# create the mappings in Elasticsearch
Post.init()
```
This code will typically be run in the setup for your application during a code deploy, similar to running database migrations.
To create a new `Post` document just instantiate the class and pass in any fields you wish to set, you can then use standard attribute setting to change/add more fields. Note that you are not limited to the fields defined explicitly:
```python
# instantiate the document
first = Post(title='My First Blog Post, yay!', published=True)
# assign some field values, can be values or lists of values
first.category = ['everything', 'nothing']
# every document has an id in meta
first.meta.id = 47
# save the document into the cluster
first.save()
```
All the metadata fields (`id`, `routing`, `index` etc) can be accessed (and set) via a `meta` attribute or directly using the underscored variant:
```python
post = Post(meta={'id': 42})
# prints 42
print(post.meta.id)
# override default index
post.meta.index = 'my-blog'
```
::::{note}
Having all metadata accessible through `meta` means that this name is reserved and you shouldn’t have a field called `meta` on your document. If you, however, need it you can still access the data using the get item (as opposed to attribute) syntax: `post['meta']`.
::::
To retrieve an existing document use the `get` class method:
```python
# retrieve the document
first = Post.get(id=42)
# now we can call methods, change fields, ...
first.add_comment('me', 'This is nice!')
# and save the changes into the cluster again
first.save()
```
The [Update API](https://www.elastic.co/docs/api/doc/elasticsearch/v8/group/endpoint-document) can also be used via the `update` method. By default any keyword arguments, beyond the parameters of the API, will be considered fields with new values. Those fields will be updated on the local copy of the document and then sent over as partial document to be updated:
```python
# retrieve the document
first = Post.get(id=42)
# you can update just individual fields which will call the update API
# and also update the document in place
first.update(published=True, published_by='me')
```
In case you wish to use a `painless` script to perform the update you can pass in the script string as `script` or the `id` of a [stored script](docs-content://explore-analyze/scripting/modules-scripting-using.md#script-stored-scripts) via `script_id`. All additional keyword arguments to the `update` method will then be passed in as parameters of the script. The document will not be updated in place.
```python
# retrieve the document
first = Post.get(id=42)
# we execute a script in elasticsearch with additional kwargs being passed
# as params into the script
first.update(script='ctx._source.category.add(params.new_category)',
new_category='testing')
```
If the document is not found in elasticsearch an exception (`elasticsearch.NotFoundError`) will be raised. If you wish to return `None` instead just pass in `ignore=404` to suppress the exception:
```python
p = Post.get(id='not-in-es', ignore=404)
p is None
```
When you wish to retrieve multiple documents at the same time by their `id` you can use the `mget` method:
```python
posts = Post.mget([42, 47, 256])
```
`mget` will, by default, raise a `NotFoundError` if any of the documents wasn’t found and `RequestError` if any of the document had resulted in error. You can control this behavior by setting parameters:
* `raise_on_error`: If `True` (default) then any error will cause an exception to be raised. Otherwise all documents containing errors will be treated as missing.
* `missing`: Can have three possible values: `'none'` (default), `'raise'` and `'skip'`. If a document is missing or errored it will either be replaced with `None`, an exception will be raised or the document will be skipped in the output list entirely.
The index associated with the `Document` is accessible via the `_index` class property which gives you access to the `index` class.
The `_index` attribute is also home to the `load_mappings` method which will update the mapping on the `Index` from elasticsearch. This is very useful if you use dynamic mappings and want the class to be aware of those fields (for example if you wish the `Date` fields to be properly (de)serialized):
```python
Post._index.load_mappings()
```
To delete a document just call its `delete` method:
```python
first = Post.get(id=42)
first.delete()
```
#### Analysis [_analysis]
To specify `analyzer` values for `Text` fields you can just use the name of the analyzer (as a string) and either rely on the analyzer being defined (like built-in analyzers) or define the analyzer yourself manually.
Alternatively you can create your own analyzer and have the persistence layer handle its creation, from our example earlier:
```python
from elasticsearch.dsl import analyzer, tokenizer
my_analyzer = analyzer('my_analyzer',
tokenizer=tokenizer('trigram', 'nGram', min_gram=3, max_gram=3),
filter=['lowercase']
)
```
Each analysis object needs to have a name (`my_analyzer` and `trigram` in our example) and tokenizers, token filters and char filters also need to specify type (`nGram` in our example).
