File: document.py

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (522 lines) | stat: -rw-r--r-- 19,325 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
#  Licensed to Elasticsearch B.V. under one or more contributor
#  license agreements. See the NOTICE file distributed with
#  this work for additional information regarding copyright
#  ownership. Elasticsearch B.V. licenses this file to you under
#  the Apache License, Version 2.0 (the "License"); you may
#  not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
# 	http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing,
#  software distributed under the License is distributed on an
#  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#  KIND, either express or implied.  See the License for the
#  specific language governing permissions and limitations
#  under the License.

import collections.abc
from typing import (
    TYPE_CHECKING,
    Any,
    AsyncIterable,
    Dict,
    List,
    Optional,
    Tuple,
    Union,
    cast,
)

from typing_extensions import Self, dataclass_transform

from elasticsearch.exceptions import NotFoundError, RequestError
from elasticsearch.helpers import async_bulk

from .._async.index import AsyncIndex
from ..async_connections import get_connection
from ..document_base import DocumentBase, DocumentMeta, mapped_field
from ..exceptions import IllegalOperation
from ..utils import DOC_META_FIELDS, META_FIELDS, AsyncUsingType, merge
from .search import AsyncSearch

if TYPE_CHECKING:
    from elasticsearch import AsyncElasticsearch


class AsyncIndexMeta(DocumentMeta):
    _index: AsyncIndex

    # global flag to guard us from associating an Index with the base Document
    # class, only user defined subclasses should have an _index attr
    _document_initialized = False

    def __new__(
        cls, name: str, bases: Tuple[type, ...], attrs: Dict[str, Any]
    ) -> "AsyncIndexMeta":
        new_cls = super().__new__(cls, name, bases, attrs)
        if cls._document_initialized:
            index_opts = attrs.pop("Index", None)
            index = cls.construct_index(index_opts, bases)
            new_cls._index = index
            index.document(new_cls)
        cls._document_initialized = True
        return cast(AsyncIndexMeta, new_cls)

    @classmethod
    def construct_index(
        cls, opts: Dict[str, Any], bases: Tuple[type, ...]
    ) -> AsyncIndex:
        if opts is None:
            for b in bases:
                if hasattr(b, "_index"):
                    return b._index

            # Set None as Index name so it will set _all while making the query
            return AsyncIndex(name=None)

        i = AsyncIndex(
            getattr(opts, "name", "*"), using=getattr(opts, "using", "default")
        )
        i.settings(**getattr(opts, "settings", {}))
        i.aliases(**getattr(opts, "aliases", {}))
        for a in getattr(opts, "analyzers", ()):
            i.analyzer(a)
        return i


@dataclass_transform(field_specifiers=(mapped_field,))
class AsyncDocument(DocumentBase, metaclass=AsyncIndexMeta):
    """
    Model-like class for persisting documents in elasticsearch.
    """

    if TYPE_CHECKING:
        _index: AsyncIndex

    @classmethod
    def _get_using(cls, using: Optional[AsyncUsingType] = None) -> AsyncUsingType:
        return using or cls._index._using

    @classmethod
    def _get_connection(
        cls, using: Optional[AsyncUsingType] = None
    ) -> "AsyncElasticsearch":
        return get_connection(cls._get_using(using))

    @classmethod
    async def init(
        cls, index: Optional[str] = None, using: Optional[AsyncUsingType] = None
    ) -> None:
        """
        Create the index and populate the mappings in elasticsearch.
        """
        i = cls._index
        if index:
            i = i.clone(name=index)
        await i.save(using=using)

    @classmethod
    def search(
        cls, using: Optional[AsyncUsingType] = None, index: Optional[str] = None
    ) -> AsyncSearch[Self]:
        """
        Create an :class:`~elasticsearch.dsl.Search` instance that will search
        over this ``Document``.
        """
        return AsyncSearch(
            using=cls._get_using(using), index=cls._default_index(index), doc_type=[cls]
        )

    @classmethod
    async def get(
        cls,
        id: str,
        using: Optional[AsyncUsingType] = None,
        index: Optional[str] = None,
        **kwargs: Any,
    ) -> Optional[Self]:
        """
        Retrieve a single document from elasticsearch using its ``id``.

