1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
|
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import typing as t
from elastic_transport import ObjectApiResponse
from ._base import NamespacedClient
from .utils import SKIP_IN_PATH, _quote, _rewrite_parameters
class MlClient(NamespacedClient):
@_rewrite_parameters()
def clear_trained_model_deployment_cache(
self,
*,
model_id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Clear trained model deployment cache.</p>
<p>Cache will be cleared on all nodes where the trained model is assigned.
A trained model deployment may have an inference cache enabled.
As requests are handled by each allocated node, their responses may be cached on that individual node.
Calling this API clears the caches without restarting the deployment.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-clear-trained-model-deployment-cache>`_
:param model_id: The unique identifier of the trained model.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
__path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)}
__path = (
f'/_ml/trained_models/{__path_parts["model_id"]}/deployment/cache/_clear'
)
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.clear_trained_model_deployment_cache",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("allow_no_match", "force", "timeout"),
)
def close_job(
self,
*,
job_id: str,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
force: t.Optional[bool] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Close anomaly detection jobs.</p>
<p>A job can be opened and closed multiple times throughout its lifecycle. A closed job cannot receive data or perform analysis operations, but you can still explore and navigate results.
When you close a job, it runs housekeeping tasks such as pruning the model history, flushing buffers, calculating final results and persisting the model snapshots. Depending upon the size of the job, it could take several minutes to close and the equivalent time to re-open. After it is closed, the job has a minimal overhead on the cluster except for maintaining its meta data. Therefore it is a best practice to close jobs that are no longer required to process data.
If you close an anomaly detection job whose datafeed is running, the request first tries to stop the datafeed. This behavior is equivalent to calling stop datafeed API with the same timeout and force parameters as the close job request.
When a datafeed that has a specified end date stops, it automatically closes its associated job.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-close-job>`_
:param job_id: Identifier for the anomaly detection job. It can be a job identifier,
a group name, or a wildcard expression. You can close multiple anomaly detection
jobs in a single API request by using a group name, a comma-separated list
of jobs, or a wildcard expression. You can close all jobs by using `_all`
or by specifying `*` as the job identifier.
:param allow_no_match: Refer to the description for the `allow_no_match` query
parameter.
:param force: Refer to the descriptiion for the `force` query parameter.
:param timeout: Refer to the description for the `timeout` query parameter.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_close'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if allow_no_match is not None:
__body["allow_no_match"] = allow_no_match
if force is not None:
__body["force"] = force
if timeout is not None:
__body["timeout"] = timeout
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.close_job",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_calendar(
self,
*,
calendar_id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete a calendar.</p>
<p>Remove all scheduled events from a calendar, then delete it.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-calendar>`_
:param calendar_id: A string that uniquely identifies a calendar.
"""
if calendar_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'calendar_id'")
__path_parts: t.Dict[str, str] = {"calendar_id": _quote(calendar_id)}
__path = f'/_ml/calendars/{__path_parts["calendar_id"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_calendar",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_calendar_event(
self,
*,
calendar_id: str,
event_id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete events from a calendar.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-calendar-event>`_
:param calendar_id: A string that uniquely identifies a calendar.
:param event_id: Identifier for the scheduled event. You can obtain this identifier
by using the get calendar events API.
"""
if calendar_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'calendar_id'")
if event_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'event_id'")
__path_parts: t.Dict[str, str] = {
"calendar_id": _quote(calendar_id),
"event_id": _quote(event_id),
}
__path = f'/_ml/calendars/{__path_parts["calendar_id"]}/events/{__path_parts["event_id"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_calendar_event",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_calendar_job(
self,
*,
calendar_id: str,
job_id: t.Union[str, t.Sequence[str]],
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete anomaly jobs from a calendar.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-calendar-job>`_
:param calendar_id: A string that uniquely identifies a calendar.
:param job_id: An identifier for the anomaly detection jobs. It can be a job
identifier, a group name, or a comma-separated list of jobs or groups.
"""
if calendar_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'calendar_id'")
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {
"calendar_id": _quote(calendar_id),
"job_id": _quote(job_id),
}
__path = f'/_ml/calendars/{__path_parts["calendar_id"]}/jobs/{__path_parts["job_id"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_calendar_job",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_data_frame_analytics(
self,
*,
id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
force: t.Optional[bool] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete a data frame analytics job.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-data-frame-analytics>`_
:param id: Identifier for the data frame analytics job.
:param force: If `true`, it deletes a job that is not stopped; this method is
quicker than stopping and deleting the job.
:param timeout: The time to wait for the job to be deleted.
"""
if id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'id'")
__path_parts: t.Dict[str, str] = {"id": _quote(id)}
__path = f'/_ml/data_frame/analytics/{__path_parts["id"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if force is not None:
__query["force"] = force
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_data_frame_analytics",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_datafeed(
self,
*,
datafeed_id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
force: t.Optional[bool] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete a datafeed.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-datafeed>`_
:param datafeed_id: A numerical character string that uniquely identifies the
datafeed. This identifier can contain lowercase alphanumeric characters (a-z
and 0-9), hyphens, and underscores. It must start and end with alphanumeric
characters.
:param force: Use to forcefully delete a started datafeed; this method is quicker
than stopping and deleting the datafeed.
"""
if datafeed_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'datafeed_id'")
__path_parts: t.Dict[str, str] = {"datafeed_id": _quote(datafeed_id)}
__path = f'/_ml/datafeeds/{__path_parts["datafeed_id"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if force is not None:
__query["force"] = force
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_datafeed",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("requests_per_second", "timeout"),
)
def delete_expired_data(
self,
*,
job_id: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
requests_per_second: t.Optional[float] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete expired ML data.</p>
<p>Delete all job results, model snapshots and forecast data that have exceeded
their retention days period. Machine learning state documents that are not
associated with any job are also deleted.
You can limit the request to a single or set of anomaly detection jobs by
using a job identifier, a group name, a comma-separated list of jobs, or a
wildcard expression. You can delete expired data for all anomaly detection
jobs by using <code>_all</code>, by specifying <code>*</code> as the <code><job_id></code>, or by omitting the
<code><job_id></code>.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-expired-data>`_
:param job_id: Identifier for an anomaly detection job. It can be a job identifier,
a group name, or a wildcard expression.
:param requests_per_second: The desired requests per second for the deletion
processes. The default behavior is no throttling.
:param timeout: How long can the underlying delete processes run until they are
canceled.
"""
__path_parts: t.Dict[str, str]
if job_id not in SKIP_IN_PATH:
__path_parts = {"job_id": _quote(job_id)}
__path = f'/_ml/_delete_expired_data/{__path_parts["job_id"]}'
else:
__path_parts = {}
__path = "/_ml/_delete_expired_data"
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if requests_per_second is not None:
__body["requests_per_second"] = requests_per_second
if timeout is not None:
__body["timeout"] = timeout
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.delete_expired_data",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_filter(
self,
*,
filter_id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete a filter.</p>
<p>If an anomaly detection job references the filter, you cannot delete the
filter. You must update or delete the job before you can delete the filter.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-filter>`_
:param filter_id: A string that uniquely identifies a filter.
"""
if filter_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'filter_id'")
__path_parts: t.Dict[str, str] = {"filter_id": _quote(filter_id)}
__path = f'/_ml/filters/{__path_parts["filter_id"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_filter",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_forecast(
self,
*,
job_id: str,
forecast_id: t.Optional[str] = None,
allow_no_forecasts: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete forecasts from a job.</p>
<p>By default, forecasts are retained for 14 days. You can specify a
different retention period with the <code>expires_in</code> parameter in the forecast
jobs API. The delete forecast API enables you to delete one or more
forecasts before they expire.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-forecast>`_
:param job_id: Identifier for the anomaly detection job.
:param forecast_id: A comma-separated list of forecast identifiers. If you do
not specify this optional parameter or if you specify `_all` or `*` the API
deletes all forecasts from the job.
:param allow_no_forecasts: Specifies whether an error occurs when there are no
forecasts. In particular, if this parameter is set to `false` and there are
no forecasts associated with the job, attempts to delete all forecasts return
an error.
:param timeout: Specifies the period of time to wait for the completion of the
delete operation. When this period of time elapses, the API fails and returns
an error.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str]
if job_id not in SKIP_IN_PATH and forecast_id not in SKIP_IN_PATH:
__path_parts = {
"job_id": _quote(job_id),
"forecast_id": _quote(forecast_id),
}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_forecast/{__path_parts["forecast_id"]}'
elif job_id not in SKIP_IN_PATH:
__path_parts = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_forecast'
else:
raise ValueError("Couldn't find a path for the given parameters")
__query: t.Dict[str, t.Any] = {}
if allow_no_forecasts is not None:
__query["allow_no_forecasts"] = allow_no_forecasts
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_forecast",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_job(
self,
*,
job_id: str,
delete_user_annotations: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
force: t.Optional[bool] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
wait_for_completion: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete an anomaly detection job.</p>
<p>All job configuration, model state and results are deleted.
It is not currently possible to delete multiple jobs using wildcards or a
comma separated list. If you delete a job that has a datafeed, the request
first tries to delete the datafeed. This behavior is equivalent to calling
the delete datafeed API with the same timeout and force parameters as the
delete job request.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-job>`_
:param job_id: Identifier for the anomaly detection job.
:param delete_user_annotations: Specifies whether annotations that have been
added by the user should be deleted along with any auto-generated annotations
when the job is reset.
:param force: Use to forcefully delete an opened job; this method is quicker
than closing and deleting the job.
:param wait_for_completion: Specifies whether the request should return immediately
or wait until the job deletion completes.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}'
__query: t.Dict[str, t.Any] = {}
if delete_user_annotations is not None:
__query["delete_user_annotations"] = delete_user_annotations
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if force is not None:
__query["force"] = force
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if wait_for_completion is not None:
__query["wait_for_completion"] = wait_for_completion
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_job",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_model_snapshot(
self,
*,
job_id: str,
snapshot_id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete a model snapshot.</p>
<p>You cannot delete the active model snapshot. To delete that snapshot, first
revert to a different one. To identify the active model snapshot, refer to
the <code>model_snapshot_id</code> in the results from the get jobs API.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-model-snapshot>`_
:param job_id: Identifier for the anomaly detection job.
:param snapshot_id: Identifier for the model snapshot.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
if snapshot_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'snapshot_id'")
__path_parts: t.Dict[str, str] = {
"job_id": _quote(job_id),
"snapshot_id": _quote(snapshot_id),
}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/model_snapshots/{__path_parts["snapshot_id"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_model_snapshot",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_trained_model(
self,
*,
model_id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
force: t.Optional[bool] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete an unreferenced trained model.</p>
<p>The request deletes a trained inference model that is not referenced by an ingest pipeline.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-trained-model>`_
:param model_id: The unique identifier of the trained model.
:param force: Forcefully deletes a trained model that is referenced by ingest
pipelines or has a started deployment.
:param timeout: Period to wait for a response. If no response is received before
the timeout expires, the request fails and returns an error.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
__path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if force is not None:
__query["force"] = force
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_trained_model",
path_parts=__path_parts,
)
@_rewrite_parameters()
def delete_trained_model_alias(
self,
*,
model_id: str,
model_alias: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Delete a trained model alias.</p>
<p>This API deletes an existing model alias that refers to a trained model. If
the model alias is missing or refers to a model other than the one identified
by the <code>model_id</code>, this API returns an error.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-delete-trained-model-alias>`_
:param model_id: The trained model ID to which the model alias refers.
:param model_alias: The model alias to delete.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
if model_alias in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_alias'")
__path_parts: t.Dict[str, str] = {
"model_id": _quote(model_id),
"model_alias": _quote(model_alias),
}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}/model_aliases/{__path_parts["model_alias"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"DELETE",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.delete_trained_model_alias",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"analysis_config",
"max_bucket_cardinality",
"overall_cardinality",
),
)
def estimate_model_memory(
self,
*,
analysis_config: t.Optional[t.Mapping[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
max_bucket_cardinality: t.Optional[t.Mapping[str, int]] = None,
overall_cardinality: t.Optional[t.Mapping[str, int]] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Estimate job model memory usage.</p>
<p>Make an estimation of the memory usage for an anomaly detection job model.
The estimate is based on analysis configuration details for the job and cardinality
estimates for the fields it references.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-estimate-model-memory>`_
:param analysis_config: For a list of the properties that you can specify in
the `analysis_config` component of the body of this API.
:param max_bucket_cardinality: Estimates of the highest cardinality in a single
bucket that is observed for influencer fields over the time period that the
job analyzes data. To produce a good answer, values must be provided for
all influencer fields. Providing values for fields that are not listed as
`influencers` has no effect on the estimation.
:param overall_cardinality: Estimates of the cardinality that is observed for
fields over the whole time period that the job analyzes data. To produce
a good answer, values must be provided for fields referenced in the `by_field_name`,
`over_field_name` and `partition_field_name` of any detectors. Providing
values for other fields has no effect on the estimation. It can be omitted
from the request if no detectors have a `by_field_name`, `over_field_name`
or `partition_field_name`.
"""
__path_parts: t.Dict[str, str] = {}
__path = "/_ml/anomaly_detectors/_estimate_model_memory"
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if analysis_config is not None:
__body["analysis_config"] = analysis_config
if max_bucket_cardinality is not None:
__body["max_bucket_cardinality"] = max_bucket_cardinality
if overall_cardinality is not None:
__body["overall_cardinality"] = overall_cardinality
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.estimate_model_memory",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("evaluation", "index", "query"),
)
def evaluate_data_frame(
self,
*,
evaluation: t.Optional[t.Mapping[str, t.Any]] = None,
index: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
query: t.Optional[t.Mapping[str, t.Any]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Evaluate data frame analytics.</p>
<p>The API packages together commonly used evaluation metrics for various types
of machine learning features. This has been designed for use on indexes
created by data frame analytics. Evaluation requires both a ground truth
field and an analytics result field to be present.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-evaluate-data-frame>`_
:param evaluation: Defines the type of evaluation you want to perform.
:param index: Defines the `index` in which the evaluation will be performed.
:param query: A query clause that retrieves a subset of data from the source
index.
"""
if evaluation is None and body is None:
raise ValueError("Empty value passed for parameter 'evaluation'")
if index is None and body is None:
raise ValueError("Empty value passed for parameter 'index'")
__path_parts: t.Dict[str, str] = {}
__path = "/_ml/data_frame/_evaluate"
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if evaluation is not None:
__body["evaluation"] = evaluation
if index is not None:
__body["index"] = index
if query is not None:
__body["query"] = query
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.evaluate_data_frame",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"allow_lazy_start",
"analysis",
"analyzed_fields",
"description",
"dest",
"max_num_threads",
"model_memory_limit",
"source",
),
)
def explain_data_frame_analytics(
self,
*,
id: t.Optional[str] = None,
allow_lazy_start: t.Optional[bool] = None,
analysis: t.Optional[t.Mapping[str, t.Any]] = None,
analyzed_fields: t.Optional[t.Mapping[str, t.Any]] = None,
description: t.Optional[str] = None,
dest: t.Optional[t.Mapping[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
max_num_threads: t.Optional[int] = None,
model_memory_limit: t.Optional[str] = None,
pretty: t.Optional[bool] = None,
source: t.Optional[t.Mapping[str, t.Any]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Explain data frame analytics config.</p>
<p>This API provides explanations for a data frame analytics config that either
exists already or one that has not been created yet. The following
explanations are provided:</p>
<ul>
<li>which fields are included or not in the analysis and why,</li>
<li>how much memory is estimated to be required. The estimate can be used when deciding the appropriate value for model_memory_limit setting later on.
