1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
|
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import collections.abc
from copy import deepcopy
from typing import (
TYPE_CHECKING,
Any,
ClassVar,
Dict,
Generic,
Iterable,
Literal,
Mapping,
MutableMapping,
Optional,
Sequence,
Union,
cast,
)
from elastic_transport.client_utils import DEFAULT
from . import wrappers
from .query import Query
from .response.aggs import AggResponse, BucketData, FieldBucketData, TopHitsData
from .utils import _R, AttrDict, DslBase
if TYPE_CHECKING:
from elastic_transport.client_utils import DefaultType
from . import types
from .document_base import InstrumentedField
from .search_base import SearchBase
def A(
name_or_agg: Union[MutableMapping[str, Any], "Agg[_R]", str],
filter: Optional[Union[str, "Query"]] = None,
**params: Any,
) -> "Agg[_R]":
if filter is not None:
if name_or_agg != "filter":
raise ValueError(
"Aggregation %r doesn't accept positional argument 'filter'."
% name_or_agg
)
params["filter"] = filter
# {"terms": {"field": "tags"}, "aggs": {...}}
if isinstance(name_or_agg, collections.abc.MutableMapping):
if params:
raise ValueError("A() cannot accept parameters when passing in a dict.")
# copy to avoid modifying in-place
agg = deepcopy(name_or_agg)
# pop out nested aggs
aggs = agg.pop("aggs", None)
# pop out meta data
meta = agg.pop("meta", None)
# should be {"terms": {"field": "tags"}}
if len(agg) != 1:
raise ValueError(
'A() can only accept dict with an aggregation ({"terms": {...}}). '
"Instead it got (%r)" % name_or_agg
)
agg_type, params = agg.popitem()
if aggs:
params = params.copy()
params["aggs"] = aggs
if meta:
params = params.copy()
params["meta"] = meta
return Agg[_R].get_dsl_class(agg_type)(_expand__to_dot=False, **params)
# Terms(...) just return the nested agg
elif isinstance(name_or_agg, Agg):
if params:
raise ValueError(
"A() cannot accept parameters when passing in an Agg object."
)
return name_or_agg
# "terms", field="tags"
return Agg[_R].get_dsl_class(name_or_agg)(**params)
class Agg(DslBase, Generic[_R]):
_type_name = "agg"
_type_shortcut = staticmethod(A)
name = ""
def __contains__(self, key: str) -> bool:
return False
def to_dict(self) -> Dict[str, Any]:
d = super().to_dict()
if isinstance(d[self.name], dict):
n = cast(Dict[str, Any], d[self.name])
if "meta" in n:
d["meta"] = n.pop("meta")
return d
def result(self, search: "SearchBase[_R]", data: Dict[str, Any]) -> AttrDict[Any]:
return AggResponse[_R](self, search, data)
class AggBase(Generic[_R]):
aggs: Dict[str, Agg[_R]]
_base: Agg[_R]
_params: Dict[str, Any]
_param_defs: ClassVar[Dict[str, Any]] = {
"aggs": {"type": "agg", "hash": True},
}
def __contains__(self, key: str) -> bool:
return key in self._params.get("aggs", {})
def __getitem__(self, agg_name: str) -> Agg[_R]:
agg = cast(
Agg[_R], self._params.setdefault("aggs", {})[agg_name]
) # propagate KeyError
# make sure we're not mutating a shared state - whenever accessing a
# bucket, return a shallow copy of it to be safe
if isinstance(agg, Bucket):
agg = A(agg.name, **agg._params)
# be sure to store the copy so any modifications to it will affect us
self._params["aggs"][agg_name] = agg
return agg
def __setitem__(self, agg_name: str, agg: Agg[_R]) -> None:
self.aggs[agg_name] = A(agg)
def __iter__(self) -> Iterable[str]:
return iter(self.aggs)
def _agg(
self,
bucket: bool,
name: str,
agg_type: Union[Dict[str, Any], Agg[_R], str],
*args: Any,
**params: Any,
) -> Agg[_R]:
agg = self[name] = A(agg_type, *args, **params)