        :arg id: ``id`` of the document to be retrieved
        :arg index: elasticsearch index to use, if the ``Document`` is
            associated with an index this can be omitted.
        :arg using: connection alias to use, defaults to ``'default'``

        Any additional keyword arguments will be passed to
        ``Elasticsearch.get`` unchanged.
        """
        es = cls._get_connection(using)
        doc = await es.get(index=cls._default_index(index), id=id, **kwargs)
        if not doc.get("found", False):
            return None
        return cls.from_es(doc)

    @classmethod
    async def exists(
        cls,
        id: str,
        using: Optional[AsyncUsingType] = None,
        index: Optional[str] = None,
        **kwargs: Any,
    ) -> bool:
        """
        check if exists a single document from elasticsearch using its ``id``.

        :arg id: ``id`` of the document to check if exists
        :arg index: elasticsearch index to use, if the ``Document`` is
            associated with an index this can be omitted.
        :arg using: connection alias to use, defaults to ``'default'``

        Any additional keyword arguments will be passed to
        ``Elasticsearch.exists`` unchanged.
        """
        es = cls._get_connection(using)
        return bool(await es.exists(index=cls._default_index(index), id=id, **kwargs))

    @classmethod
    async def mget(
        cls,
        docs: List[Dict[str, Any]],
        using: Optional[AsyncUsingType] = None,
        index: Optional[str] = None,
        raise_on_error: bool = True,
        missing: str = "none",
        **kwargs: Any,
    ) -> List[Optional[Self]]:
        r"""
        Retrieve multiple document by their ``id``\s. Returns a list of instances
        in the same order as requested.

        :arg docs: list of ``id``\s of the documents to be retrieved or a list
            of document specifications as per
            https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-multi-get.html
        :arg index: elasticsearch index to use, if the ``Document`` is
            associated with an index this can be omitted.
        :arg using: connection alias to use, defaults to ``'default'``
        :arg missing: what to do when one of the documents requested is not
            found. Valid options are ``'none'`` (use ``None``), ``'raise'`` (raise
            ``NotFoundError``) or ``'skip'`` (ignore the missing document).

        Any additional keyword arguments will be passed to
        ``Elasticsearch.mget`` unchanged.
        """
        if missing not in ("raise", "skip", "none"):
            raise ValueError("'missing' must be 'raise', 'skip', or 'none'.")
        es = cls._get_connection(using)
        body = {
            "docs": [
                doc if isinstance(doc, collections.abc.Mapping) else {"_id": doc}
                for doc in docs
            ]
        }
        results = await es.mget(index=cls._default_index(index), body=body, **kwargs)

        objs: List[Optional[Self]] = []
        error_docs: List[Self] = []
        missing_docs: List[Self] = []
        for doc in results["docs"]:
            if doc.get("found"):
                if error_docs or missing_docs:
                    # We're going to raise an exception anyway, so avoid an
                    # expensive call to cls.from_es().
                    continue

                objs.append(cls.from_es(doc))

            elif doc.get("error"):
                if raise_on_error:
                    error_docs.append(doc)
                if missing == "none":
                    objs.append(None)

            # The doc didn't cause an error, but the doc also wasn't found.
            elif missing == "raise":
                missing_docs.append(doc)
            elif missing == "none":
                objs.append(None)

        if error_docs:
            error_ids = [doc["_id"] for doc in error_docs]
            message = "Required routing not provided for documents %s."
            message %= ", ".join(error_ids)
            raise RequestError(400, message, error_docs)  # type: ignore[arg-type]
        if missing_docs:
            missing_ids = [doc["_id"] for doc in missing_docs]
            message = f"Documents {', '.join(missing_ids)} not found."
            raise NotFoundError(404, message, {"docs": missing_docs})  # type: ignore[arg-type]
        return objs

    async def delete(
        self,
        using: Optional[AsyncUsingType] = None,
        index: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        """
        Delete the instance in elasticsearch.