If you have object fields or fields that are excluded via source filtering, they are not included in the explanation.</li>
</ul>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-explain-data-frame-analytics>`_
:param id: Identifier for the data frame analytics job. This identifier can contain
lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores.
It must start and end with alphanumeric characters.
:param allow_lazy_start: Specifies whether this job can start when there is insufficient
machine learning node capacity for it to be immediately assigned to a node.
:param analysis: The analysis configuration, which contains the information necessary
to perform one of the following types of analysis: classification, outlier
detection, or regression.
:param analyzed_fields: Specify includes and/or excludes patterns to select which
fields will be included in the analysis. The patterns specified in excludes
are applied last, therefore excludes takes precedence. In other words, if
the same field is specified in both includes and excludes, then the field
will not be included in the analysis.
:param description: A description of the job.
:param dest: The destination configuration, consisting of index and optionally
results_field (ml by default).
:param max_num_threads: The maximum number of threads to be used by the analysis.
Using more threads may decrease the time necessary to complete the analysis
at the cost of using more CPU. Note that the process may use additional threads
for operational functionality other than the analysis itself.
:param model_memory_limit: The approximate maximum amount of memory resources
that are permitted for analytical processing. If your `elasticsearch.yml`
file contains an `xpack.ml.max_model_memory_limit` setting, an error occurs
when you try to create data frame analytics jobs that have `model_memory_limit`
values greater than that setting.
:param source: The configuration of how to source the analysis data. It requires
an index. Optionally, query and _source may be specified.
"""
__path_parts: t.Dict[str, str]
if id not in SKIP_IN_PATH:
__path_parts = {"id": _quote(id)}
__path = f'/_ml/data_frame/analytics/{__path_parts["id"]}/_explain'
else:
__path_parts = {}
__path = "/_ml/data_frame/analytics/_explain"
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if allow_lazy_start is not None:
__body["allow_lazy_start"] = allow_lazy_start
if analysis is not None:
__body["analysis"] = analysis
if analyzed_fields is not None:
__body["analyzed_fields"] = analyzed_fields
if description is not None:
__body["description"] = description
if dest is not None:
__body["dest"] = dest
if max_num_threads is not None:
__body["max_num_threads"] = max_num_threads
if model_memory_limit is not None:
__body["model_memory_limit"] = model_memory_limit
if source is not None:
__body["source"] = source
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.explain_data_frame_analytics",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("advance_time", "calc_interim", "end", "skip_time", "start"),
)
def flush_job(
self,
*,
job_id: str,
advance_time: t.Optional[t.Union[str, t.Any]] = None,
calc_interim: t.Optional[bool] = None,
end: t.Optional[t.Union[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
skip_time: t.Optional[t.Union[str, t.Any]] = None,
start: t.Optional[t.Union[str, t.Any]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Force buffered data to be processed.
The flush jobs API is only applicable when sending data for analysis using
the post data API. Depending on the content of the buffer, then it might
additionally calculate new results. Both flush and close operations are
similar, however the flush is more efficient if you are expecting to send
more data for analysis. When flushing, the job remains open and is available
to continue analyzing data. A close operation additionally prunes and
persists the model state to disk and the job must be opened again before
analyzing further data.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-flush-job>`_
:param job_id: Identifier for the anomaly detection job.
:param advance_time: Refer to the description for the `advance_time` query parameter.
:param calc_interim: Refer to the description for the `calc_interim` query parameter.
:param end: Refer to the description for the `end` query parameter.
:param skip_time: Refer to the description for the `skip_time` query parameter.
:param start: Refer to the description for the `start` query parameter.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_flush'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if advance_time is not None:
__body["advance_time"] = advance_time
if calc_interim is not None:
__body["calc_interim"] = calc_interim
if end is not None:
__body["end"] = end
if skip_time is not None:
__body["skip_time"] = skip_time
if start is not None:
__body["start"] = start
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.flush_job",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("duration", "expires_in", "max_model_memory"),
)
def forecast(
self,
*,
job_id: str,
duration: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
error_trace: t.Optional[bool] = None,
expires_in: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
max_model_memory: t.Optional[str] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Predict future behavior of a time series.</p>
<p>Forecasts are not supported for jobs that perform population analysis; an
error occurs if you try to create a forecast for a job that has an
<code>over_field_name</code> in its configuration. Forcasts predict future behavior
based on historical data.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-forecast>`_
:param job_id: Identifier for the anomaly detection job. The job must be open
when you create a forecast; otherwise, an error occurs.
:param duration: Refer to the description for the `duration` query parameter.
:param expires_in: Refer to the description for the `expires_in` query parameter.
:param max_model_memory: Refer to the description for the `max_model_memory`
query parameter.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_forecast'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if duration is not None:
__body["duration"] = duration
if expires_in is not None:
__body["expires_in"] = expires_in
if max_model_memory is not None:
__body["max_model_memory"] = max_model_memory
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.forecast",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"anomaly_score",
"desc",
"end",
"exclude_interim",
"expand",
"page",
"sort",
"start",
),
parameter_aliases={"from": "from_"},
)
def get_buckets(
self,
*,
job_id: str,
timestamp: t.Optional[t.Union[str, t.Any]] = None,
anomaly_score: t.Optional[float] = None,
desc: t.Optional[bool] = None,
end: t.Optional[t.Union[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
exclude_interim: t.Optional[bool] = None,
expand: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
page: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
sort: t.Optional[str] = None,
start: t.Optional[t.Union[str, t.Any]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get anomaly detection job results for buckets.
The API presents a chronological view of the records, grouped by bucket.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-buckets>`_
:param job_id: Identifier for the anomaly detection job.
:param timestamp: The timestamp of a single bucket result. If you do not specify
this parameter, the API returns information about all buckets.
:param anomaly_score: Refer to the description for the `anomaly_score` query
parameter.
:param desc: Refer to the description for the `desc` query parameter.
:param end: Refer to the description for the `end` query parameter.
:param exclude_interim: Refer to the description for the `exclude_interim` query
parameter.
:param expand: Refer to the description for the `expand` query parameter.
:param from_: Skips the specified number of buckets.
:param page:
:param size: Specifies the maximum number of buckets to obtain.
:param sort: Refer to the desription for the `sort` query parameter.
:param start: Refer to the description for the `start` query parameter.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str]
if job_id not in SKIP_IN_PATH and timestamp not in SKIP_IN_PATH:
__path_parts = {"job_id": _quote(job_id), "timestamp": _quote(timestamp)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/results/buckets/{__path_parts["timestamp"]}'
elif job_id not in SKIP_IN_PATH:
__path_parts = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/results/buckets'
else:
raise ValueError("Couldn't find a path for the given parameters")
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
if not __body:
if anomaly_score is not None:
__body["anomaly_score"] = anomaly_score
if desc is not None:
__body["desc"] = desc
if end is not None:
__body["end"] = end
if exclude_interim is not None:
__body["exclude_interim"] = exclude_interim
if expand is not None:
__body["expand"] = expand
if page is not None:
__body["page"] = page
if sort is not None:
__body["sort"] = sort
if start is not None:
__body["start"] = start
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.get_buckets",
path_parts=__path_parts,
)
@_rewrite_parameters(
parameter_aliases={"from": "from_"},
)
def get_calendar_events(
self,
*,
calendar_id: str,
end: t.Optional[t.Union[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
job_id: t.Optional[str] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
start: t.Optional[t.Union[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get info about events in calendars.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-calendar-events>`_
:param calendar_id: A string that uniquely identifies a calendar. You can get
information for multiple calendars by using a comma-separated list of ids
or a wildcard expression. You can get information for all calendars by using
`_all` or `*` or by omitting the calendar identifier.
:param end: Specifies to get events with timestamps earlier than this time.
:param from_: Skips the specified number of events.
:param job_id: Specifies to get events for a specific anomaly detection job identifier
or job group. It must be used with a calendar identifier of `_all` or `*`.
:param size: Specifies the maximum number of events to obtain.
:param start: Specifies to get events with timestamps after this time.
"""
if calendar_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'calendar_id'")
__path_parts: t.Dict[str, str] = {"calendar_id": _quote(calendar_id)}
__path = f'/_ml/calendars/{__path_parts["calendar_id"]}/events'
__query: t.Dict[str, t.Any] = {}
if end is not None:
__query["end"] = end
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if job_id is not None:
__query["job_id"] = job_id
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
if start is not None:
__query["start"] = start
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_calendar_events",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("page",),
parameter_aliases={"from": "from_"},
)
def get_calendars(
self,
*,
calendar_id: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
page: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get calendar configuration info.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-calendars>`_
:param calendar_id: A string that uniquely identifies a calendar. You can get
information for multiple calendars by using a comma-separated list of ids
or a wildcard expression. You can get information for all calendars by using
`_all` or `*` or by omitting the calendar identifier.
:param from_: Skips the specified number of calendars. This parameter is supported
only when you omit the calendar identifier.
:param page: This object is supported only when you omit the calendar identifier.
:param size: Specifies the maximum number of calendars to obtain. This parameter
is supported only when you omit the calendar identifier.
"""
__path_parts: t.Dict[str, str]
if calendar_id not in SKIP_IN_PATH:
__path_parts = {"calendar_id": _quote(calendar_id)}
__path = f'/_ml/calendars/{__path_parts["calendar_id"]}'
else:
__path_parts = {}
__path = "/_ml/calendars"
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
if not __body:
if page is not None:
__body["page"] = page
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.get_calendars",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("page",),
parameter_aliases={"from": "from_"},
)
def get_categories(
self,
*,
job_id: str,
category_id: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
page: t.Optional[t.Mapping[str, t.Any]] = None,
partition_field_value: t.Optional[str] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get anomaly detection job results for categories.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-categories>`_
:param job_id: Identifier for the anomaly detection job.
:param category_id: Identifier for the category, which is unique in the job.
If you specify neither the category ID nor the partition_field_value, the
API returns information about all categories. If you specify only the partition_field_value,
it returns information about all categories for the specified partition.
:param from_: Skips the specified number of categories.
:param page: Configures pagination. This parameter has the `from` and `size`
properties.
:param partition_field_value: Only return categories for the specified partition.
:param size: Specifies the maximum number of categories to obtain.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str]
if job_id not in SKIP_IN_PATH and category_id not in SKIP_IN_PATH:
__path_parts = {
"job_id": _quote(job_id),
"category_id": _quote(category_id),
}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/results/categories/{__path_parts["category_id"]}'
elif job_id not in SKIP_IN_PATH:
__path_parts = {"job_id": _quote(job_id)}
__path = (
f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/results/categories'
)
else:
raise ValueError("Couldn't find a path for the given parameters")
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if partition_field_value is not None:
__query["partition_field_value"] = partition_field_value
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
if not __body:
if page is not None:
__body["page"] = page
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.get_categories",
path_parts=__path_parts,
)
@_rewrite_parameters(
parameter_aliases={"from": "from_"},
)
def get_data_frame_analytics(
self,
*,
id: t.Optional[str] = None,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
exclude_generated: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get data frame analytics job configuration info.
You can get information for multiple data frame analytics jobs in a single
API request by using a comma-separated list of data frame analytics jobs or a
wildcard expression.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-data-frame-analytics>`_
:param id: Identifier for the data frame analytics job. If you do not specify
this option, the API returns information for the first hundred data frame
analytics jobs.
:param allow_no_match: Specifies what to do when the request: 1. Contains wildcard
expressions and there are no data frame analytics jobs that match. 2. Contains
the `_all` string or no identifiers and there are no matches. 3. Contains
wildcard expressions and there are only partial matches. The default value
returns an empty data_frame_analytics array when there are no matches and
the subset of results when there are partial matches. If this parameter is
`false`, the request returns a 404 status code when there are no matches
or only partial matches.
:param exclude_generated: Indicates if certain fields should be removed from
the configuration on retrieval. This allows the configuration to be in an
acceptable format to be retrieved and then added to another cluster.
:param from_: Skips the specified number of data frame analytics jobs.
:param size: Specifies the maximum number of data frame analytics jobs to obtain.
"""
__path_parts: t.Dict[str, str]
if id not in SKIP_IN_PATH:
__path_parts = {"id": _quote(id)}
__path = f'/_ml/data_frame/analytics/{__path_parts["id"]}'
else:
__path_parts = {}
__path = "/_ml/data_frame/analytics"
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if exclude_generated is not None:
__query["exclude_generated"] = exclude_generated
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_data_frame_analytics",
path_parts=__path_parts,
)
@_rewrite_parameters(
parameter_aliases={"from": "from_"},
)
def get_data_frame_analytics_stats(
self,
*,
id: t.Optional[str] = None,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
verbose: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get data frame analytics job stats.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-data-frame-analytics-stats>`_
:param id: Identifier for the data frame analytics job. If you do not specify
this option, the API returns information for the first hundred data frame
analytics jobs.
:param allow_no_match: Specifies what to do when the request: 1. Contains wildcard
expressions and there are no data frame analytics jobs that match. 2. Contains
the `_all` string or no identifiers and there are no matches. 3. Contains
wildcard expressions and there are only partial matches. The default value
returns an empty data_frame_analytics array when there are no matches and
the subset of results when there are partial matches. If this parameter is
`false`, the request returns a 404 status code when there are no matches
or only partial matches.
:param from_: Skips the specified number of data frame analytics jobs.
:param size: Specifies the maximum number of data frame analytics jobs to obtain.
:param verbose: Defines whether the stats response should be verbose.
"""
__path_parts: t.Dict[str, str]
if id not in SKIP_IN_PATH:
__path_parts = {"id": _quote(id)}
__path = f'/_ml/data_frame/analytics/{__path_parts["id"]}/_stats'
else:
__path_parts = {}
__path = "/_ml/data_frame/analytics/_stats"
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
if verbose is not None:
__query["verbose"] = verbose
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_data_frame_analytics_stats",
path_parts=__path_parts,
)
@_rewrite_parameters()
def get_datafeed_stats(
self,
*,
datafeed_id: t.Optional[t.Union[str, t.Sequence[str]]] = None,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get datafeed stats.
You can get statistics for multiple datafeeds in a single API request by
using a comma-separated list of datafeeds or a wildcard expression. You can
get statistics for all datafeeds by using <code>_all</code>, by specifying <code>*</code> as the
<code><feed_id></code>, or by omitting the <code><feed_id></code>. If the datafeed is stopped, the
only information you receive is the <code>datafeed_id</code> and the <code>state</code>.
This API returns a maximum of 10,000 datafeeds.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-datafeed-stats>`_
:param datafeed_id: Identifier for the datafeed. It can be a datafeed identifier
or a wildcard expression. If you do not specify one of these options, the
API returns information about all datafeeds.
:param allow_no_match: Specifies what to do when the request: 1. Contains wildcard
expressions and there are no datafeeds that match. 2. Contains the `_all`
string or no identifiers and there are no matches. 3. Contains wildcard expressions
and there are only partial matches. The default value is `true`, which returns
an empty `datafeeds` array when there are no matches and the subset of results
when there are partial matches. If this parameter is `false`, the request
returns a `404` status code when there are no matches or only partial matches.
