File: search.py

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (230 lines) | stat: -rw-r--r-- 7,881 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#  Licensed to Elasticsearch B.V. under one or more contributor
#  license agreements. See the NOTICE file distributed with
#  this work for additional information regarding copyright
#  ownership. Elasticsearch B.V. licenses this file to you under
#  the Apache License, Version 2.0 (the "License"); you may
#  not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
# 	http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing,
#  software distributed under the License is distributed on an
#  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#  KIND, either express or implied.  See the License for the
#  specific language governing permissions and limitations
#  under the License.

import contextlib
from typing import (
    TYPE_CHECKING,
    Any,
    Dict,
    Iterator,
    List,
    Optional,
    cast,
)

from typing_extensions import Self

from elasticsearch.exceptions import ApiError
from elasticsearch.helpers import scan

from ..connections import get_connection
from ..response import Response
from ..search_base import MultiSearchBase, SearchBase
from ..utils import _R, AttrDict, UsingType


class Search(SearchBase[_R]):
    _using: UsingType

    def __iter__(self) -> Iterator[_R]:
        """
        Iterate over the hits.
        """

        class ResultsIterator(Iterator[_R]):
            def __init__(self, search: Search[_R]):
                self.search = search
                self.iterator: Optional[Iterator[_R]] = None

            def __next__(self) -> _R:
                if self.iterator is None:
                    self.iterator = iter(self.search.execute())
                try:
                    return next(self.iterator)
                except StopIteration:
                    raise StopIteration()

        return ResultsIterator(self)

    def count(self) -> int:
        """
        Return the number of hits matching the query and filters. Note that
        only the actual number is returned.
        """
        if hasattr(self, "_response") and self._response.hits.total.relation == "eq":  # type: ignore[attr-defined]
            return cast(int, self._response.hits.total.value)  # type: ignore[attr-defined]

        es = get_connection(self._using)

        d = self.to_dict(count=True)
        # TODO: failed shards detection
        resp = es.count(
            index=self._index,
            query=cast(Optional[Dict[str, Any]], d.get("query", None)),
            **self._params,
        )

        return cast(int, resp["count"])

    def execute(self, ignore_cache: bool = False) -> Response[_R]:
        """
        Execute the search and return an instance of ``Response`` wrapping all
        the data.

        :arg ignore_cache: if set to ``True``, consecutive calls will hit
            ES, while cached result will be ignored. Defaults to `False`
        """
        if ignore_cache or not hasattr(self, "_response"):
            es = get_connection(self._using)

            self._response = self._response_class(
                self,
                (
                    es.search(index=self._index, body=self.to_dict(), **self._params)
                ).body,
            )
        return self._response

    def scan(self) -> Iterator[_R]:
        """
        Turn the search into a scan search and return a generator that will
        iterate over all the documents matching the query.

        Use the ``params`` method to specify any additional arguments you wish to
        pass to the underlying ``scan`` helper from ``elasticsearch-py`` -
        https://elasticsearch-py.readthedocs.io/en/latest/helpers.html#scan

        The ``iterate()`` method should be preferred, as it provides similar
        functionality using an Elasticsearch point in time.
        """
        es = get_connection(self._using)

        for hit in scan(es, query=self.to_dict(), index=self._index, **self._params):
            yield self._get_result(cast(AttrDict[Any], hit))

    def delete(self) -> AttrDict[Any]:
        """
        ``delete()`` executes the query by delegating to ``delete_by_query()``.

        Use the ``params`` method to specify any additional arguments you wish to
        pass to the underlying ``delete_by_query`` helper from ``elasticsearch-py`` -
        https://elasticsearch-py.readthedocs.io/en/latest/api/elasticsearch.html#elasticsearch.Elasticsearch.delete_by_query
        """

        es = get_connection(self._using)
        assert self._index is not None

        return AttrDict(
            cast(
                Dict[str, Any],
                es.delete_by_query(
                    index=self._index, body=self.to_dict(), **self._params
                ),
            )
        )

    @contextlib.contextmanager
    def point_in_time(self, keep_alive: str = "1m") -> Iterator[Self]:
        """
        Open a point in time (pit) that can be used across several searches.

        This method implements a context manager that returns a search object
        configured to operate within the created pit.

        :arg keep_alive: the time to live for the point in time, renewed with each search request
        """
        es = get_connection(self._using)

        pit = es.open_point_in_time(index=self._index or "*", keep_alive=keep_alive)
        search = self.index().extra(pit={"id": pit["id"], "keep_alive": keep_alive})
        if not search._sort:
            search = search.sort("_shard_doc")
        yield search
        es.close_point_in_time(id=pit["id"])

    def iterate(self, keep_alive: str = "1m") -> Iterator[_R]:
        """
        Return a generator that iterates over all the documents matching the query.

        This method uses a point in time to provide consistent results even when
        the index is changing. It should be preferred over ``scan()``.

        :arg keep_alive: the time to live for the point in time, renewed with each new search request
        """
        with self.point_in_time(keep_alive=keep_alive) as s:
            while True:
                r = s.execute()
                for hit in r:
                    yield hit
                if len(r.hits) == 0:
                    break
                s = s.search_after()


class MultiSearch(MultiSearchBase[_R]):
    """
    Combine multiple :class:`~elasticsearch.dsl.Search` objects into a single
    request.
    """

    _using: UsingType

    if TYPE_CHECKING:

        def add(self, search: Search[_R]) -> Self: ...  # type: ignore[override]

    def execute(
        self, ignore_cache: bool = False, raise_on_error: bool = True
    ) -> List[Response[_R]]:
        """
        Execute the multi search request and return a list of search results.
        """
        if ignore_cache or not hasattr(self, "_response"):
            es = get_connection(self._using)

            responses = es.msearch(
                index=self._index, body=self.to_dict(), **self._params
            )

            out: List[Response[_R]] = []
            for s, r in zip(self._searches, responses["responses"]):
                if r.get("error", False):
                    if raise_on_error:
                        raise ApiError("N/A", meta=responses.meta, body=r)
                    r = None
                else:
                    r = Response(s, r)
                out.append(r)

            self._response = out

        return self._response


class EmptySearch(Search[_R]):
    def count(self) -> int:
        return 0

    def execute(self, ignore_cache: bool = False) -> Response[_R]:
        return self._response_class(self, {"hits": {"total": 0, "hits": []}})

    def scan(self) -> Iterator[_R]:
        return
        yield  # a bit strange, but this forces an empty generator function

    def delete(self) -> AttrDict[Any]:
        return AttrDict[Any]({})