        :arg index: elasticsearch index to use, if the ``Document`` is
            associated with an index this can be omitted.
        :arg using: connection alias to use, defaults to ``'default'``

        Any additional keyword arguments will be passed to
        ``Elasticsearch.delete`` unchanged.
        """
        es = self._get_connection(using)
        # extract routing etc from meta
        doc_meta = {k: self.meta[k] for k in DOC_META_FIELDS if k in self.meta}

        # Optimistic concurrency control
        if "seq_no" in self.meta and "primary_term" in self.meta:
            doc_meta["if_seq_no"] = self.meta["seq_no"]
            doc_meta["if_primary_term"] = self.meta["primary_term"]

        doc_meta.update(kwargs)
        i = self._get_index(index)
        assert i is not None

        await es.delete(index=i, **doc_meta)

    async def update(
        self,
        using: Optional[AsyncUsingType] = None,
        index: Optional[str] = None,
        detect_noop: bool = True,
        doc_as_upsert: bool = False,
        refresh: bool = False,
        retry_on_conflict: Optional[int] = None,
        script: Optional[Union[str, Dict[str, Any]]] = None,
        script_id: Optional[str] = None,
        scripted_upsert: bool = False,
        upsert: Optional[Dict[str, Any]] = None,
        return_doc_meta: bool = False,
        **fields: Any,
    ) -> Any:
        """
        Partial update of the document, specify fields you wish to update and
        both the instance and the document in elasticsearch will be updated::

            doc = MyDocument(title='Document Title!')
            doc.save()
            doc.update(title='New Document Title!')

        :arg index: elasticsearch index to use, if the ``Document`` is
            associated with an index this can be omitted.
        :arg using: connection alias to use, defaults to ``'default'``
        :arg detect_noop: Set to ``False`` to disable noop detection.
        :arg refresh: Control when the changes made by this request are visible
            to search. Set to ``True`` for immediate effect.
        :arg retry_on_conflict: In between the get and indexing phases of the
            update, it is possible that another process might have already
            updated the same document. By default, the update will fail with a
            version conflict exception. The retry_on_conflict parameter
            controls how many times to retry the update before finally throwing
            an exception.
        :arg doc_as_upsert:  Instead of sending a partial doc plus an upsert
            doc, setting doc_as_upsert to true will use the contents of doc as
            the upsert value
        :arg script: the source code of the script as a string, or a dictionary
            with script attributes to update.
        :arg return_doc_meta: set to ``True`` to return all metadata from the
            index API call instead of only the operation result

        :return: operation result noop/updated
        """
        body: Dict[str, Any] = {
            "doc_as_upsert": doc_as_upsert,
            "detect_noop": detect_noop,
        }

        # scripted update
        if script or script_id:
            if upsert is not None:
                body["upsert"] = upsert

            if script:
                if isinstance(script, str):
                    script = {"source": script}
            else:
                script = {"id": script_id}

            if "params" not in script:
                script["params"] = fields
            else:
                script["params"].update(fields)

            body["script"] = script
            body["scripted_upsert"] = scripted_upsert

        # partial document update
        else:
            if not fields:
                raise IllegalOperation(
                    "You cannot call update() without updating individual fields or a script. "
                    "If you wish to update the entire object use save()."
                )

            # update given fields locally
            merge(self, fields)

            # prepare data for ES
            values = self.to_dict(skip_empty=False)

            # if fields were given: partial update
            body["doc"] = {k: values.get(k) for k in fields.keys()}

        # extract routing etc from meta
        doc_meta = {k: self.meta[k] for k in DOC_META_FIELDS if k in self.meta}

        if retry_on_conflict is not None:
            doc_meta["retry_on_conflict"] = retry_on_conflict

        # Optimistic concurrency control
        if (
            retry_on_conflict in (None, 0)
            and "seq_no" in self.meta
            and "primary_term" in self.meta
        ):
            doc_meta["if_seq_no"] = self.meta["seq_no"]
            doc_meta["if_primary_term"] = self.meta["primary_term"]

        i = self._get_index(index)
        assert i is not None

        meta = await self._get_connection(using).update(
            index=i, body=body, refresh=refresh, **doc_meta
        )

        # update meta information from ES
        for k in META_FIELDS:
            if "_" + k in meta:
                setattr(self.meta, k, meta["_" + k])

        return meta if return_doc_meta else meta["result"]

    async def save(
        self,
        using: Optional[AsyncUsingType] = None,
        index: Optional[str] = None,
        validate: bool = True,
        skip_empty: bool = True,
        return_doc_meta: bool = False,
        **kwargs: Any,
    ) -> Any:
        """
        Save the document into elasticsearch. If the document doesn't exist it
        is created, it is overwritten otherwise. Returns ``True`` if this
        operations resulted in new document being created.