"""
__path_parts: t.Dict[str, str]
if datafeed_id not in SKIP_IN_PATH:
__path_parts = {"datafeed_id": _quote(datafeed_id)}
__path = f'/_ml/datafeeds/{__path_parts["datafeed_id"]}/_stats'
else:
__path_parts = {}
__path = "/_ml/datafeeds/_stats"
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_datafeed_stats",
path_parts=__path_parts,
)
@_rewrite_parameters()
def get_datafeeds(
self,
*,
datafeed_id: t.Optional[t.Union[str, t.Sequence[str]]] = None,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
exclude_generated: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get datafeeds configuration info.
You can get information for multiple datafeeds in a single API request by
using a comma-separated list of datafeeds or a wildcard expression. You can
get information for all datafeeds by using <code>_all</code>, by specifying <code>*</code> as the
<code><feed_id></code>, or by omitting the <code><feed_id></code>.
This API returns a maximum of 10,000 datafeeds.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-datafeeds>`_
:param datafeed_id: Identifier for the datafeed. It can be a datafeed identifier
or a wildcard expression. If you do not specify one of these options, the
API returns information about all datafeeds.
:param allow_no_match: Specifies what to do when the request: 1. Contains wildcard
expressions and there are no datafeeds that match. 2. Contains the `_all`
string or no identifiers and there are no matches. 3. Contains wildcard expressions
and there are only partial matches. The default value is `true`, which returns
an empty `datafeeds` array when there are no matches and the subset of results
when there are partial matches. If this parameter is `false`, the request
returns a `404` status code when there are no matches or only partial matches.
:param exclude_generated: Indicates if certain fields should be removed from
the configuration on retrieval. This allows the configuration to be in an
acceptable format to be retrieved and then added to another cluster.
"""
__path_parts: t.Dict[str, str]
if datafeed_id not in SKIP_IN_PATH:
__path_parts = {"datafeed_id": _quote(datafeed_id)}
__path = f'/_ml/datafeeds/{__path_parts["datafeed_id"]}'
else:
__path_parts = {}
__path = "/_ml/datafeeds"
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if exclude_generated is not None:
__query["exclude_generated"] = exclude_generated
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_datafeeds",
path_parts=__path_parts,
)
@_rewrite_parameters(
parameter_aliases={"from": "from_"},
)
def get_filters(
self,
*,
filter_id: t.Optional[t.Union[str, t.Sequence[str]]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get filters.
You can get a single filter or all filters.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-filters>`_
:param filter_id: A string that uniquely identifies a filter.
:param from_: Skips the specified number of filters.
:param size: Specifies the maximum number of filters to obtain.
"""
__path_parts: t.Dict[str, str]
if filter_id not in SKIP_IN_PATH:
__path_parts = {"filter_id": _quote(filter_id)}
__path = f'/_ml/filters/{__path_parts["filter_id"]}'
else:
__path_parts = {}
__path = "/_ml/filters"
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_filters",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("page",),
parameter_aliases={"from": "from_"},
)
def get_influencers(
self,
*,
job_id: str,
desc: t.Optional[bool] = None,
end: t.Optional[t.Union[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
exclude_interim: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
influencer_score: t.Optional[float] = None,
page: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
sort: t.Optional[str] = None,
start: t.Optional[t.Union[str, t.Any]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get anomaly detection job results for influencers.
Influencers are the entities that have contributed to, or are to blame for,
the anomalies. Influencer results are available only if an
<code>influencer_field_name</code> is specified in the job configuration.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-influencers>`_
:param job_id: Identifier for the anomaly detection job.
:param desc: If true, the results are sorted in descending order.
:param end: Returns influencers with timestamps earlier than this time. The default
value means it is unset and results are not limited to specific timestamps.
:param exclude_interim: If true, the output excludes interim results. By default,
interim results are included.
:param from_: Skips the specified number of influencers.
:param influencer_score: Returns influencers with anomaly scores greater than
or equal to this value.
:param page: Configures pagination. This parameter has the `from` and `size`
properties.
:param size: Specifies the maximum number of influencers to obtain.
:param sort: Specifies the sort field for the requested influencers. By default,
the influencers are sorted by the `influencer_score` value.
:param start: Returns influencers with timestamps after this time. The default
value means it is unset and results are not limited to specific timestamps.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/results/influencers'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if desc is not None:
__query["desc"] = desc
if end is not None:
__query["end"] = end
if error_trace is not None:
__query["error_trace"] = error_trace
if exclude_interim is not None:
__query["exclude_interim"] = exclude_interim
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if influencer_score is not None:
__query["influencer_score"] = influencer_score
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
if sort is not None:
__query["sort"] = sort
if start is not None:
__query["start"] = start
if not __body:
if page is not None:
__body["page"] = page
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.get_influencers",
path_parts=__path_parts,
)
@_rewrite_parameters()
def get_job_stats(
self,
*,
job_id: t.Optional[str] = None,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get anomaly detection job stats.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-job-stats>`_
:param job_id: Identifier for the anomaly detection job. It can be a job identifier,
a group name, a comma-separated list of jobs, or a wildcard expression. If
you do not specify one of these options, the API returns information for
all anomaly detection jobs.
:param allow_no_match: Specifies what to do when the request: 1. Contains wildcard
expressions and there are no jobs that match. 2. Contains the _all string
or no identifiers and there are no matches. 3. Contains wildcard expressions
and there are only partial matches. If `true`, the API returns an empty `jobs`
array when there are no matches and the subset of results when there are
partial matches. If `false`, the API returns a `404` status code when there
are no matches or only partial matches.
"""
__path_parts: t.Dict[str, str]
if job_id not in SKIP_IN_PATH:
__path_parts = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_stats'
else:
__path_parts = {}
__path = "/_ml/anomaly_detectors/_stats"
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_job_stats",
path_parts=__path_parts,
)
@_rewrite_parameters()
def get_jobs(
self,
*,
job_id: t.Optional[t.Union[str, t.Sequence[str]]] = None,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
exclude_generated: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get anomaly detection jobs configuration info.
You can get information for multiple anomaly detection jobs in a single API
request by using a group name, a comma-separated list of jobs, or a wildcard
expression. You can get information for all anomaly detection jobs by using
<code>_all</code>, by specifying <code>*</code> as the <code><job_id></code>, or by omitting the <code><job_id></code>.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-jobs>`_
:param job_id: Identifier for the anomaly detection job. It can be a job identifier,
a group name, or a wildcard expression. If you do not specify one of these
options, the API returns information for all anomaly detection jobs.
:param allow_no_match: Specifies what to do when the request: 1. Contains wildcard
expressions and there are no jobs that match. 2. Contains the _all string
or no identifiers and there are no matches. 3. Contains wildcard expressions
and there are only partial matches. The default value is `true`, which returns
an empty `jobs` array when there are no matches and the subset of results
when there are partial matches. If this parameter is `false`, the request
returns a `404` status code when there are no matches or only partial matches.
:param exclude_generated: Indicates if certain fields should be removed from
the configuration on retrieval. This allows the configuration to be in an
acceptable format to be retrieved and then added to another cluster.
"""
__path_parts: t.Dict[str, str]
if job_id not in SKIP_IN_PATH:
__path_parts = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}'
else:
__path_parts = {}
__path = "/_ml/anomaly_detectors"
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if exclude_generated is not None:
__query["exclude_generated"] = exclude_generated
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_jobs",
path_parts=__path_parts,
)
@_rewrite_parameters()
def get_memory_stats(
self,
*,
node_id: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
master_timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get machine learning memory usage info.
Get information about how machine learning jobs and trained models are using memory,
on each node, both within the JVM heap, and natively, outside of the JVM.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-memory-stats>`_
:param node_id: The names of particular nodes in the cluster to target. For example,
`nodeId1,nodeId2` or `ml:true`
:param master_timeout: Period to wait for a connection to the master node. If
no response is received before the timeout expires, the request fails and
returns an error.
:param timeout: Period to wait for a response. If no response is received before
the timeout expires, the request fails and returns an error.
"""
__path_parts: t.Dict[str, str]
if node_id not in SKIP_IN_PATH:
__path_parts = {"node_id": _quote(node_id)}
__path = f'/_ml/memory/{__path_parts["node_id"]}/_stats'
else:
__path_parts = {}
__path = "/_ml/memory/_stats"
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if master_timeout is not None:
__query["master_timeout"] = master_timeout
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_memory_stats",
path_parts=__path_parts,
)
@_rewrite_parameters()
def get_model_snapshot_upgrade_stats(
self,
*,
job_id: str,
snapshot_id: str,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get anomaly detection job model snapshot upgrade usage info.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-model-snapshot-upgrade-stats>`_
:param job_id: Identifier for the anomaly detection job.
:param snapshot_id: A numerical character string that uniquely identifies the
model snapshot. You can get information for multiple snapshots by using a
comma-separated list or a wildcard expression. You can get all snapshots
by using `_all`, by specifying `*` as the snapshot ID, or by omitting the
snapshot ID.
:param allow_no_match: Specifies what to do when the request: - Contains wildcard
expressions and there are no jobs that match. - Contains the _all string
or no identifiers and there are no matches. - Contains wildcard expressions
and there are only partial matches. The default value is true, which returns
an empty jobs array when there are no matches and the subset of results when
there are partial matches. If this parameter is false, the request returns
a 404 status code when there are no matches or only partial matches.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
if snapshot_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'snapshot_id'")
__path_parts: t.Dict[str, str] = {
"job_id": _quote(job_id),
"snapshot_id": _quote(snapshot_id),
}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/model_snapshots/{__path_parts["snapshot_id"]}/_upgrade/_stats'
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_model_snapshot_upgrade_stats",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("desc", "end", "page", "sort", "start"),
parameter_aliases={"from": "from_"},
)
def get_model_snapshots(
self,
*,
job_id: str,
snapshot_id: t.Optional[str] = None,
desc: t.Optional[bool] = None,
end: t.Optional[t.Union[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
page: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
sort: t.Optional[str] = None,
start: t.Optional[t.Union[str, t.Any]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get model snapshots info.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-model-snapshots>`_
:param job_id: Identifier for the anomaly detection job.
:param snapshot_id: A numerical character string that uniquely identifies the
model snapshot. You can get information for multiple snapshots by using a
comma-separated list or a wildcard expression. You can get all snapshots
by using `_all`, by specifying `*` as the snapshot ID, or by omitting the
snapshot ID.
:param desc: Refer to the description for the `desc` query parameter.
:param end: Refer to the description for the `end` query parameter.
:param from_: Skips the specified number of snapshots.
:param page:
:param size: Specifies the maximum number of snapshots to obtain.
:param sort: Refer to the description for the `sort` query parameter.
:param start: Refer to the description for the `start` query parameter.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str]
if job_id not in SKIP_IN_PATH and snapshot_id not in SKIP_IN_PATH:
__path_parts = {
"job_id": _quote(job_id),
"snapshot_id": _quote(snapshot_id),
}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/model_snapshots/{__path_parts["snapshot_id"]}'
elif job_id not in SKIP_IN_PATH:
__path_parts = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/model_snapshots'
else:
raise ValueError("Couldn't find a path for the given parameters")
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
if not __body:
if desc is not None:
__body["desc"] = desc
if end is not None:
__body["end"] = end
if page is not None:
__body["page"] = page
if sort is not None:
__body["sort"] = sort
if start is not None:
__body["start"] = start
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.get_model_snapshots",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"allow_no_match",
"bucket_span",
"end",
"exclude_interim",
"overall_score",
"start",
"top_n",
),
)
def get_overall_buckets(
self,
*,
job_id: str,
allow_no_match: t.Optional[bool] = None,
bucket_span: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
end: t.Optional[t.Union[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
exclude_interim: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
overall_score: t.Optional[t.Union[float, str]] = None,
pretty: t.Optional[bool] = None,
start: t.Optional[t.Union[str, t.Any]] = None,
top_n: t.Optional[int] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get overall bucket results.</p>
<p>Retrievs overall bucket results that summarize the bucket results of
multiple anomaly detection jobs.</p>
<p>The <code>overall_score</code> is calculated by combining the scores of all the
buckets within the overall bucket span. First, the maximum
<code>anomaly_score</code> per anomaly detection job in the overall bucket is
calculated. Then the <code>top_n</code> of those scores are averaged to result in
the <code>overall_score</code>. This means that you can fine-tune the
<code>overall_score</code> so that it is more or less sensitive to the number of
jobs that detect an anomaly at the same time. For example, if you set
<code>top_n</code> to <code>1</code>, the <code>overall_score</code> is the maximum bucket score in the
overall bucket. Alternatively, if you set <code>top_n</code> to the number of jobs,
the <code>overall_score</code> is high only when all jobs detect anomalies in that
overall bucket. If you set the <code>bucket_span</code> parameter (to a value
greater than its default), the <code>overall_score</code> is the maximum
<code>overall_score</code> of the overall buckets that have a span equal to the
jobs' largest bucket span.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-overall-buckets>`_
:param job_id: Identifier for the anomaly detection job. It can be a job identifier,
a group name, a comma-separated list of jobs or groups, or a wildcard expression.
You can summarize the bucket results for all anomaly detection jobs by using
`_all` or by specifying `*` as the `<job_id>`.
:param allow_no_match: Refer to the description for the `allow_no_match` query
parameter.
:param bucket_span: Refer to the description for the `bucket_span` query parameter.
:param end: Refer to the description for the `end` query parameter.
:param exclude_interim: Refer to the description for the `exclude_interim` query
parameter.
:param overall_score: Refer to the description for the `overall_score` query
parameter.
:param start: Refer to the description for the `start` query parameter.
:param top_n: Refer to the description for the `top_n` query parameter.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = (
f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/results/overall_buckets'
)
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if allow_no_match is not None:
__body["allow_no_match"] = allow_no_match
if bucket_span is not None:
__body["bucket_span"] = bucket_span
if end is not None:
__body["end"] = end
if exclude_interim is not None:
__body["exclude_interim"] = exclude_interim
if overall_score is not None:
__body["overall_score"] = overall_score
if start is not None:
__body["start"] = start
if top_n is not None:
__body["top_n"] = top_n
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.get_overall_buckets",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"desc",
"end",
"exclude_interim",
"page",
"record_score",
"sort",
"start",
),
parameter_aliases={"from": "from_"},
)
def get_records(
self,
*,
job_id: str,
desc: t.Optional[bool] = None,
end: t.Optional[t.Union[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
exclude_interim: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
page: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
record_score: t.Optional[float] = None,
size: t.Optional[int] = None,
sort: t.Optional[str] = None,
start: t.Optional[t.Union[str, t.Any]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get anomaly records for an anomaly detection job.
Records contain the detailed analytical results. They describe the anomalous
activity that has been identified in the input data based on the detector
configuration.
There can be many anomaly records depending on the characteristics and size
of the input data. In practice, there are often too many to be able to
manually process them. The machine learning features therefore perform a
sophisticated aggregation of the anomaly records into buckets.
The number of record results depends on the number of anomalies found in each
bucket, which relates to the number of time series being modeled and the
number of detectors.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-records>`_
:param job_id: Identifier for the anomaly detection job.
:param desc: Refer to the description for the `desc` query parameter.
:param end: Refer to the description for the `end` query parameter.
:param exclude_interim: Refer to the description for the `exclude_interim` query
parameter.
:param from_: Skips the specified number of records.
:param page:
:param record_score: Refer to the description for the `record_score` query parameter.
:param size: Specifies the maximum number of records to obtain.
:param sort: Refer to the description for the `sort` query parameter.
