File: dsl_tutorials.md

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (236 lines) | stat: -rw-r--r-- 7,007 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
mapped_pages:
  - https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/_tutorials.html
---

# Tutorials [_tutorials]

## Search [_search]

Let’s have a typical search request written directly as a `dict`:

```python
from elasticsearch import Elasticsearch
client = Elasticsearch("https://localhost:9200")

response = client.search(
    index="my-index",
    body={
      "query": {
        "bool": {
          "must": [{"match": {"title": "python"}}],
          "must_not": [{"match": {"description": "beta"}}],
          "filter": [{"term": {"category": "search"}}]
        }
      },
      "aggs" : {
        "per_tag": {
          "terms": {"field": "tags"},
          "aggs": {
            "max_lines": {"max": {"field": "lines"}}
          }
        }
      }
    }
)

for hit in response['hits']['hits']:
    print(hit['_score'], hit['_source']['title'])

for tag in response['aggregations']['per_tag']['buckets']:
    print(tag['key'], tag['max_lines']['value'])
```

The problem with this approach is that it is very verbose, prone to syntax mistakes like incorrect nesting, hard to modify (eg. adding another filter) and definitely not fun to write.

Let’s rewrite the example using the DSL module:

```python
from elasticsearch import Elasticsearch
from elasticsearch.dsl import Search, query, aggs

client = Elasticsearch("https://localhost:9200")

s = Search(using=client, index="my-index") \
    .query(query.Match("title", "python"))   \
    .filter(query.Term("category", "search")) \
    .exclude(query.Match("description", "beta"))

s.aggs.bucket('per_tag', aggs.Terms(field="tags")) \
    .metric('max_lines', aggs.Max(field='lines'))

response = s.execute()

for hit in response:
    print(hit.meta.score, hit.title)

for tag in response.aggregations.per_tag.buckets:
    print(tag.key, tag.max_lines.value)
```

As you see, the DSL module took care of:

* creating appropriate `Query` objects from classes
* composing queries into a compound `bool` query
* putting the `term` query in a filter context of the `bool` query
* providing a convenient access to response data
* no curly or square brackets everywhere


## Persistence [_persistence]

Let’s have a simple Python class representing an article in a blogging system:

```python
from datetime import datetime
from elasticsearch.dsl import Document, Date, Integer, Keyword, Text, connections

# Define a default Elasticsearch client
connections.create_connection(hosts="https://localhost:9200")

class Article(Document):
    title: str = mapped_field(Text(analyzer='snowball', fields={'raw': Keyword()}))
    body: str = mapped_field(Text(analyzer='snowball'))
    tags: str = mapped_field(Keyword())
    published_from: datetime
    lines: int

    class Index:
        name = 'blog'
        settings = {
          "number_of_shards": 2,
        }

    def save(self, **kwargs):
        self.lines = len(self.body.split())
        return super(Article, self).save(** kwargs)

    def is_published(self):
        return datetime.now() > self.published_from

# create the mappings in elasticsearch
Article.init()

# create and save and article
article = Article(meta={'id': 42}, title='Hello world!', tags=['test'])
article.body = ''' looong text '''
article.published_from = datetime.now()
article.save()

article = Article.get(id=42)
print(article.is_published())

# Display cluster health
print(connections.get_connection().cluster.health())
```

In this example you can see:

* providing a default connection
* defining fields with Python type hints and additional mapping configuration when necessary
* setting index name
* defining custom methods
* overriding the built-in `.save()` method to hook into the persistence life cycle
* retrieving and saving the object into Elasticsearch
* accessing the underlying client for other APIs

You can see more in the `persistence` chapter.


## Pre-built Faceted Search [_pre_built_faceted_search]

If you have your `Document`s defined you can very easily create a faceted search class to simplify searching and filtering.

```python
from elasticsearch.dsl import FacetedSearch, TermsFacet, DateHistogramFacet

class BlogSearch(FacetedSearch):
    doc_types = [Article, ]
    # fields that should be searched
    fields = ['tags', 'title', 'body']

    facets = {
        # use bucket aggregations to define facets
        'tags': TermsFacet(field='tags'),
        'publishing_frequency': DateHistogramFacet(field='published_from', interval='month')
    }

# empty search
bs = BlogSearch()
response = bs.execute()

for hit in response:
    print(hit.meta.score, hit.title)

for (tag, count, selected) in response.facets.tags:
    print(tag, ' (SELECTED):' if selected else ':', count)

for (month, count, selected) in response.facets.publishing_frequency:
    print(month.strftime('%B %Y'), ' (SELECTED):' if selected else ':', count)
```

You can find more details in the `faceted_search` chapter.


## Update By Query [_update_by_query]

Let’s resume the simple example of articles on a blog, and let’s assume that each article has a number of likes. For this example, imagine we want to increment the number of likes by 1 for all articles that match a certain tag and do not match a certain description. Writing this as a `dict`, we would have the following code:

```python
from elasticsearch import Elasticsearch
client = Elasticsearch()

response = client.update_by_query(
    index="my-index",
    body={
      "query": {
        "bool": {
          "must": [{"match": {"tag": "python"}}],
          "must_not": [{"match": {"description": "beta"}}]
        }
      },
      "script"={
        "source": "ctx._source.likes++",
        "lang": "painless"
      }
    },
  )
```

Using the DSL, we can now express this query as such:

```python
from elasticsearch import Elasticsearch
from elasticsearch.dsl import Search, UpdateByQuery
from elasticsearch.dsl.query import Match

client = Elasticsearch()
ubq = UpdateByQuery(using=client, index="my-index") \
      .query(Match("title", "python"))   \
      .exclude(Match("description", "beta")) \
      .script(source="ctx._source.likes++", lang="painless")

response = ubq.execute()
```

As you can see, the `Update By Query` object provides many of the savings offered by the `Search` object, and additionally allows one to update the results of the search based on a script assigned in the same manner.


## Migration from the standard client [_migration_from_the_standard_client]

You don’t have to port your entire application to get the benefits of the DSL module, you can start gradually by creating a `Search` object from your existing `dict`, modifying it using the API and serializing it back to a `dict`:

```python
body = {...} # insert complicated query here

# Convert to Search object
s = Search.from_dict(body)

# Add some filters, aggregations, queries, ...
s.filter(query.Term("tags", "python"))

# Convert back to dict to plug back into existing code
body = s.to_dict()
```