Once you have an instance of a custom `analyzer` you can also call the [analyze API](https://www.elastic.co/docs/api/doc/elasticsearch/v8/group/endpoint-indices) on it by using the `simulate` method:
```python
response = my_analyzer.simulate('Hello World!')
# ['hel', 'ell', 'llo', 'lo ', 'o w', ' wo', 'wor', 'orl', 'rld', 'ld!']
tokens = [t.token for t in response.tokens]
```
::::{note}
When creating a mapping which relies on a custom analyzer the index must either not exist or be closed. To create multiple `Document`-defined mappings you can use the `index` object.
::::
#### Search [_search_2]
To search for this document type, use the `search` class method:
```python
# by calling .search we get back a standard Search object
s = Post.search()
# the search is already limited to the index and doc_type of our document
s = s.filter('term', published=True).query('match', title='first')
results = s.execute()
# when you execute the search the results are wrapped in your document class (Post)
for post in results:
print(post.meta.score, post.title)
```
Alternatively you can just take a `Search` object and restrict it to return our document type, wrapped in correct class:
```python
s = Search()
s = s.doc_type(Post)
```
You can also combine document classes with standard doc types (just strings), which will be treated as before. You can also pass in multiple `Document` subclasses and each document in the response will be wrapped in it’s class.
If you want to run suggestions, just use the `suggest` method on the `Search` object:
```python
s = Post.search()
s = s.suggest('title_suggestions', 'pyth', completion={'field': 'title_suggest'})
response = s.execute()
for result in response.suggest.title_suggestions:
print('Suggestions for %s:' % result.text)
for option in result.options:
print(' %s (%r)' % (option.text, option.payload))
```
#### `class Meta` options [_class_meta_options]
In the `Meta` class inside your document definition you can define various metadata for your document:
* `mapping`: optional instance of `Mapping` class to use as base for the mappings created from the fields on the document class itself.
Any attributes on the `Meta` class that are instance of `MetaField` will be used to control the mapping of the meta fields (`_all`, `dynamic` etc). Just name the parameter (without the leading underscore) as the field you wish to map and pass any parameters to the `MetaField` class:
```python
class Post(Document):
title = Text()
class Meta:
all = MetaField(enabled=False)
dynamic = MetaField('strict')
```
#### `class Index` options [_class_index_options]
This section of the `Document` definition can contain any information about the index, its name, settings and other attributes:
* `name`: name of the index to use, if it contains a wildcard (`*`) then it cannot be used for any write operations and an `index` kwarg will have to be passed explicitly when calling methods like `.save()`.
* `using`: default connection alias to use, defaults to `'default'`
* `settings`: dictionary containing any settings for the `Index` object like `number_of_shards`.
* `analyzers`: additional list of analyzers that should be defined on an index (see `analysis` for details).
* `aliases`: dictionary with any aliases definitions
#### Document Inheritance [_document_inheritance]
You can use standard Python inheritance to extend models, this can be useful in a few scenarios. For example if you want to have a `BaseDocument` defining some common fields that several different `Document` classes should share:
```python
class User(InnerDoc):
username: str = mapped_field(Text(fields={'keyword': Keyword()}))
email: str
class BaseDocument(Document):
created_by: User
created_date: datetime
last_updated: datetime
def save(**kwargs):
if not self.created_date:
self.created_date = datetime.now()
self.last_updated = datetime.now()
return super(BaseDocument, self).save(**kwargs)
class BlogPost(BaseDocument):
class Index:
name = 'blog'
```
Another use case would be using the [join type](elasticsearch://reference/elasticsearch/mapping-reference/parent-join.md) to have multiple different entities in a single index. You can see an [example](https://github.com/elastic/elasticsearch-py/blob/master/examples/dsl/parent_child.py) of this approach. Note that in this case, if the subclasses don’t define their own Index classes, the mappings are merged and shared between all the subclasses.
### Index [_index]
In typical scenario using `class Index` on a `Document` class is sufficient to perform any action. In a few cases though it can be useful to manipulate an `Index` object directly.