:param start: Refer to the description for the `start` query parameter.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/results/records'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
if not __body:
if desc is not None:
__body["desc"] = desc
if end is not None:
__body["end"] = end
if exclude_interim is not None:
__body["exclude_interim"] = exclude_interim
if page is not None:
__body["page"] = page
if record_score is not None:
__body["record_score"] = record_score
if sort is not None:
__body["sort"] = sort
if start is not None:
__body["start"] = start
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.get_records",
path_parts=__path_parts,
)
@_rewrite_parameters(
parameter_aliases={"from": "from_"},
)
def get_trained_models(
self,
*,
model_id: t.Optional[t.Union[str, t.Sequence[str]]] = None,
allow_no_match: t.Optional[bool] = None,
decompress_definition: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
exclude_generated: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
include: t.Optional[
t.Union[
str,
t.Literal[
"definition",
"definition_status",
"feature_importance_baseline",
"hyperparameters",
"total_feature_importance",
],
]
] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
tags: t.Optional[t.Union[str, t.Sequence[str]]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get trained model configuration info.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-trained-models>`_
:param model_id: The unique identifier of the trained model or a model alias.
You can get information for multiple trained models in a single API request
by using a comma-separated list of model IDs or a wildcard expression.
:param allow_no_match: Specifies what to do when the request: - Contains wildcard
expressions and there are no models that match. - Contains the _all string
or no identifiers and there are no matches. - Contains wildcard expressions
and there are only partial matches. If true, it returns an empty array when
there are no matches and the subset of results when there are partial matches.
:param decompress_definition: Specifies whether the included model definition
should be returned as a JSON map (true) or in a custom compressed format
(false).
:param exclude_generated: Indicates if certain fields should be removed from
the configuration on retrieval. This allows the configuration to be in an
acceptable format to be retrieved and then added to another cluster.
:param from_: Skips the specified number of models.
:param include: A comma delimited string of optional fields to include in the
response body.
:param size: Specifies the maximum number of models to obtain.
:param tags: A comma delimited string of tags. A trained model can have many
tags, or none. When supplied, only trained models that contain all the supplied
tags are returned.
"""
__path_parts: t.Dict[str, str]
if model_id not in SKIP_IN_PATH:
__path_parts = {"model_id": _quote(model_id)}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}'
else:
__path_parts = {}
__path = "/_ml/trained_models"
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if decompress_definition is not None:
__query["decompress_definition"] = decompress_definition
if error_trace is not None:
__query["error_trace"] = error_trace
if exclude_generated is not None:
__query["exclude_generated"] = exclude_generated
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if include is not None:
__query["include"] = include
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
if tags is not None:
__query["tags"] = tags
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_trained_models",
path_parts=__path_parts,
)
@_rewrite_parameters(
parameter_aliases={"from": "from_"},
)
def get_trained_models_stats(
self,
*,
model_id: t.Optional[t.Union[str, t.Sequence[str]]] = None,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
from_: t.Optional[int] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
size: t.Optional[int] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get trained models usage info.
You can get usage information for multiple trained
models in a single API request by using a comma-separated list of model IDs or a wildcard expression.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-get-trained-models-stats>`_
:param model_id: The unique identifier of the trained model or a model alias.
It can be a comma-separated list or a wildcard expression.
:param allow_no_match: Specifies what to do when the request: - Contains wildcard
expressions and there are no models that match. - Contains the _all string
or no identifiers and there are no matches. - Contains wildcard expressions
and there are only partial matches. If true, it returns an empty array when
there are no matches and the subset of results when there are partial matches.
:param from_: Skips the specified number of models.
:param size: Specifies the maximum number of models to obtain.
"""
__path_parts: t.Dict[str, str]
if model_id not in SKIP_IN_PATH:
__path_parts = {"model_id": _quote(model_id)}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}/_stats'
else:
__path_parts = {}
__path = "/_ml/trained_models/_stats"
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if from_ is not None:
__query["from"] = from_
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if size is not None:
__query["size"] = size
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.get_trained_models_stats",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("docs", "inference_config"),
)
def infer_trained_model(
self,
*,
model_id: str,
docs: t.Optional[t.Sequence[t.Mapping[str, t.Any]]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
inference_config: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Evaluate a trained model.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-infer-trained-model>`_
:param model_id: The unique identifier of the trained model.
:param docs: An array of objects to pass to the model for inference. The objects
should contain a fields matching your configured trained model input. Typically,
for NLP models, the field name is `text_field`. Currently, for NLP models,
only a single value is allowed.
:param inference_config: The inference configuration updates to apply on the
API call
:param timeout: Controls the amount of time to wait for inference results.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
if docs is None and body is None:
raise ValueError("Empty value passed for parameter 'docs'")
__path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}/_infer'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
if not __body:
if docs is not None:
__body["docs"] = docs
if inference_config is not None:
__body["inference_config"] = inference_config
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.infer_trained_model",
path_parts=__path_parts,
)
@_rewrite_parameters()
def info(
self,
*,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Get machine learning information.
Get defaults and limits used by machine learning.
This endpoint is designed to be used by a user interface that needs to fully
understand machine learning configurations where some options are not
specified, meaning that the defaults should be used. This endpoint may be
used to find out what those defaults are. It also provides information about
the maximum size of machine learning jobs that could run in the current
cluster configuration.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-info>`_
"""
__path_parts: t.Dict[str, str] = {}
__path = "/_ml/info"
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"GET",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.info",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("timeout",),
)
def open_job(
self,
*,
job_id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Open anomaly detection jobs.</p>
<p>An anomaly detection job must be opened to be ready to receive and analyze
data. It can be opened and closed multiple times throughout its lifecycle.
When you open a new job, it starts with an empty model.
When you open an existing job, the most recent model state is automatically
loaded. The job is ready to resume its analysis from where it left off, once
new data is received.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-open-job>`_
:param job_id: Identifier for the anomaly detection job.
:param timeout: Refer to the description for the `timeout` query parameter.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_open'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if timeout is not None:
__body["timeout"] = timeout
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.open_job",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("events",),
)
def post_calendar_events(
self,
*,
calendar_id: str,
events: t.Optional[t.Sequence[t.Mapping[str, t.Any]]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Add scheduled events to the calendar.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-post-calendar-events>`_
:param calendar_id: A string that uniquely identifies a calendar.
:param events: A list of one of more scheduled events. The event’s start and
end times can be specified as integer milliseconds since the epoch or as
a string in ISO 8601 format.
"""
if calendar_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'calendar_id'")
if events is None and body is None:
raise ValueError("Empty value passed for parameter 'events'")
__path_parts: t.Dict[str, str] = {"calendar_id": _quote(calendar_id)}
__path = f'/_ml/calendars/{__path_parts["calendar_id"]}/events'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if events is not None:
__body["events"] = events
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.post_calendar_events",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_name="data",
)
def post_data(
self,
*,
job_id: str,
data: t.Optional[t.Sequence[t.Any]] = None,
body: t.Optional[t.Sequence[t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
reset_end: t.Optional[t.Union[str, t.Any]] = None,
reset_start: t.Optional[t.Union[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Send data to an anomaly detection job for analysis.</p>
<p>IMPORTANT: For each job, data can be accepted from only a single connection at a time.
It is not currently possible to post data to multiple jobs using wildcards or a comma-separated list.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-post-data>`_
:param job_id: Identifier for the anomaly detection job. The job must have a
state of open to receive and process the data.
:param data:
:param reset_end: Specifies the end of the bucket resetting range.
:param reset_start: Specifies the start of the bucket resetting range.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
if data is None and body is None:
raise ValueError(
"Empty value passed for parameters 'data' and 'body', one of them should be set."
)
elif data is not None and body is not None:
raise ValueError("Cannot set both 'data' and 'body'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_data'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if reset_end is not None:
__query["reset_end"] = reset_end
if reset_start is not None:
__query["reset_start"] = reset_start
__body = data if data is not None else body
__headers = {
"accept": "application/json",
"content-type": "application/x-ndjson",
}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.post_data",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("config",),
)
def preview_data_frame_analytics(
self,
*,
id: t.Optional[str] = None,
config: t.Optional[t.Mapping[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Preview features used by data frame analytics.
Preview the extracted features used by a data frame analytics config.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-preview-data-frame-analytics>`_
:param id: Identifier for the data frame analytics job.
:param config: A data frame analytics config as described in create data frame
analytics jobs. Note that `id` and `dest` don’t need to be provided in the
context of this API.
"""
__path_parts: t.Dict[str, str]
if id not in SKIP_IN_PATH:
__path_parts = {"id": _quote(id)}
__path = f'/_ml/data_frame/analytics/{__path_parts["id"]}/_preview'
else:
__path_parts = {}
__path = "/_ml/data_frame/analytics/_preview"
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if config is not None:
__body["config"] = config
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.preview_data_frame_analytics",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("datafeed_config", "job_config"),
)
def preview_datafeed(
self,
*,
datafeed_id: t.Optional[str] = None,
datafeed_config: t.Optional[t.Mapping[str, t.Any]] = None,
end: t.Optional[t.Union[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
job_config: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
start: t.Optional[t.Union[str, t.Any]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Preview a datafeed.
This API returns the first "page" of search results from a datafeed.
You can preview an existing datafeed or provide configuration details for a datafeed
and anomaly detection job in the API. The preview shows the structure of the data
that will be passed to the anomaly detection engine.
IMPORTANT: When Elasticsearch security features are enabled, the preview uses the credentials of the user that
called the API. However, when the datafeed starts it uses the roles of the last user that created or updated the
datafeed. To get a preview that accurately reflects the behavior of the datafeed, use the appropriate credentials.
You can also use secondary authorization headers to supply the credentials.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-preview-datafeed>`_
:param datafeed_id: A numerical character string that uniquely identifies the
datafeed. This identifier can contain lowercase alphanumeric characters (a-z
and 0-9), hyphens, and underscores. It must start and end with alphanumeric
characters. NOTE: If you use this path parameter, you cannot provide datafeed
or anomaly detection job configuration details in the request body.
:param datafeed_config: The datafeed definition to preview.
:param end: The end time when the datafeed preview should stop
:param job_config: The configuration details for the anomaly detection job that
is associated with the datafeed. If the `datafeed_config` object does not
include a `job_id` that references an existing anomaly detection job, you
must supply this `job_config` object. If you include both a `job_id` and
a `job_config`, the latter information is used. You cannot specify a `job_config`
object unless you also supply a `datafeed_config` object.
:param start: The start time from where the datafeed preview should begin
"""
__path_parts: t.Dict[str, str]
if datafeed_id not in SKIP_IN_PATH:
__path_parts = {"datafeed_id": _quote(datafeed_id)}
__path = f'/_ml/datafeeds/{__path_parts["datafeed_id"]}/_preview'
else:
__path_parts = {}
__path = "/_ml/datafeeds/_preview"
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if end is not None:
__query["end"] = end
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if start is not None:
__query["start"] = start
if not __body:
if datafeed_config is not None:
__body["datafeed_config"] = datafeed_config
if job_config is not None:
__body["job_config"] = job_config
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.preview_datafeed",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("description", "job_ids"),
)
def put_calendar(
self,
*,
calendar_id: str,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
job_ids: t.Optional[t.Sequence[str]] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Create a calendar.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-calendar>`_
:param calendar_id: A string that uniquely identifies a calendar.
:param description: A description of the calendar.
:param job_ids: An array of anomaly detection job identifiers.
"""
if calendar_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'calendar_id'")
__path_parts: t.Dict[str, str] = {"calendar_id": _quote(calendar_id)}
__path = f'/_ml/calendars/{__path_parts["calendar_id"]}'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if description is not None:
__body["description"] = description
if job_ids is not None:
__body["job_ids"] = job_ids
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.put_calendar",
path_parts=__path_parts,
)
@_rewrite_parameters()
def put_calendar_job(
self,
*,
calendar_id: str,
job_id: t.Union[str, t.Sequence[str]],
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Add anomaly detection job to calendar.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-calendar-job>`_
:param calendar_id: A string that uniquely identifies a calendar.
:param job_id: An identifier for the anomaly detection jobs. It can be a job
identifier, a group name, or a comma-separated list of jobs or groups.
"""
if calendar_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'calendar_id'")
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {
"calendar_id": _quote(calendar_id),
"job_id": _quote(job_id),
}
__path = f'/_ml/calendars/{__path_parts["calendar_id"]}/jobs/{__path_parts["job_id"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.put_calendar_job",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"analysis",
"dest",
"source",
"allow_lazy_start",
"analyzed_fields",
"description",
"headers",
"max_num_threads",
"meta",
"model_memory_limit",
"version",
),
parameter_aliases={"_meta": "meta"},
ignore_deprecated_options={"headers"},
)
def put_data_frame_analytics(
self,
*,
id: str,
analysis: t.Optional[t.Mapping[str, t.Any]] = None,
dest: t.Optional[t.Mapping[str, t.Any]] = None,
source: t.Optional[t.Mapping[str, t.Any]] = None,
allow_lazy_start: t.Optional[bool] = None,
analyzed_fields: t.Optional[t.Mapping[str, t.Any]] = None,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
headers: t.Optional[t.Mapping[str, t.Union[str, t.Sequence[str]]]] = None,
human: t.Optional[bool] = None,
max_num_threads: t.Optional[int] = None,
meta: t.Optional[t.Mapping[str, t.Any]] = None,
model_memory_limit: t.Optional[str] = None,
pretty: t.Optional[bool] = None,
version: t.Optional[str] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Create a data frame analytics job.
This API creates a data frame analytics job that performs an analysis on the
source indices and stores the outcome in a destination index.
By default, the query used in the source configuration is <code>{"match_all": {}}</code>.</p>
<p>If the destination index does not exist, it is created automatically when you start the job.</p>
<p>If you supply only a subset of the regression or classification parameters, hyperparameter optimization occurs. It determines a value for each of the undefined parameters.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-data-frame-analytics>`_
:param id: Identifier for the data frame analytics job. This identifier can contain
lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores.
It must start and end with alphanumeric characters.
:param analysis: The analysis configuration, which contains the information necessary
to perform one of the following types of analysis: classification, outlier
detection, or regression.
:param dest: The destination configuration.
:param source: The configuration of how to source the analysis data.
:param allow_lazy_start: Specifies whether this job can start when there is insufficient
machine learning node capacity for it to be immediately assigned to a node.
If set to `false` and a machine learning node with capacity to run the job
cannot be immediately found, the API returns an error. If set to `true`,
the API does not return an error; the job waits in the `starting` state until
sufficient machine learning node capacity is available. This behavior is
also affected by the cluster-wide `xpack.ml.max_lazy_ml_nodes` setting.
:param analyzed_fields: Specifies `includes` and/or `excludes` patterns to select
which fields will be included in the analysis. The patterns specified in
`excludes` are applied last, therefore `excludes` takes precedence. In other
words, if the same field is specified in both `includes` and `excludes`,
then the field will not be included in the analysis. If `analyzed_fields`
is not set, only the relevant fields will be included. For example, all the
numeric fields for outlier detection. The supported fields vary for each
type of analysis. Outlier detection requires numeric or `boolean` data to
analyze. The algorithms don’t support missing values therefore fields that
have data types other than numeric or boolean are ignored. Documents where
included fields contain missing values, null values, or an array are also
ignored. Therefore the `dest` index may contain documents that don’t have
an outlier score. Regression supports fields that are numeric, `boolean`,
`text`, `keyword`, and `ip` data types. It is also tolerant of missing values.