        :arg index: elasticsearch index to use, if the ``Document`` is
            associated with an index this can be omitted.
        :arg using: connection alias to use, defaults to ``'default'``
        :arg validate: set to ``False`` to skip validating the document
        :arg skip_empty: if set to ``False`` will cause empty values (``None``,
            ``[]``, ``{}``) to be left on the document. Those values will be
            stripped out otherwise as they make no difference in elasticsearch.
        :arg return_doc_meta: set to ``True`` to return all metadata from the
            update API call instead of only the operation result

        Any additional keyword arguments will be passed to
        ``Elasticsearch.index`` unchanged.

        :return: operation result created/updated
        """
        if validate:
            self.full_clean()

        es = self._get_connection(using)
        # extract routing etc from meta
        doc_meta = {k: self.meta[k] for k in DOC_META_FIELDS if k in self.meta}

        # Optimistic concurrency control
        if "seq_no" in self.meta and "primary_term" in self.meta:
            doc_meta["if_seq_no"] = self.meta["seq_no"]
            doc_meta["if_primary_term"] = self.meta["primary_term"]

        doc_meta.update(kwargs)
        i = self._get_index(index)
        assert i is not None

        meta = await es.index(
            index=i,
            body=self.to_dict(skip_empty=skip_empty),
            **doc_meta,
        )
        # update meta information from ES
        for k in META_FIELDS:
            if "_" + k in meta:
                setattr(self.meta, k, meta["_" + k])

        return meta if return_doc_meta else meta["result"]

    @classmethod
    async def bulk(
        cls,
        actions: AsyncIterable[Union[Self, Dict[str, Any]]],
        using: Optional[AsyncUsingType] = None,
        index: Optional[str] = None,
        validate: bool = True,
        skip_empty: bool = True,
        **kwargs: Any,
    ) -> Tuple[int, Union[int, List[Any]]]:
        """
        Allows to perform multiple indexing operations in a single request.

        :arg actions: a generator that returns document instances to be indexed,
            bulk operation dictionaries.
        :arg using: connection alias to use, defaults to ``'default'``
        :arg index: Elasticsearch index to use, if the ``Document`` is
            associated with an index this can be omitted.
        :arg validate: set to ``False`` to skip validating the documents
        :arg skip_empty: if set to ``False`` will cause empty values (``None``,
            ``[]``, ``{}``) to be left on the document. Those values will be
            stripped out otherwise as they make no difference in Elasticsearch.

        Any additional keyword arguments will be passed to
        ``Elasticsearch.bulk`` unchanged.

        :return: bulk operation results
        """
        es = cls._get_connection(using)

        i = cls._default_index(index)
        assert i is not None

        class Generate:
            def __init__(
                self,
                doc_iterator: AsyncIterable[Union[AsyncDocument, Dict[str, Any]]],
            ):
                self.doc_iterator = doc_iterator.__aiter__()

            def __aiter__(self) -> Self:
                return self

            async def __anext__(self) -> Dict[str, Any]:
                doc: Optional[Union[AsyncDocument, Dict[str, Any]]] = (
                    await self.doc_iterator.__anext__()
                )

                if isinstance(doc, dict):
                    action = doc
                    doc = None
                    if "_source" in action and isinstance(
                        action["_source"], AsyncDocument
                    ):
                        doc = action["_source"]
                        if validate:  # pragma: no cover
                            doc.full_clean()
                        action["_source"] = doc.to_dict(
                            include_meta=False, skip_empty=skip_empty
                        )
                elif doc is not None:
                    if validate:  # pragma: no cover
                        doc.full_clean()
                    action = doc.to_dict(include_meta=True, skip_empty=skip_empty)
                if "_index" not in action:
                    action["_index"] = i
                return action

        return await async_bulk(es, Generate(actions), **kwargs)