`Index` is a class responsible for holding all the metadata related to an index in elasticsearch - mappings and settings. It is most useful when defining your mappings since it allows for easy creation of multiple mappings at the same time. This is especially useful when setting up your elasticsearch objects in a migration:
```python
from elasticsearch.dsl import Index, Document, Text, analyzer
blogs = Index('blogs')
# define custom settings
blogs.settings(
number_of_shards=1,
number_of_replicas=0
)
# define aliases
blogs.aliases(
old_blogs={}
)
# register a document with the index
blogs.document(Post)
# can also be used as class decorator when defining the Document
@blogs.document
class Post(Document):
title: str
# You can attach custom analyzers to the index
html_strip = analyzer('html_strip',
tokenizer="standard",
filter=["standard", "lowercase", "stop", "snowball"],
char_filter=["html_strip"]
)
blogs.analyzer(html_strip)
# delete the index, ignore if it doesn't exist
blogs.delete(ignore=404)
# create the index in elasticsearch
blogs.create()
```
You can also set up a template for your indices and use the `clone` method to create specific copies:
```python
blogs = Index('blogs', using='production')
blogs.settings(number_of_shards=2)
blogs.document(Post)
# create a copy of the index with different name
company_blogs = blogs.clone('company-blogs')
# create a different copy on different cluster
dev_blogs = blogs.clone('blogs', using='dev')
# and change its settings
dev_blogs.setting(number_of_shards=1)
```
#### IndexTemplate [index-template]
The DSL module also exposes an option to manage [index templates](docs-content://manage-data/data-store/templates.md) in elasticsearch using the `ComposableIndexTemplate` and `IndexTemplate` classes, which have very similar API to `Index`.
::::{note}
Composable index templates should be always be preferred over the legacy index templates, since the latter are deprecated.
::::
Once an index template is saved in Elasticsearch its contents will be automatically applied to new indices (existing indices are completely unaffected by templates) that match the template pattern (any index starting with `blogs-` in our example), even if the index is created automatically upon indexing a document into that index.
Potential workflow for a set of time based indices governed by a single template:
```python
from datetime import datetime
from elasticsearch.dsl import Document, Date, Text
class Log(Document):
content: str
timestamp: datetime
class Index:
name = "logs-*"
def save(self, **kwargs):
# assign now if no timestamp given
if not self.timestamp:
self.timestamp = datetime.now()
# override the index to go to the proper timeslot
kwargs['index'] = self.timestamp.strftime('logs-%Y%m%d')
return super().save(**kwargs)
# once, as part of application setup, during deploy/migrations:
logs = Log._index.as_composable_template('logs', priority=100)
logs.save()
# to perform search across all logs:
search = Log.search()
```
## Faceted Search [faceted_search]
The library comes with a simple abstraction aimed at helping you develop faceted navigation for your data.
### Configuration [_configuration_2]
You can provide several configuration options (as class attributes) when declaring a `FacetedSearch` subclass:
* `index`: the name of the index (as string) to search through, defaults to `'_all'`.
* `doc_types`: list of `Document` subclasses or strings to be used, defaults to `['_all']`.
* `fields`: list of fields on the document type to search through. The list will be passes to `MultiMatch` query so can contain boost values (`'title^5'`), defaults to `['*']`.
* `facets`: dictionary of facets to display/filter on. The key is the name displayed and values should be instances of any `Facet` subclass, for example: `{'tags': TermsFacet(field='tags')}`
#### Facets [_facets]
There are several different facets available:
* `TermsFacet`: provides an option to split documents into groups based on a value of a field, for example `TermsFacet(field='category')`
* `DateHistogramFacet`: split documents into time intervals, example: `DateHistogramFacet(field="published_date", calendar_interval="day")`
* `HistogramFacet`: similar to `DateHistogramFacet` but for numerical values: `HistogramFacet(field="rating", interval=2)`
* `RangeFacet`: allows you to define your own ranges for a numerical fields: `RangeFacet(field="comment_count", ranges=[("few", (None, 2)), ("lots", (2, None))])`
* `NestedFacet`: is just a simple facet that wraps another to provide access to nested documents: `NestedFacet('variants', TermsFacet(field='variants.color'))`
By default facet results will only calculate document count, if you wish for a different metric you can pass in any single value metric aggregation as the `metric` kwarg (`TermsFacet(field='tags', metric=A('max', field=timestamp))`). When specifying `metric` the results will be, by default, sorted in descending order by that metric. To change it to ascending specify `metric_sort="asc"` and to just sort by document count use `metric_sort=False`.
#### Advanced [_advanced]
If you require any custom behavior or modifications simply override one or more of the methods responsible for the class' functions:
* `search(self)`: is responsible for constructing the `Search` object used. Override this if you want to customize the search object (for example by adding a global filter for published articles only).