Fields that are supported are included in the analysis, other fields are
ignored. Documents where included fields contain an array with two or more
values are also ignored. Documents in the `dest` index that don’t contain
a results field are not included in the regression analysis. Classification
supports fields that are numeric, `boolean`, `text`, `keyword`, and `ip`
data types. It is also tolerant of missing values. Fields that are supported
are included in the analysis, other fields are ignored. Documents where included
fields contain an array with two or more values are also ignored. Documents
in the `dest` index that don’t contain a results field are not included in
the classification analysis. Classification analysis can be improved by mapping
ordinal variable values to a single number. For example, in case of age ranges,
you can model the values as `0-14 = 0`, `15-24 = 1`, `25-34 = 2`, and so
on.
:param description: A description of the job.
:param headers:
:param max_num_threads: The maximum number of threads to be used by the analysis.
Using more threads may decrease the time necessary to complete the analysis
at the cost of using more CPU. Note that the process may use additional threads
for operational functionality other than the analysis itself.
:param meta:
:param model_memory_limit: The approximate maximum amount of memory resources
that are permitted for analytical processing. If your `elasticsearch.yml`
file contains an `xpack.ml.max_model_memory_limit` setting, an error occurs
when you try to create data frame analytics jobs that have `model_memory_limit`
values greater than that setting.
:param version:
"""
if id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'id'")
if analysis is None and body is None:
raise ValueError("Empty value passed for parameter 'analysis'")
if dest is None and body is None:
raise ValueError("Empty value passed for parameter 'dest'")
if source is None and body is None:
raise ValueError("Empty value passed for parameter 'source'")
__path_parts: t.Dict[str, str] = {"id": _quote(id)}
__path = f'/_ml/data_frame/analytics/{__path_parts["id"]}'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if analysis is not None:
__body["analysis"] = analysis
if dest is not None:
__body["dest"] = dest
if source is not None:
__body["source"] = source
if allow_lazy_start is not None:
__body["allow_lazy_start"] = allow_lazy_start
if analyzed_fields is not None:
__body["analyzed_fields"] = analyzed_fields
if description is not None:
__body["description"] = description
if headers is not None:
__body["headers"] = headers
if max_num_threads is not None:
__body["max_num_threads"] = max_num_threads
if meta is not None:
__body["_meta"] = meta
if model_memory_limit is not None:
__body["model_memory_limit"] = model_memory_limit
if version is not None:
__body["version"] = version
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.put_data_frame_analytics",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"aggregations",
"aggs",
"chunking_config",
"delayed_data_check_config",
"frequency",
"headers",
"indexes",
"indices",
"indices_options",
"job_id",
"max_empty_searches",
"query",
"query_delay",
"runtime_mappings",
"script_fields",
"scroll_size",
),
ignore_deprecated_options={"headers"},
)
def put_datafeed(
self,
*,
datafeed_id: str,
aggregations: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None,
aggs: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None,
allow_no_indices: t.Optional[bool] = None,
chunking_config: t.Optional[t.Mapping[str, t.Any]] = None,
delayed_data_check_config: t.Optional[t.Mapping[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
expand_wildcards: t.Optional[
t.Union[
t.Sequence[
t.Union[str, t.Literal["all", "closed", "hidden", "none", "open"]]
],
t.Union[str, t.Literal["all", "closed", "hidden", "none", "open"]],
]
] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
frequency: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
headers: t.Optional[t.Mapping[str, t.Union[str, t.Sequence[str]]]] = None,
human: t.Optional[bool] = None,
ignore_throttled: t.Optional[bool] = None,
ignore_unavailable: t.Optional[bool] = None,
indexes: t.Optional[t.Union[str, t.Sequence[str]]] = None,
indices: t.Optional[t.Union[str, t.Sequence[str]]] = None,
indices_options: t.Optional[t.Mapping[str, t.Any]] = None,
job_id: t.Optional[str] = None,
max_empty_searches: t.Optional[int] = None,
pretty: t.Optional[bool] = None,
query: t.Optional[t.Mapping[str, t.Any]] = None,
query_delay: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
runtime_mappings: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None,
script_fields: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None,
scroll_size: t.Optional[int] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Create a datafeed.
Datafeeds retrieve data from Elasticsearch for analysis by an anomaly detection job.
You can associate only one datafeed with each anomaly detection job.
The datafeed contains a query that runs at a defined interval (<code>frequency</code>).
If you are concerned about delayed data, you can add a delay (<code>query_delay') at each interval. By default, the datafeed uses the following query: </code>{"match_all": {"boost": 1}}`.</p>
<p>When Elasticsearch security features are enabled, your datafeed remembers which roles the user who created it had
at the time of creation and runs the query using those same roles. If you provide secondary authorization headers,
those credentials are used instead.
You must use Kibana, this API, or the create anomaly detection jobs API to create a datafeed. Do not add a datafeed
directly to the <code>.ml-config</code> index. Do not give users <code>write</code> privileges on the <code>.ml-config</code> index.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-datafeed>`_
:param datafeed_id: A numerical character string that uniquely identifies the
datafeed. This identifier can contain lowercase alphanumeric characters (a-z
and 0-9), hyphens, and underscores. It must start and end with alphanumeric
characters.
:param aggregations: If set, the datafeed performs aggregation searches. Support
for aggregations is limited and should be used only with low cardinality
data.
:param aggs: If set, the datafeed performs aggregation searches. Support for
aggregations is limited and should be used only with low cardinality data.
:param allow_no_indices: If true, wildcard indices expressions that resolve into
no concrete indices are ignored. This includes the `_all` string or when
no indices are specified.
:param chunking_config: Datafeeds might be required to search over long time
periods, for several months or years. This search is split into time chunks
in order to ensure the load on Elasticsearch is managed. Chunking configuration
controls how the size of these time chunks are calculated; it is an advanced
configuration option.
:param delayed_data_check_config: Specifies whether the datafeed checks for missing
data and the size of the window. The datafeed can optionally search over
indices that have already been read in an effort to determine whether any
data has subsequently been added to the index. If missing data is found,
it is a good indication that the `query_delay` is set too low and the data
is being indexed after the datafeed has passed that moment in time. This
check runs only on real-time datafeeds.
:param expand_wildcards: Type of index that wildcard patterns can match. If the
request can target data streams, this argument determines whether wildcard
expressions match hidden data streams. Supports comma-separated values.
:param frequency: The interval at which scheduled queries are made while the
datafeed runs in real time. The default value is either the bucket span for
short bucket spans, or, for longer bucket spans, a sensible fraction of the
bucket span. When `frequency` is shorter than the bucket span, interim results
for the last (partial) bucket are written then eventually overwritten by
the full bucket results. If the datafeed uses aggregations, this value must
be divisible by the interval of the date histogram aggregation.
:param headers:
:param ignore_throttled: If true, concrete, expanded, or aliased indices are
ignored when frozen.
:param ignore_unavailable: If true, unavailable indices (missing or closed) are
ignored.
:param indexes: An array of index names. Wildcards are supported. If any of the
indices are in remote clusters, the master nodes and the machine learning
nodes must have the `remote_cluster_client` role.
:param indices: An array of index names. Wildcards are supported. If any of the
indices are in remote clusters, the master nodes and the machine learning
nodes must have the `remote_cluster_client` role.
:param indices_options: Specifies index expansion options that are used during
search
:param job_id: Identifier for the anomaly detection job.
:param max_empty_searches: If a real-time datafeed has never seen any data (including
during any initial training period), it automatically stops and closes the
associated job after this many real-time searches return no documents. In
other words, it stops after `frequency` times `max_empty_searches` of real-time
operation. If not set, a datafeed with no end time that sees no data remains
started until it is explicitly stopped. By default, it is not set.
:param query: The Elasticsearch query domain-specific language (DSL). This value
corresponds to the query object in an Elasticsearch search POST body. All
the options that are supported by Elasticsearch can be used, as this object
is passed verbatim to Elasticsearch.
:param query_delay: The number of seconds behind real time that data is queried.
For example, if data from 10:04 a.m. might not be searchable in Elasticsearch
until 10:06 a.m., set this property to 120 seconds. The default value is
randomly selected between `60s` and `120s`. This randomness improves the
query performance when there are multiple jobs running on the same node.
:param runtime_mappings: Specifies runtime fields for the datafeed search.
:param script_fields: Specifies scripts that evaluate custom expressions and
returns script fields to the datafeed. The detector configuration objects
in a job can contain functions that use these script fields.
:param scroll_size: The size parameter that is used in Elasticsearch searches
when the datafeed does not use aggregations. The maximum value is the value
of `index.max_result_window`, which is 10,000 by default.
"""
if datafeed_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'datafeed_id'")
__path_parts: t.Dict[str, str] = {"datafeed_id": _quote(datafeed_id)}
__path = f'/_ml/datafeeds/{__path_parts["datafeed_id"]}'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if allow_no_indices is not None:
__query["allow_no_indices"] = allow_no_indices
if error_trace is not None:
__query["error_trace"] = error_trace
if expand_wildcards is not None:
__query["expand_wildcards"] = expand_wildcards
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if ignore_throttled is not None:
__query["ignore_throttled"] = ignore_throttled
if ignore_unavailable is not None:
__query["ignore_unavailable"] = ignore_unavailable
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if aggregations is not None:
__body["aggregations"] = aggregations
if aggs is not None:
__body["aggs"] = aggs
if chunking_config is not None:
__body["chunking_config"] = chunking_config
if delayed_data_check_config is not None:
__body["delayed_data_check_config"] = delayed_data_check_config
if frequency is not None:
__body["frequency"] = frequency
if headers is not None:
__body["headers"] = headers
if indexes is not None:
__body["indexes"] = indexes
if indices is not None:
__body["indices"] = indices
if indices_options is not None:
__body["indices_options"] = indices_options
if job_id is not None:
__body["job_id"] = job_id
if max_empty_searches is not None:
__body["max_empty_searches"] = max_empty_searches
if query is not None:
__body["query"] = query
if query_delay is not None:
__body["query_delay"] = query_delay
if runtime_mappings is not None:
__body["runtime_mappings"] = runtime_mappings
if script_fields is not None:
__body["script_fields"] = script_fields
if scroll_size is not None:
__body["scroll_size"] = scroll_size
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.put_datafeed",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("description", "items"),
)
def put_filter(
self,
*,
filter_id: str,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
items: t.Optional[t.Sequence[str]] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Create a filter.
A filter contains a list of strings. It can be used by one or more anomaly detection jobs.
Specifically, filters are referenced in the <code>custom_rules</code> property of detector configuration objects.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-filter>`_
:param filter_id: A string that uniquely identifies a filter.
:param description: A description of the filter.
:param items: The items of the filter. A wildcard `*` can be used at the beginning
or the end of an item. Up to 10000 items are allowed in each filter.
"""
if filter_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'filter_id'")
__path_parts: t.Dict[str, str] = {"filter_id": _quote(filter_id)}
__path = f'/_ml/filters/{__path_parts["filter_id"]}'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if description is not None:
__body["description"] = description
if items is not None:
__body["items"] = items
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.put_filter",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"analysis_config",
"data_description",
"allow_lazy_open",
"analysis_limits",
"background_persist_interval",
"custom_settings",
"daily_model_snapshot_retention_after_days",
"datafeed_config",
"description",
"groups",
"model_plot_config",
"model_snapshot_retention_days",
"renormalization_window_days",
"results_index_name",
"results_retention_days",
),
)
def put_job(
self,
*,
job_id: str,
analysis_config: t.Optional[t.Mapping[str, t.Any]] = None,
data_description: t.Optional[t.Mapping[str, t.Any]] = None,
allow_lazy_open: t.Optional[bool] = None,
allow_no_indices: t.Optional[bool] = None,
analysis_limits: t.Optional[t.Mapping[str, t.Any]] = None,
background_persist_interval: t.Optional[
t.Union[str, t.Literal[-1], t.Literal[0]]
] = None,
custom_settings: t.Optional[t.Any] = None,
daily_model_snapshot_retention_after_days: t.Optional[int] = None,
datafeed_config: t.Optional[t.Mapping[str, t.Any]] = None,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
expand_wildcards: t.Optional[
t.Union[
t.Sequence[
t.Union[str, t.Literal["all", "closed", "hidden", "none", "open"]]
],
t.Union[str, t.Literal["all", "closed", "hidden", "none", "open"]],
]
] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
groups: t.Optional[t.Sequence[str]] = None,
human: t.Optional[bool] = None,
ignore_throttled: t.Optional[bool] = None,
ignore_unavailable: t.Optional[bool] = None,
model_plot_config: t.Optional[t.Mapping[str, t.Any]] = None,
model_snapshot_retention_days: t.Optional[int] = None,
pretty: t.Optional[bool] = None,
renormalization_window_days: t.Optional[int] = None,
results_index_name: t.Optional[str] = None,
results_retention_days: t.Optional[int] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Create an anomaly detection job.</p>
<p>If you include a <code>datafeed_config</code>, you must have read index privileges on the source index.
If you include a <code>datafeed_config</code> but do not provide a query, the datafeed uses <code>{"match_all": {"boost": 1}}</code>.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-job>`_
:param job_id: The identifier for the anomaly detection job. This identifier
can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and
underscores. It must start and end with alphanumeric characters.
:param analysis_config: Specifies how to analyze the data. After you create a
job, you cannot change the analysis configuration; all the properties are
informational.
:param data_description: Defines the format of the input data when you send data
to the job by using the post data API. Note that when configure a datafeed,
these properties are automatically set. When data is received via the post
data API, it is not stored in Elasticsearch. Only the results for anomaly
detection are retained.
:param allow_lazy_open: Advanced configuration option. Specifies whether this
job can open when there is insufficient machine learning node capacity for
it to be immediately assigned to a node. By default, if a machine learning
node with capacity to run the job cannot immediately be found, the open anomaly
detection jobs API returns an error. However, this is also subject to the
cluster-wide `xpack.ml.max_lazy_ml_nodes` setting. If this option is set
to true, the open anomaly detection jobs API does not return an error and
the job waits in the opening state until sufficient machine learning node
capacity is available.
:param allow_no_indices: If `true`, wildcard indices expressions that resolve
into no concrete indices are ignored. This includes the `_all` string or
when no indices are specified.
:param analysis_limits: Limits can be applied for the resources required to hold
the mathematical models in memory. These limits are approximate and can be
set per job. They do not control the memory used by other processes, for
example the Elasticsearch Java processes.
:param background_persist_interval: Advanced configuration option. The time between
each periodic persistence of the model. The default value is a randomized
value between 3 to 4 hours, which avoids all jobs persisting at exactly the
same time. The smallest allowed value is 1 hour. For very large models (several
GB), persistence could take 10-20 minutes, so do not set the `background_persist_interval`
value too low.
:param custom_settings: Advanced configuration option. Contains custom meta data
about the job.
:param daily_model_snapshot_retention_after_days: Advanced configuration option,
which affects the automatic removal of old model snapshots for this job.
It specifies a period of time (in days) after which only the first snapshot
per day is retained. This period is relative to the timestamp of the most
recent snapshot for this job. Valid values range from 0 to `model_snapshot_retention_days`.
:param datafeed_config: Defines a datafeed for the anomaly detection job. If
Elasticsearch security features are enabled, your datafeed remembers which
roles the user who created it had at the time of creation and runs the query
using those same roles. If you provide secondary authorization headers, those
credentials are used instead.
:param description: A description of the job.
:param expand_wildcards: Type of index that wildcard patterns can match. If the
request can target data streams, this argument determines whether wildcard
expressions match hidden data streams. Supports comma-separated values.
:param groups: A list of job groups. A job can belong to no groups or many.
:param ignore_throttled: If `true`, concrete, expanded or aliased indices are
ignored when frozen.
:param ignore_unavailable: If `true`, unavailable indices (missing or closed)
are ignored.
:param model_plot_config: This advanced configuration option stores model information
along with the results. It provides a more detailed view into anomaly detection.
If you enable model plot it can add considerable overhead to the performance
of the system; it is not feasible for jobs with many entities. Model plot
provides a simplified and indicative view of the model and its bounds. It
does not display complex features such as multivariate correlations or multimodal
data. As such, anomalies may occasionally be reported which cannot be seen
in the model plot. Model plot config can be configured when the job is created
or updated later. It must be disabled if performance issues are experienced.
:param model_snapshot_retention_days: Advanced configuration option, which affects
the automatic removal of old model snapshots for this job. It specifies the
maximum period of time (in days) that snapshots are retained. This period
is relative to the timestamp of the most recent snapshot for this job. By
default, snapshots ten days older than the newest snapshot are deleted.
:param renormalization_window_days: Advanced configuration option. The period
over which adjustments to the score are applied, as new data is seen. The
default value is the longer of 30 days or 100 bucket spans.
:param results_index_name: A text string that affects the name of the machine
learning results index. By default, the job generates an index named `.ml-anomalies-shared`.
:param results_retention_days: Advanced configuration option. The period of time
(in days) that results are retained. Age is calculated relative to the timestamp
of the latest bucket result. If this property has a non-null value, once
per day at 00:30 (server time), results that are the specified number of
days older than the latest bucket result are deleted from Elasticsearch.
The default value is null, which means all results are retained. Annotations
generated by the system also count as results for retention purposes; they
are deleted after the same number of days as results. Annotations added by
users are retained forever.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
if analysis_config is None and body is None:
raise ValueError("Empty value passed for parameter 'analysis_config'")
if data_description is None and body is None:
raise ValueError("Empty value passed for parameter 'data_description'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if allow_no_indices is not None:
__query["allow_no_indices"] = allow_no_indices
if error_trace is not None:
__query["error_trace"] = error_trace
if expand_wildcards is not None:
__query["expand_wildcards"] = expand_wildcards
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if ignore_throttled is not None:
__query["ignore_throttled"] = ignore_throttled
if ignore_unavailable is not None:
__query["ignore_unavailable"] = ignore_unavailable
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if analysis_config is not None:
__body["analysis_config"] = analysis_config
if data_description is not None:
__body["data_description"] = data_description
if allow_lazy_open is not None:
__body["allow_lazy_open"] = allow_lazy_open
if analysis_limits is not None:
__body["analysis_limits"] = analysis_limits
if background_persist_interval is not None:
__body["background_persist_interval"] = background_persist_interval
if custom_settings is not None:
__body["custom_settings"] = custom_settings
if daily_model_snapshot_retention_after_days is not None:
__body["daily_model_snapshot_retention_after_days"] = (
daily_model_snapshot_retention_after_days
)
if datafeed_config is not None:
__body["datafeed_config"] = datafeed_config
if description is not None:
__body["description"] = description
if groups is not None:
__body["groups"] = groups
if model_plot_config is not None:
__body["model_plot_config"] = model_plot_config
if model_snapshot_retention_days is not None:
__body["model_snapshot_retention_days"] = model_snapshot_retention_days
if renormalization_window_days is not None:
__body["renormalization_window_days"] = renormalization_window_days
if results_index_name is not None:
__body["results_index_name"] = results_index_name
if results_retention_days is not None:
__body["results_retention_days"] = results_retention_days
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.put_job",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"compressed_definition",
"definition",
"description",
"inference_config",
"input",
"metadata",
"model_size_bytes",
"model_type",
"platform_architecture",
"prefix_strings",
"tags",
),
)
def put_trained_model(
self,
*,
model_id: str,
compressed_definition: t.Optional[str] = None,
defer_definition_decompression: t.Optional[bool] = None,
definition: t.Optional[t.Mapping[str, t.Any]] = None,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
inference_config: t.Optional[t.Mapping[str, t.Any]] = None,
input: t.Optional[t.Mapping[str, t.Any]] = None,
metadata: t.Optional[t.Any] = None,
model_size_bytes: t.Optional[int] = None,
model_type: t.Optional[
t.Union[str, t.Literal["lang_ident", "pytorch", "tree_ensemble"]]
] = None,
platform_architecture: t.Optional[str] = None,
prefix_strings: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
tags: t.Optional[t.Sequence[str]] = None,
wait_for_completion: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Create a trained model.
Enable you to supply a trained model that is not created by data frame analytics.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-trained-model>`_
:param model_id: The unique identifier of the trained model.
:param compressed_definition: The compressed (GZipped and Base64 encoded) inference
definition of the model. If compressed_definition is specified, then definition
cannot be specified.
:param defer_definition_decompression: If set to `true` and a `compressed_definition`
is provided, the request defers definition decompression and skips relevant
validations.
:param definition: The inference definition for the model. If definition is specified,
then compressed_definition cannot be specified.
:param description: A human-readable description of the inference trained model.
:param inference_config: The default configuration for inference. This can be
either a regression or classification configuration. It must match the underlying
definition.trained_model's target_type. For pre-packaged models such as ELSER
the config is not required.
:param input: The input field names for the model definition.
:param metadata: An object map that contains metadata about the model.
:param model_size_bytes: The estimated memory usage in bytes to keep the trained
model in memory. This property is supported only if defer_definition_decompression
is true or the model definition is not supplied.
:param model_type: The model type.
:param platform_architecture: The platform architecture (if applicable) of the
trained mode. If the model only works on one platform, because it is heavily
optimized for a particular processor architecture and OS combination, then
this field specifies which. The format of the string must match the platform
identifiers used by Elasticsearch, so one of, `linux-x86_64`, `linux-aarch64`,
`darwin-x86_64`, `darwin-aarch64`, or `windows-x86_64`. For portable models
(those that work independent of processor architecture or OS features), leave
this field unset.
:param prefix_strings: Optional prefix strings applied at inference
:param tags: An array of tags to organize the model.
:param wait_for_completion: Whether to wait for all child operations (e.g. model
download) to complete.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
__path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if defer_definition_decompression is not None:
__query["defer_definition_decompression"] = defer_definition_decompression
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if wait_for_completion is not None:
__query["wait_for_completion"] = wait_for_completion
if not __body:
if compressed_definition is not None:
__body["compressed_definition"] = compressed_definition
if definition is not None:
__body["definition"] = definition
if description is not None:
__body["description"] = description
if inference_config is not None:
__body["inference_config"] = inference_config
if input is not None:
__body["input"] = input
if metadata is not None:
__body["metadata"] = metadata
if model_size_bytes is not None:
__body["model_size_bytes"] = model_size_bytes
if model_type is not None:
__body["model_type"] = model_type
if platform_architecture is not None:
__body["platform_architecture"] = platform_architecture
if prefix_strings is not None:
__body["prefix_strings"] = prefix_strings
if tags is not None:
__body["tags"] = tags
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.put_trained_model",
path_parts=__path_parts,
)
@_rewrite_parameters()
def put_trained_model_alias(
self,
*,
model_id: str,
model_alias: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
reassign: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Create or update a trained model alias.
A trained model alias is a logical name used to reference a single trained
model.
You can use aliases instead of trained model identifiers to make it easier to
reference your models. For example, you can use aliases in inference
aggregations and processors.
An alias must be unique and refer to only a single trained model. However,
you can have multiple aliases for each trained model.
If you use this API to update an alias such that it references a different
trained model ID and the model uses a different type of data frame analytics,
an error occurs. For example, this situation occurs if you have a trained
model for regression analysis and a trained model for classification
analysis; you cannot reassign an alias from one type of trained model to
another.
If you use this API to update an alias and there are very few input fields in
common between the old and new trained models for the model alias, the API
returns a warning.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-trained-model-alias>`_
:param model_id: The identifier for the trained model that the alias refers to.
:param model_alias: The alias to create or update. This value cannot end in numbers.
:param reassign: Specifies whether the alias gets reassigned to the specified
trained model if it is already assigned to a different model. If the alias
is already assigned and this parameter is false, the API returns an error.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
if model_alias in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_alias'")
__path_parts: t.Dict[str, str] = {
"model_id": _quote(model_id),
"model_alias": _quote(model_alias),
}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}/model_aliases/{__path_parts["model_alias"]}'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if reassign is not None:
__query["reassign"] = reassign
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.put_trained_model_alias",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("definition", "total_definition_length", "total_parts"),
)
def put_trained_model_definition_part(
self,
*,
model_id: str,
part: int,
definition: t.Optional[str] = None,
total_definition_length: t.Optional[int] = None,
total_parts: t.Optional[int] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Create part of a trained model definition.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-trained-model-definition-part>`_
:param model_id: The unique identifier of the trained model.
:param part: The definition part number. When the definition is loaded for inference
the definition parts are streamed in the order of their part number. The
first part must be `0` and the final part must be `total_parts - 1`.
:param definition: The definition part for the model. Must be a base64 encoded
string.
:param total_definition_length: The total uncompressed definition length in bytes.
Not base64 encoded.
:param total_parts: The total number of parts that will be uploaded. Must be
greater than 0.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
if part in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'part'")
if definition is None and body is None:
raise ValueError("Empty value passed for parameter 'definition'")
if total_definition_length is None and body is None:
raise ValueError(
"Empty value passed for parameter 'total_definition_length'"
)
if total_parts is None and body is None:
raise ValueError("Empty value passed for parameter 'total_parts'")
__path_parts: t.Dict[str, str] = {
"model_id": _quote(model_id),
"part": _quote(part),
}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}/definition/{__path_parts["part"]}'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if definition is not None:
__body["definition"] = definition
if total_definition_length is not None:
__body["total_definition_length"] = total_definition_length
if total_parts is not None:
__body["total_parts"] = total_parts
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.put_trained_model_definition_part",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("vocabulary", "merges", "scores"),
)
def put_trained_model_vocabulary(
self,
*,
model_id: str,
vocabulary: t.Optional[t.Sequence[str]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
merges: t.Optional[t.Sequence[str]] = None,
pretty: t.Optional[bool] = None,
scores: t.Optional[t.Sequence[float]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Create a trained model vocabulary.
This API is supported only for natural language processing (NLP) models.
The vocabulary is stored in the index as described in <code>inference_config.*.vocabulary</code> of the trained model definition.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-put-trained-model-vocabulary>`_
:param model_id: The unique identifier of the trained model.
:param vocabulary: The model vocabulary, which must not be empty.
:param merges: The optional model merges if required by the tokenizer.
:param scores: The optional vocabulary value scores if required by the tokenizer.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
if vocabulary is None and body is None:
raise ValueError("Empty value passed for parameter 'vocabulary'")
__path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}/vocabulary'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if vocabulary is not None:
__body["vocabulary"] = vocabulary
if merges is not None:
__body["merges"] = merges
if scores is not None:
__body["scores"] = scores
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"PUT",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.put_trained_model_vocabulary",
path_parts=__path_parts,
)
@_rewrite_parameters()
def reset_job(
self,
*,
job_id: str,
delete_user_annotations: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
wait_for_completion: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Reset an anomaly detection job.
All model state and results are deleted. The job is ready to start over as if
it had just been created.
It is not currently possible to reset multiple jobs using wildcards or a
comma separated list.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-reset-job>`_
:param job_id: The ID of the job to reset.
:param delete_user_annotations: Specifies whether annotations that have been
added by the user should be deleted along with any auto-generated annotations
when the job is reset.
:param wait_for_completion: Should this request wait until the operation has
completed before returning.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_reset'
__query: t.Dict[str, t.Any] = {}
if delete_user_annotations is not None:
__query["delete_user_annotations"] = delete_user_annotations
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if wait_for_completion is not None:
__query["wait_for_completion"] = wait_for_completion
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.reset_job",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("delete_intervening_results",),
)
def revert_model_snapshot(
self,
*,
job_id: str,
snapshot_id: str,
delete_intervening_results: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Revert to a snapshot.
The machine learning features react quickly to anomalous input, learning new
behaviors in data. Highly anomalous input increases the variance in the
models whilst the system learns whether this is a new step-change in behavior
or a one-off event. In the case where this anomalous input is known to be a
one-off, then it might be appropriate to reset the model state to a time
before this event. For example, you might consider reverting to a saved
snapshot after Black Friday or a critical system failure.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-revert-model-snapshot>`_
:param job_id: Identifier for the anomaly detection job.
:param snapshot_id: You can specify `empty` as the <snapshot_id>. Reverting to
the empty snapshot means the anomaly detection job starts learning a new
model from scratch when it is started.
:param delete_intervening_results: Refer to the description for the `delete_intervening_results`
query parameter.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
if snapshot_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'snapshot_id'")
__path_parts: t.Dict[str, str] = {
"job_id": _quote(job_id),
"snapshot_id": _quote(snapshot_id),
}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/model_snapshots/{__path_parts["snapshot_id"]}/_revert'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if delete_intervening_results is not None:
__body["delete_intervening_results"] = delete_intervening_results
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.revert_model_snapshot",
path_parts=__path_parts,
)
@_rewrite_parameters()
def set_upgrade_mode(
self,
*,
enabled: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Set upgrade_mode for ML indices.
Sets a cluster wide upgrade_mode setting that prepares machine learning
indices for an upgrade.
When upgrading your cluster, in some circumstances you must restart your
nodes and reindex your machine learning indices. In those circumstances,
there must be no machine learning jobs running. You can close the machine
learning jobs, do the upgrade, then open all the jobs again. Alternatively,
you can use this API to temporarily halt tasks associated with the jobs and
datafeeds and prevent new jobs from opening. You can also use this API
during upgrades that do not require you to reindex your machine learning
indices, though stopping jobs is not a requirement in that case.
You can see the current value for the upgrade_mode setting by using the get
machine learning info API.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-set-upgrade-mode>`_
:param enabled: When `true`, it enables `upgrade_mode` which temporarily halts
all job and datafeed tasks and prohibits new job and datafeed tasks from
starting.
:param timeout: The time to wait for the request to be completed.
"""
__path_parts: t.Dict[str, str] = {}
__path = "/_ml/set_upgrade_mode"
__query: t.Dict[str, t.Any] = {}
if enabled is not None:
__query["enabled"] = enabled
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.set_upgrade_mode",
path_parts=__path_parts,
)
@_rewrite_parameters()
def start_data_frame_analytics(
self,
*,
id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Start a data frame analytics job.
A data frame analytics job can be started and stopped multiple times
throughout its lifecycle.
If the destination index does not exist, it is created automatically the
first time you start the data frame analytics job. The
<code>index.number_of_shards</code> and <code>index.number_of_replicas</code> settings for the
destination index are copied from the source index. If there are multiple
source indices, the destination index copies the highest setting values. The
mappings for the destination index are also copied from the source indices.
If there are any mapping conflicts, the job fails to start.
If the destination index exists, it is used as is. You can therefore set up
the destination index in advance with custom settings and mappings.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-start-data-frame-analytics>`_
:param id: Identifier for the data frame analytics job. This identifier can contain
lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores.
It must start and end with alphanumeric characters.
:param timeout: Controls the amount of time to wait until the data frame analytics
job starts.