* `query(self, search)`: adds the query position of the search (if search input specified), by default using `MultiField` query. Override this if you want to modify the query type used.
* `highlight(self, search)`: defines the highlighting on the `Search` object and returns a new one. Default behavior is to highlight on all fields specified for search.
### Usage [_usage]
The custom subclass can be instantiated empty to provide an empty search (matching everything) or with `query`, `filters` and `sort`.
* `query`: is used to pass in the text of the query to be performed. If `None` is passed in (default) a `MatchAll` query will be used. For example `'python web'`
* `filters`: is a dictionary containing all the facet filters that you wish to apply. Use the name of the facet (from `.facets` attribute) as the key and one of the possible values as value. For example `{'tags': 'python'}`.
* `sort`: is a tuple or list of fields on which the results should be sorted. The format of the individual fields are to be the same as those passed to `~elasticsearch.dsl.Search.sort`.
#### Response [_response_2]
the response returned from the `FacetedSearch` object (by calling `.execute()`) is a subclass of the standard `Response` class that adds a property called `facets` which contains a dictionary with lists of buckets -each represented by a tuple of key, document count and a flag indicating whether this value has been filtered on.
### Example [_example]
```python
from datetime import date
from elasticsearch.dsl import FacetedSearch, TermsFacet, DateHistogramFacet
class BlogSearch(FacetedSearch):
doc_types = [Article, ]
# fields that should be searched
fields = ['tags', 'title', 'body']
facets = {
# use bucket aggregations to define facets
'tags': TermsFacet(field='tags'),
'publishing_frequency': DateHistogramFacet(field='published_from', interval='month')
}
def search(self):
# override methods to add custom pieces
s = super().search()
return s.filter('range', publish_from={'lte': 'now/h'})
bs = BlogSearch('python web', {'publishing_frequency': date(2015, 6)})
response = bs.execute()
# access hits and other attributes as usual
total = response.hits.total
print('total hits', total.relation, total.value)
for hit in response:
print(hit.meta.score, hit.title)
for (tag, count, selected) in response.facets.tags:
print(tag, ' (SELECTED):' if selected else ':', count)
for (month, count, selected) in response.facets.publishing_frequency:
print(month.strftime('%B %Y'), ' (SELECTED):' if selected else ':', count)
```
## Update By Query [update_by_query]
### The `Update By Query` object [_the_update_by_query_object]
The `Update By Query` object enables the use of the [_update_by_query](https://www.elastic.co/docs/api/doc/elasticsearch/v8/operation/operation-update-by-query) endpoint to perform an update on documents that match a search query.
The object is implemented as a modification of the `Search` object, containing a subset of its query methods, as well as a script method, which is used to make updates.
The `Update By Query` object implements the following `Search` query types:
* queries
* filters
* excludes
For more information on queries, see the `search_dsl` chapter.
Like the `Search` object, the API is designed to be chainable. This means that the `Update By Query` object is immutable: all changes to the object will result in a shallow copy being created which contains the changes. This means you can safely pass the `Update By Query` object to foreign code without fear of it modifying your objects as long as it sticks to the `Update By Query` object APIs.
You can define your client in a number of ways, but the preferred method is to use a global configuration. For more information on defining a client, see the `configuration` chapter.
Once your client is defined, you can instantiate a copy of the `Update By Query` object as seen below:
```python
from elasticsearch.dsl import UpdateByQuery
ubq = UpdateByQuery().using(client)
# or
ubq = UpdateByQuery(using=client)
```
::::{note}
All methods return a *copy* of the object, making it safe to pass to outside code.
::::
The API is chainable, allowing you to combine multiple method calls in one statement:
```python
ubq = UpdateByQuery().using(client).query(Match("title", python"))
```
To send the request to Elasticsearch:
```python
response = ubq.execute()
```
It should be noted, that there are limits to the chaining using the script method: calling script multiple times will overwrite the previous value. That is, only a single script can be sent with a call. An attempt to use two scripts will result in only the second script being stored.
Given the below example:
```python
ubq = UpdateByQuery() \
.using(client) \
.script(source="ctx._source.likes++") \
.script(source="ctx._source.likes+=2")
```
This means that the stored script by this client will be `'source': 'ctx._source.likes{{plus}}=2'` and the previous call will not be stored.