"""
if id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'id'")
__path_parts: t.Dict[str, str] = {"id": _quote(id)}
__path = f'/_ml/data_frame/analytics/{__path_parts["id"]}/_start'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.start_data_frame_analytics",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("end", "start", "timeout"),
)
def start_datafeed(
self,
*,
datafeed_id: str,
end: t.Optional[t.Union[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
start: t.Optional[t.Union[str, t.Any]] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Start datafeeds.</p>
<p>A datafeed must be started in order to retrieve data from Elasticsearch. A datafeed can be started and stopped
multiple times throughout its lifecycle.</p>
<p>Before you can start a datafeed, the anomaly detection job must be open. Otherwise, an error occurs.</p>
<p>If you restart a stopped datafeed, it continues processing input data from the next millisecond after it was stopped.
If new data was indexed for that exact millisecond between stopping and starting, it will be ignored.</p>
<p>When Elasticsearch security features are enabled, your datafeed remembers which roles the last user to create or
update it had at the time of creation or update and runs the query using those same roles. If you provided secondary
authorization headers when you created or updated the datafeed, those credentials are used instead.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-start-datafeed>`_
:param datafeed_id: A numerical character string that uniquely identifies the
datafeed. This identifier can contain lowercase alphanumeric characters (a-z
and 0-9), hyphens, and underscores. It must start and end with alphanumeric
characters.
:param end: Refer to the description for the `end` query parameter.
:param start: Refer to the description for the `start` query parameter.
:param timeout: Refer to the description for the `timeout` query parameter.
"""
if datafeed_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'datafeed_id'")
__path_parts: t.Dict[str, str] = {"datafeed_id": _quote(datafeed_id)}
__path = f'/_ml/datafeeds/{__path_parts["datafeed_id"]}/_start'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if end is not None:
__body["end"] = end
if start is not None:
__body["start"] = start
if timeout is not None:
__body["timeout"] = timeout
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.start_datafeed",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("adaptive_allocations",),
)
def start_trained_model_deployment(
self,
*,
model_id: str,
adaptive_allocations: t.Optional[t.Mapping[str, t.Any]] = None,
cache_size: t.Optional[t.Union[int, str]] = None,
deployment_id: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
number_of_allocations: t.Optional[int] = None,
pretty: t.Optional[bool] = None,
priority: t.Optional[t.Union[str, t.Literal["low", "normal"]]] = None,
queue_capacity: t.Optional[int] = None,
threads_per_allocation: t.Optional[int] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
wait_for: t.Optional[
t.Union[str, t.Literal["fully_allocated", "started", "starting"]]
] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Start a trained model deployment.
It allocates the model to every machine learning node.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-start-trained-model-deployment>`_
:param model_id: The unique identifier of the trained model. Currently, only
PyTorch models are supported.
:param adaptive_allocations: Adaptive allocations configuration. When enabled,
the number of allocations is set based on the current load. If adaptive_allocations
is enabled, do not set the number of allocations manually.
:param cache_size: The inference cache size (in memory outside the JVM heap)
per node for the model. The default value is the same size as the `model_size_bytes`.
To disable the cache, `0b` can be provided.
:param deployment_id: A unique identifier for the deployment of the model.
:param number_of_allocations: The number of model allocations on each node where
the model is deployed. All allocations on a node share the same copy of the
model in memory but use a separate set of threads to evaluate the model.
Increasing this value generally increases the throughput. If this setting
is greater than the number of hardware threads it will automatically be changed
to a value less than the number of hardware threads. If adaptive_allocations
is enabled, do not set this value, because it’s automatically set.
:param priority: The deployment priority.
:param queue_capacity: Specifies the number of inference requests that are allowed
in the queue. After the number of requests exceeds this value, new requests
are rejected with a 429 error.
:param threads_per_allocation: Sets the number of threads used by each model
allocation during inference. This generally increases the inference speed.
The inference process is a compute-bound process; any number greater than
the number of available hardware threads on the machine does not increase
the inference speed. If this setting is greater than the number of hardware
threads it will automatically be changed to a value less than the number
of hardware threads.
:param timeout: Specifies the amount of time to wait for the model to deploy.
:param wait_for: Specifies the allocation status to wait for before returning.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
__path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}/deployment/_start'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if cache_size is not None:
__query["cache_size"] = cache_size
if deployment_id is not None:
__query["deployment_id"] = deployment_id
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if number_of_allocations is not None:
__query["number_of_allocations"] = number_of_allocations
if pretty is not None:
__query["pretty"] = pretty
if priority is not None:
__query["priority"] = priority
if queue_capacity is not None:
__query["queue_capacity"] = queue_capacity
if threads_per_allocation is not None:
__query["threads_per_allocation"] = threads_per_allocation
if timeout is not None:
__query["timeout"] = timeout
if wait_for is not None:
__query["wait_for"] = wait_for
if not __body:
if adaptive_allocations is not None:
__body["adaptive_allocations"] = adaptive_allocations
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.start_trained_model_deployment",
path_parts=__path_parts,
)
@_rewrite_parameters()
def stop_data_frame_analytics(
self,
*,
id: str,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
force: t.Optional[bool] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Stop data frame analytics jobs.
A data frame analytics job can be started and stopped multiple times
throughout its lifecycle.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-stop-data-frame-analytics>`_
:param id: Identifier for the data frame analytics job. This identifier can contain
lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores.
It must start and end with alphanumeric characters.
:param allow_no_match: Specifies what to do when the request: 1. Contains wildcard
expressions and there are no data frame analytics jobs that match. 2. Contains
the _all string or no identifiers and there are no matches. 3. Contains wildcard
expressions and there are only partial matches. The default value is true,
which returns an empty data_frame_analytics array when there are no matches
and the subset of results when there are partial matches. If this parameter
is false, the request returns a 404 status code when there are no matches
or only partial matches.
:param force: If true, the data frame analytics job is stopped forcefully.
:param timeout: Controls the amount of time to wait until the data frame analytics
job stops. Defaults to 20 seconds.
"""
if id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'id'")
__path_parts: t.Dict[str, str] = {"id": _quote(id)}
__path = f'/_ml/data_frame/analytics/{__path_parts["id"]}/_stop'
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if force is not None:
__query["force"] = force
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.stop_data_frame_analytics",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("allow_no_match", "force", "timeout"),
)
def stop_datafeed(
self,
*,
datafeed_id: str,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
force: t.Optional[bool] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Stop datafeeds.
A datafeed that is stopped ceases to retrieve data from Elasticsearch. A datafeed can be started and stopped
multiple times throughout its lifecycle.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-stop-datafeed>`_
:param datafeed_id: Identifier for the datafeed. You can stop multiple datafeeds
in a single API request by using a comma-separated list of datafeeds or a
wildcard expression. You can close all datafeeds by using `_all` or by specifying
`*` as the identifier.
:param allow_no_match: Refer to the description for the `allow_no_match` query
parameter.
:param force: Refer to the description for the `force` query parameter.
:param timeout: Refer to the description for the `timeout` query parameter.
"""
if datafeed_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'datafeed_id'")
__path_parts: t.Dict[str, str] = {"datafeed_id": _quote(datafeed_id)}
__path = f'/_ml/datafeeds/{__path_parts["datafeed_id"]}/_stop'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if allow_no_match is not None:
__body["allow_no_match"] = allow_no_match
if force is not None:
__body["force"] = force
if timeout is not None:
__body["timeout"] = timeout
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.stop_datafeed",
path_parts=__path_parts,
)
@_rewrite_parameters()
def stop_trained_model_deployment(
self,
*,
model_id: str,
allow_no_match: t.Optional[bool] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
force: t.Optional[bool] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Stop a trained model deployment.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-stop-trained-model-deployment>`_
:param model_id: The unique identifier of the trained model.
:param allow_no_match: Specifies what to do when the request: contains wildcard
expressions and there are no deployments that match; contains the `_all`
string or no identifiers and there are no matches; or contains wildcard expressions
and there are only partial matches. By default, it returns an empty array
when there are no matches and the subset of results when there are partial
matches. If `false`, the request returns a 404 status code when there are
no matches or only partial matches.
:param force: Forcefully stops the deployment, even if it is used by ingest pipelines.
You can't use these pipelines until you restart the model deployment.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
__path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}/deployment/_stop'
__query: t.Dict[str, t.Any] = {}
if allow_no_match is not None:
__query["allow_no_match"] = allow_no_match
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if force is not None:
__query["force"] = force
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.stop_trained_model_deployment",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"allow_lazy_start",
"description",
"max_num_threads",
"model_memory_limit",
),
)
def update_data_frame_analytics(
self,
*,
id: str,
allow_lazy_start: t.Optional[bool] = None,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
max_num_threads: t.Optional[int] = None,
model_memory_limit: t.Optional[str] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Update a data frame analytics job.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-update-data-frame-analytics>`_
:param id: Identifier for the data frame analytics job. This identifier can contain
lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores.
It must start and end with alphanumeric characters.
:param allow_lazy_start: Specifies whether this job can start when there is insufficient
machine learning node capacity for it to be immediately assigned to a node.
:param description: A description of the job.
:param max_num_threads: The maximum number of threads to be used by the analysis.
Using more threads may decrease the time necessary to complete the analysis
at the cost of using more CPU. Note that the process may use additional threads
for operational functionality other than the analysis itself.
:param model_memory_limit: The approximate maximum amount of memory resources
that are permitted for analytical processing. If your `elasticsearch.yml`
file contains an `xpack.ml.max_model_memory_limit` setting, an error occurs
when you try to create data frame analytics jobs that have `model_memory_limit`
values greater than that setting.
"""
if id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'id'")
__path_parts: t.Dict[str, str] = {"id": _quote(id)}
__path = f'/_ml/data_frame/analytics/{__path_parts["id"]}/_update'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if allow_lazy_start is not None:
__body["allow_lazy_start"] = allow_lazy_start
if description is not None:
__body["description"] = description
if max_num_threads is not None:
__body["max_num_threads"] = max_num_threads
if model_memory_limit is not None:
__body["model_memory_limit"] = model_memory_limit
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.update_data_frame_analytics",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"aggregations",
"chunking_config",
"delayed_data_check_config",
"frequency",
"indexes",
"indices",
"indices_options",
"job_id",
"max_empty_searches",
"query",
"query_delay",
"runtime_mappings",
"script_fields",
"scroll_size",
),
)
def update_datafeed(
self,
*,
datafeed_id: str,
aggregations: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None,
allow_no_indices: t.Optional[bool] = None,
chunking_config: t.Optional[t.Mapping[str, t.Any]] = None,
delayed_data_check_config: t.Optional[t.Mapping[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
expand_wildcards: t.Optional[
t.Union[
t.Sequence[
t.Union[str, t.Literal["all", "closed", "hidden", "none", "open"]]
],
t.Union[str, t.Literal["all", "closed", "hidden", "none", "open"]],
]
] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
frequency: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
human: t.Optional[bool] = None,
ignore_throttled: t.Optional[bool] = None,
ignore_unavailable: t.Optional[bool] = None,
indexes: t.Optional[t.Sequence[str]] = None,
indices: t.Optional[t.Sequence[str]] = None,
indices_options: t.Optional[t.Mapping[str, t.Any]] = None,
job_id: t.Optional[str] = None,
max_empty_searches: t.Optional[int] = None,
pretty: t.Optional[bool] = None,
query: t.Optional[t.Mapping[str, t.Any]] = None,
query_delay: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
runtime_mappings: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None,
script_fields: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None,
scroll_size: t.Optional[int] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Update a datafeed.
You must stop and start the datafeed for the changes to be applied.
When Elasticsearch security features are enabled, your datafeed remembers which roles the user who updated it had at
the time of the update and runs the query using those same roles. If you provide secondary authorization headers,
those credentials are used instead.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-update-datafeed>`_
:param datafeed_id: A numerical character string that uniquely identifies the
datafeed. This identifier can contain lowercase alphanumeric characters (a-z
and 0-9), hyphens, and underscores. It must start and end with alphanumeric
characters.
:param aggregations: If set, the datafeed performs aggregation searches. Support
for aggregations is limited and should be used only with low cardinality
data.
:param allow_no_indices: If `true`, wildcard indices expressions that resolve
into no concrete indices are ignored. This includes the `_all` string or
when no indices are specified.
:param chunking_config: Datafeeds might search over long time periods, for several
months or years. This search is split into time chunks in order to ensure
the load on Elasticsearch is managed. Chunking configuration controls how
the size of these time chunks are calculated; it is an advanced configuration
option.
:param delayed_data_check_config: Specifies whether the datafeed checks for missing
data and the size of the window. The datafeed can optionally search over
indices that have already been read in an effort to determine whether any
data has subsequently been added to the index. If missing data is found,
it is a good indication that the `query_delay` is set too low and the data
is being indexed after the datafeed has passed that moment in time. This
check runs only on real-time datafeeds.
:param expand_wildcards: Type of index that wildcard patterns can match. If the
request can target data streams, this argument determines whether wildcard
expressions match hidden data streams. Supports comma-separated values.
:param frequency: The interval at which scheduled queries are made while the
datafeed runs in real time. The default value is either the bucket span for
short bucket spans, or, for longer bucket spans, a sensible fraction of the
bucket span. When `frequency` is shorter than the bucket span, interim results
for the last (partial) bucket are written then eventually overwritten by
the full bucket results. If the datafeed uses aggregations, this value must
be divisible by the interval of the date histogram aggregation.
:param ignore_throttled: If `true`, concrete, expanded or aliased indices are
ignored when frozen.
:param ignore_unavailable: If `true`, unavailable indices (missing or closed)
are ignored.
:param indexes: An array of index names. Wildcards are supported. If any of the
indices are in remote clusters, the machine learning nodes must have the
`remote_cluster_client` role.
:param indices: An array of index names. Wildcards are supported. If any of the
indices are in remote clusters, the machine learning nodes must have the
`remote_cluster_client` role.
:param indices_options: Specifies index expansion options that are used during
search.
:param job_id:
:param max_empty_searches: If a real-time datafeed has never seen any data (including
during any initial training period), it automatically stops and closes the
associated job after this many real-time searches return no documents. In
other words, it stops after `frequency` times `max_empty_searches` of real-time
operation. If not set, a datafeed with no end time that sees no data remains
started until it is explicitly stopped. By default, it is not set.
:param query: The Elasticsearch query domain-specific language (DSL). This value
corresponds to the query object in an Elasticsearch search POST body. All
the options that are supported by Elasticsearch can be used, as this object
is passed verbatim to Elasticsearch. Note that if you change the query, the
analyzed data is also changed. Therefore, the time required to learn might
be long and the understandability of the results is unpredictable. If you
want to make significant changes to the source data, it is recommended that
you clone the job and datafeed and make the amendments in the clone. Let
both run in parallel and close one when you are satisfied with the results
of the job.
:param query_delay: The number of seconds behind real time that data is queried.
For example, if data from 10:04 a.m. might not be searchable in Elasticsearch
until 10:06 a.m., set this property to 120 seconds. The default value is
randomly selected between `60s` and `120s`. This randomness improves the
query performance when there are multiple jobs running on the same node.
:param runtime_mappings: Specifies runtime fields for the datafeed search.
:param script_fields: Specifies scripts that evaluate custom expressions and
returns script fields to the datafeed. The detector configuration objects
in a job can contain functions that use these script fields.
:param scroll_size: The size parameter that is used in Elasticsearch searches
when the datafeed does not use aggregations. The maximum value is the value
of `index.max_result_window`.
"""
if datafeed_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'datafeed_id'")
__path_parts: t.Dict[str, str] = {"datafeed_id": _quote(datafeed_id)}
__path = f'/_ml/datafeeds/{__path_parts["datafeed_id"]}/_update'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if allow_no_indices is not None:
__query["allow_no_indices"] = allow_no_indices
if error_trace is not None:
__query["error_trace"] = error_trace
if expand_wildcards is not None:
__query["expand_wildcards"] = expand_wildcards
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if ignore_throttled is not None:
__query["ignore_throttled"] = ignore_throttled
if ignore_unavailable is not None:
__query["ignore_unavailable"] = ignore_unavailable
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if aggregations is not None:
__body["aggregations"] = aggregations
if chunking_config is not None:
__body["chunking_config"] = chunking_config
if delayed_data_check_config is not None:
__body["delayed_data_check_config"] = delayed_data_check_config
if frequency is not None:
__body["frequency"] = frequency
if indexes is not None:
__body["indexes"] = indexes
if indices is not None:
__body["indices"] = indices
if indices_options is not None:
__body["indices_options"] = indices_options
if job_id is not None:
__body["job_id"] = job_id
if max_empty_searches is not None:
__body["max_empty_searches"] = max_empty_searches
if query is not None:
__body["query"] = query
if query_delay is not None:
__body["query_delay"] = query_delay
if runtime_mappings is not None:
__body["runtime_mappings"] = runtime_mappings
if script_fields is not None:
__body["script_fields"] = script_fields
if scroll_size is not None:
__body["scroll_size"] = scroll_size
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.update_datafeed",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("add_items", "description", "remove_items"),
)
def update_filter(
self,
*,
filter_id: str,
add_items: t.Optional[t.Sequence[str]] = None,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
remove_items: t.Optional[t.Sequence[str]] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Update a filter.
Updates the description of a filter, adds items, or removes items from the list.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-update-filter>`_
:param filter_id: A string that uniquely identifies a filter.
:param add_items: The items to add to the filter.
:param description: A description for the filter.
:param remove_items: The items to remove from the filter.
"""
if filter_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'filter_id'")
__path_parts: t.Dict[str, str] = {"filter_id": _quote(filter_id)}
__path = f'/_ml/filters/{__path_parts["filter_id"]}/_update'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if add_items is not None:
__body["add_items"] = add_items
if description is not None:
__body["description"] = description
if remove_items is not None:
__body["remove_items"] = remove_items
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.update_filter",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"allow_lazy_open",
"analysis_limits",
"background_persist_interval",
"categorization_filters",
"custom_settings",
"daily_model_snapshot_retention_after_days",
"description",
"detectors",
"groups",
"model_plot_config",
"model_prune_window",
"model_snapshot_retention_days",
"per_partition_categorization",
"renormalization_window_days",
"results_retention_days",
),
)
def update_job(
self,
*,
job_id: str,
allow_lazy_open: t.Optional[bool] = None,
analysis_limits: t.Optional[t.Mapping[str, t.Any]] = None,
background_persist_interval: t.Optional[
t.Union[str, t.Literal[-1], t.Literal[0]]
] = None,
categorization_filters: t.Optional[t.Sequence[str]] = None,
custom_settings: t.Optional[t.Mapping[str, t.Any]] = None,
daily_model_snapshot_retention_after_days: t.Optional[int] = None,
description: t.Optional[str] = None,
detectors: t.Optional[t.Sequence[t.Mapping[str, t.Any]]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
groups: t.Optional[t.Sequence[str]] = None,
human: t.Optional[bool] = None,
model_plot_config: t.Optional[t.Mapping[str, t.Any]] = None,
model_prune_window: t.Optional[
t.Union[str, t.Literal[-1], t.Literal[0]]
] = None,
model_snapshot_retention_days: t.Optional[int] = None,
per_partition_categorization: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
renormalization_window_days: t.Optional[int] = None,
results_retention_days: t.Optional[int] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Update an anomaly detection job.
Updates certain properties of an anomaly detection job.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-update-job>`_
:param job_id: Identifier for the job.
:param allow_lazy_open: Advanced configuration option. Specifies whether this
job can open when there is insufficient machine learning node capacity for
it to be immediately assigned to a node. If `false` and a machine learning
node with capacity to run the job cannot immediately be found, the open anomaly
detection jobs API returns an error. However, this is also subject to the
cluster-wide `xpack.ml.max_lazy_ml_nodes` setting. If this option is set
to `true`, the open anomaly detection jobs API does not return an error and
the job waits in the opening state until sufficient machine learning node
capacity is available.
:param analysis_limits:
:param background_persist_interval: Advanced configuration option. The time between
each periodic persistence of the model. The default value is a randomized
value between 3 to 4 hours, which avoids all jobs persisting at exactly the
same time. The smallest allowed value is 1 hour. For very large models (several
GB), persistence could take 10-20 minutes, so do not set the value too low.
If the job is open when you make the update, you must stop the datafeed,
close the job, then reopen the job and restart the datafeed for the changes
to take effect.
:param categorization_filters:
:param custom_settings: Advanced configuration option. Contains custom meta data
about the job. For example, it can contain custom URL information as shown
in Adding custom URLs to machine learning results.
:param daily_model_snapshot_retention_after_days: Advanced configuration option,
which affects the automatic removal of old model snapshots for this job.
It specifies a period of time (in days) after which only the first snapshot
per day is retained. This period is relative to the timestamp of the most
recent snapshot for this job. Valid values range from 0 to `model_snapshot_retention_days`.
For jobs created before version 7.8.0, the default value matches `model_snapshot_retention_days`.
:param description: A description of the job.
:param detectors: An array of detector update objects.
:param groups: A list of job groups. A job can belong to no groups or many.
:param model_plot_config:
:param model_prune_window:
:param model_snapshot_retention_days: Advanced configuration option, which affects
the automatic removal of old model snapshots for this job. It specifies the
maximum period of time (in days) that snapshots are retained. This period
is relative to the timestamp of the most recent snapshot for this job.
:param per_partition_categorization: Settings related to how categorization interacts
with partition fields.
:param renormalization_window_days: Advanced configuration option. The period
over which adjustments to the score are applied, as new data is seen.
:param results_retention_days: Advanced configuration option. The period of time
(in days) that results are retained. Age is calculated relative to the timestamp
of the latest bucket result. If this property has a non-null value, once
per day at 00:30 (server time), results that are the specified number of
days older than the latest bucket result are deleted from Elasticsearch.
The default value is null, which means all results are retained.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
__path_parts: t.Dict[str, str] = {"job_id": _quote(job_id)}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/_update'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if allow_lazy_open is not None:
__body["allow_lazy_open"] = allow_lazy_open
if analysis_limits is not None:
__body["analysis_limits"] = analysis_limits
if background_persist_interval is not None:
__body["background_persist_interval"] = background_persist_interval
if categorization_filters is not None:
__body["categorization_filters"] = categorization_filters
if custom_settings is not None:
__body["custom_settings"] = custom_settings
if daily_model_snapshot_retention_after_days is not None:
__body["daily_model_snapshot_retention_after_days"] = (
daily_model_snapshot_retention_after_days
)
if description is not None:
__body["description"] = description
if detectors is not None:
__body["detectors"] = detectors
if groups is not None:
__body["groups"] = groups
if model_plot_config is not None:
__body["model_plot_config"] = model_plot_config
if model_prune_window is not None:
__body["model_prune_window"] = model_prune_window
if model_snapshot_retention_days is not None:
__body["model_snapshot_retention_days"] = model_snapshot_retention_days
if per_partition_categorization is not None:
__body["per_partition_categorization"] = per_partition_categorization
if renormalization_window_days is not None:
__body["renormalization_window_days"] = renormalization_window_days
if results_retention_days is not None:
__body["results_retention_days"] = results_retention_days
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.update_job",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("description", "retain"),
)
def update_model_snapshot(
self,
*,
job_id: str,
snapshot_id: str,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
retain: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Update a snapshot.
Updates certain properties of a snapshot.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-update-model-snapshot>`_
:param job_id: Identifier for the anomaly detection job.
:param snapshot_id: Identifier for the model snapshot.
:param description: A description of the model snapshot.
:param retain: If `true`, this snapshot will not be deleted during automatic
cleanup of snapshots older than `model_snapshot_retention_days`. However,
this snapshot will be deleted when the job is deleted.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
if snapshot_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'snapshot_id'")
__path_parts: t.Dict[str, str] = {
"job_id": _quote(job_id),
"snapshot_id": _quote(snapshot_id),
}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/model_snapshots/{__path_parts["snapshot_id"]}/_update'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if description is not None:
__body["description"] = description
if retain is not None:
__body["retain"] = retain
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.update_model_snapshot",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=("adaptive_allocations", "number_of_allocations"),
)
def update_trained_model_deployment(
self,
*,
model_id: str,
adaptive_allocations: t.Optional[t.Mapping[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
number_of_allocations: t.Optional[int] = None,
pretty: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Update a trained model deployment.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-update-trained-model-deployment>`_
:param model_id: The unique identifier of the trained model. Currently, only
PyTorch models are supported.
:param adaptive_allocations: Adaptive allocations configuration. When enabled,
the number of allocations is set based on the current load. If adaptive_allocations
is enabled, do not set the number of allocations manually.
:param number_of_allocations: The number of model allocations on each node where
the model is deployed. All allocations on a node share the same copy of the
model in memory but use a separate set of threads to evaluate the model.
Increasing this value generally increases the throughput. If this setting
is greater than the number of hardware threads it will automatically be changed
to a value less than the number of hardware threads. If adaptive_allocations
is enabled, do not set this value, because it’s automatically set.
"""
if model_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'model_id'")
__path_parts: t.Dict[str, str] = {"model_id": _quote(model_id)}
__path = f'/_ml/trained_models/{__path_parts["model_id"]}/deployment/_update'
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if adaptive_allocations is not None:
__body["adaptive_allocations"] = adaptive_allocations
if number_of_allocations is not None:
__body["number_of_allocations"] = number_of_allocations
if not __body:
__body = None # type: ignore[assignment]
__headers = {"accept": "application/json"}
if __body is not None:
__headers["content-type"] = "application/json"
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.update_trained_model_deployment",
path_parts=__path_parts,
)
@_rewrite_parameters()
def upgrade_job_snapshot(
self,
*,
job_id: str,
snapshot_id: str,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
timeout: t.Optional[t.Union[str, t.Literal[-1], t.Literal[0]]] = None,
wait_for_completion: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Upgrade a snapshot.
Upgrade an anomaly detection model snapshot to the latest major version.
Over time, older snapshot formats are deprecated and removed. Anomaly
detection jobs support only snapshots that are from the current or previous
major version.
This API provides a means to upgrade a snapshot to the current major version.
This aids in preparing the cluster for an upgrade to the next major version.
Only one snapshot per anomaly detection job can be upgraded at a time and the
upgraded snapshot cannot be the current snapshot of the anomaly detection
job.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-upgrade-job-snapshot>`_
:param job_id: Identifier for the anomaly detection job.
:param snapshot_id: A numerical character string that uniquely identifies the
model snapshot.
:param timeout: Controls the time to wait for the request to complete.
:param wait_for_completion: When true, the API won’t respond until the upgrade
is complete. Otherwise, it responds as soon as the upgrade task is assigned
to a node.
"""
if job_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'job_id'")
if snapshot_id in SKIP_IN_PATH:
raise ValueError("Empty value passed for parameter 'snapshot_id'")
__path_parts: t.Dict[str, str] = {
"job_id": _quote(job_id),
"snapshot_id": _quote(snapshot_id),
}
__path = f'/_ml/anomaly_detectors/{__path_parts["job_id"]}/model_snapshots/{__path_parts["snapshot_id"]}/_upgrade'
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if timeout is not None:
__query["timeout"] = timeout
if wait_for_completion is not None:
__query["wait_for_completion"] = wait_for_completion
__headers = {"accept": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
endpoint_id="ml.upgrade_job_snapshot",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_fields=(
"analysis_config",
"analysis_limits",
"data_description",
"description",
"job_id",
"model_plot",
"model_snapshot_id",
"model_snapshot_retention_days",
"results_index_name",
),
)
def validate(
self,
*,
analysis_config: t.Optional[t.Mapping[str, t.Any]] = None,
analysis_limits: t.Optional[t.Mapping[str, t.Any]] = None,
data_description: t.Optional[t.Mapping[str, t.Any]] = None,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
job_id: t.Optional[str] = None,
model_plot: t.Optional[t.Mapping[str, t.Any]] = None,
model_snapshot_id: t.Optional[str] = None,
model_snapshot_retention_days: t.Optional[int] = None,
pretty: t.Optional[bool] = None,
results_index_name: t.Optional[str] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Validate an anomaly detection job.</p>
`<https://www.elastic.co/guide/en/machine-learning/9.1/ml-jobs.html>`_
:param analysis_config:
:param analysis_limits:
:param data_description:
:param description:
:param job_id:
:param model_plot:
:param model_snapshot_id:
:param model_snapshot_retention_days:
:param results_index_name:
"""
__path_parts: t.Dict[str, str] = {}
__path = "/_ml/anomaly_detectors/_validate"
__query: t.Dict[str, t.Any] = {}
__body: t.Dict[str, t.Any] = body if body is not None else {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
if not __body:
if analysis_config is not None:
__body["analysis_config"] = analysis_config
if analysis_limits is not None:
__body["analysis_limits"] = analysis_limits
if data_description is not None:
__body["data_description"] = data_description
if description is not None:
__body["description"] = description
if job_id is not None:
__body["job_id"] = job_id
if model_plot is not None:
__body["model_plot"] = model_plot
if model_snapshot_id is not None:
__body["model_snapshot_id"] = model_snapshot_id
if model_snapshot_retention_days is not None:
__body["model_snapshot_retention_days"] = model_snapshot_retention_days
if results_index_name is not None:
__body["results_index_name"] = results_index_name
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.validate",
path_parts=__path_parts,
)
@_rewrite_parameters(
body_name="detector",
)
def validate_detector(
self,
*,
detector: t.Optional[t.Mapping[str, t.Any]] = None,
body: t.Optional[t.Mapping[str, t.Any]] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
pretty: t.Optional[bool] = None,
) -> ObjectApiResponse[t.Any]:
"""
.. raw:: html
<p>Validate an anomaly detection job.</p>
`<https://www.elastic.co/docs/api/doc/elasticsearch>`_
:param detector:
"""
if detector is None and body is None:
raise ValueError(
"Empty value passed for parameters 'detector' and 'body', one of them should be set."
)
elif detector is not None and body is not None:
raise ValueError("Cannot set both 'detector' and 'body'")
__path_parts: t.Dict[str, str] = {}
__path = "/_ml/anomaly_detectors/_validate/detector"
__query: t.Dict[str, t.Any] = {}
if error_trace is not None:
__query["error_trace"] = error_trace
if filter_path is not None:
__query["filter_path"] = filter_path
if human is not None:
__query["human"] = human
if pretty is not None:
__query["pretty"] = pretty
__body = detector if detector is not None else body
__headers = {"accept": "application/json", "content-type": "application/json"}
return self.perform_request( # type: ignore[return-value]
"POST",
__path,
params=__query,
headers=__headers,
body=__body,
endpoint_id="ml.validate_detector",
path_parts=__path_parts,
)
|