For debugging purposes you can serialize the `Update By Query` object to a `dict` explicitly:
```python
print(ubq.to_dict())
```
Also, to use variables in script see below example:
```python
ubq.script(
source="ctx._source.messages.removeIf(x -> x.somefield == params.some_var)",
params={
'some_var': 'some_string_val'
}
)
```
#### Serialization and Deserialization [_serialization_and_deserialization_2]
The search object can be serialized into a dictionary by using the `.to_dict()` method.
You can also create a `Update By Query` object from a `dict` using the `from_dict` class method. This will create a new `Update By Query` object and populate it using the data from the dict:
```python
ubq = UpdateByQuery.from_dict({"query": {"match": {"title": "python"}}})
```
If you wish to modify an existing `Update By Query` object, overriding it’s properties, instead use the `update_from_dict` method that alters an instance **in-place**:
```python
ubq = UpdateByQuery(index='i')
ubq.update_from_dict({"query": {"match": {"title": "python"}}, "size": 42})
```
#### Extra properties and parameters [_extra_properties_and_parameters_2]
To set extra properties of the search request, use the `.extra()` method. This can be used to define keys in the body that cannot be defined via a specific API method like `explain`:
```python
ubq = ubq.extra(explain=True)
```
To set query parameters, use the `.params()` method:
```python
ubq = ubq.params(routing="42")
```
### Response [_response_3]
You can execute your search by calling the `.execute()` method that will return a `Response` object. The `Response` object allows you access to any key from the response dictionary via attribute access. It also provides some convenient helpers:
```python
response = ubq.execute()
print(response.success())
# True
print(response.took)
# 12
```
If you want to inspect the contents of the `response` objects, just use its `to_dict` method to get access to the raw data for pretty printing.
## Using asyncio with Elasticsearch Python DSL [asyncio]
The DSL module supports async/await with [asyncio](https://docs.python.org/3/library/asyncio.html). To ensure that you have all the required dependencies, install the `[async]` extra:
```bash
$ python -m pip install "elasticsearch[async]"
```
### Connections [_connections]
Use the `async_connections` module to manage your asynchronous connections.
```python
from elasticsearch.dsl import async_connections
async_connections.create_connection(hosts=['localhost'], timeout=20)
```
All the options available in the `connections` module can be used with `async_connections`.
#### How to avoid *Unclosed client session / connector* warnings on exit [_how_to_avoid_unclosed_client_session_connector_warnings_on_exit]
These warnings come from the `aiohttp` package, which is used internally by the `AsyncElasticsearch` client. They appear often when the application exits and are caused by HTTP connections that are open when they are garbage collected. To avoid these warnings, make sure that you close your connections.
```python
es = async_connections.get_connection()
await es.close()
```
### Search DSL [_search_dsl]
Use the `AsyncSearch` class to perform asynchronous searches.
```python
from elasticsearch.dsl import AsyncSearch
from elasticsearch.dsl.query import Match
s = AsyncSearch().query(Match("title", "python"))
async for hit in s:
print(hit.title)
```
Instead of using the `AsyncSearch` object as an asynchronous iterator, you can explicitly call the `execute()` method to get a `Response` object.
```python
s = AsyncSearch().query(Match("title", "python"))
response = await s.execute()
for hit in response:
print(hit.title)
```
An `AsyncMultiSearch` is available as well.
```python
from elasticsearch.dsl import AsyncMultiSearch
from elasticsearch.dsl.query import Term
ms = AsyncMultiSearch(index='blogs')
ms = ms.add(AsyncSearch().filter(Term("tags", "python")))
ms = ms.add(AsyncSearch().filter(Term("tags", "elasticsearch")))
responses = await ms.execute()
for response in responses:
print("Results for query %r." % response.search.query)
for hit in response:
print(hit.title)
```
### Asynchronous Documents, Indexes, and more [_asynchronous_documents_indexes_and_more]
The `Document`, `Index`, `IndexTemplate`, `Mapping`, `UpdateByQuery` and `FacetedSearch` classes all have asynchronous versions that use the same name with an `Async` prefix. These classes expose the same interfaces as the synchronous versions, but any methods that perform I/O are defined as coroutines.
Auxiliary classes that do not perform I/O do not have asynchronous versions. The same classes can be used in synchronous and asynchronous applications.
When using a custom analyzer in an asynchronous application, use the `async_simulate()` method to invoke the Analyze API on it.
Consult the `api` section for details about each specific method.
|