# For chaining - when creating new buckets return them...
if bucket:
return agg
# otherwise return self._base so we can keep chaining
else:
return self._base
def metric(
self,
name: str,
agg_type: Union[Dict[str, Any], Agg[_R], str],
*args: Any,
**params: Any,
) -> Agg[_R]:
return self._agg(False, name, agg_type, *args, **params)
def bucket(
self,
name: str,
agg_type: Union[Dict[str, Any], Agg[_R], str],
*args: Any,
**params: Any,
) -> "Bucket[_R]":
return cast("Bucket[_R]", self._agg(True, name, agg_type, *args, **params))
def pipeline(
self,
name: str,
agg_type: Union[Dict[str, Any], Agg[_R], str],
*args: Any,
**params: Any,
) -> "Pipeline[_R]":
return cast("Pipeline[_R]", self._agg(False, name, agg_type, *args, **params))
def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
return BucketData(self, search, data) # type: ignore[arg-type]
class Bucket(AggBase[_R], Agg[_R]):
def __init__(self, **params: Any):
super().__init__(**params)
# remember self for chaining
self._base = self
def to_dict(self) -> Dict[str, Any]:
d = super(AggBase, self).to_dict()
if isinstance(d[self.name], dict):
n = cast(AttrDict[Any], d[self.name])
if "aggs" in n:
d["aggs"] = n.pop("aggs")
return d
class Pipeline(Agg[_R]):
pass
class AdjacencyMatrix(Bucket[_R]):
"""
A bucket aggregation returning a form of adjacency matrix. The request
provides a collection of named filter expressions, similar to the
`filters` aggregation. Each bucket in the response represents a non-
empty cell in the matrix of intersecting filters.
:arg filters: Filters used to create buckets. At least one filter is
required.
:arg separator: Separator used to concatenate filter names. Defaults
to &.
"""
name = "adjacency_matrix"
_param_defs = {
"filters": {"type": "query", "hash": True},
}
def __init__(
self,
*,
filters: Union[Mapping[str, Query], "DefaultType"] = DEFAULT,
separator: Union[str, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(filters=filters, separator=separator, **kwargs)
class AutoDateHistogram(Bucket[_R]):
"""
A multi-bucket aggregation similar to the date histogram, except
instead of providing an interval to use as the width of each bucket, a
target number of buckets is provided.
:arg buckets: The target number of buckets. Defaults to `10` if
omitted.
:arg field: The field on which to run the aggregation.
:arg format: The date format used to format `key_as_string` in the
response. If no `format` is specified, the first date format
specified in the field mapping is used.
:arg minimum_interval: The minimum rounding interval. This can make
the collection process more efficient, as the aggregation will not
attempt to round at any interval lower than `minimum_interval`.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg offset: Time zone specified as a ISO 8601 UTC offset.
:arg params:
:arg script:
:arg time_zone: Time zone ID.
"""
name = "auto_date_histogram"
def __init__(
self,
*,
buckets: Union[int, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
minimum_interval: Union[
Literal["second", "minute", "hour", "day", "month", "year"], "DefaultType"
] = DEFAULT,
missing: Any = DEFAULT,
offset: Union[str, "DefaultType"] = DEFAULT,
params: Union[Mapping[str, Any], "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
time_zone: Union[str, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
buckets=buckets,
field=field,
format=format,
minimum_interval=minimum_interval,
missing=missing,
offset=offset,
params=params,
script=script,
time_zone=time_zone,
**kwargs,
)
def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
return FieldBucketData(self, search, data)
class Avg(Agg[_R]):
"""
A single-value metrics aggregation that computes the average of
numeric values that are extracted from the aggregated documents.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "avg"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, field=field, missing=missing, script=script, **kwargs
)
class AvgBucket(Pipeline[_R]):
"""
A sibling pipeline aggregation which calculates the mean value of a
specified metric in a sibling aggregation. The specified metric must
be numeric and the sibling aggregation must be a multi-bucket
aggregation.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "avg_bucket"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
)
class Boxplot(Agg[_R]):
"""
A metrics aggregation that computes a box plot of numeric values
extracted from the aggregated documents.
:arg compression: Limits the maximum number of nodes used by the
underlying TDigest algorithm to `20 * compression`, enabling
control of memory usage and approximation error.
:arg execution_hint: The default implementation of TDigest is
optimized for performance, scaling to millions or even billions of
sample values while maintaining acceptable accuracy levels (close
to 1% relative error for millions of samples in some cases). To
use an implementation optimized for accuracy, set this parameter
to high_accuracy instead. Defaults to `default` if omitted.
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "boxplot"
def __init__(
self,
*,
compression: Union[float, "DefaultType"] = DEFAULT,
execution_hint: Union[
Literal["default", "high_accuracy"], "DefaultType"
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
compression=compression,
execution_hint=execution_hint,
field=field,
missing=missing,
script=script,
**kwargs,
)
class BucketScript(Pipeline[_R]):
"""
A parent pipeline aggregation which runs a script which can perform
per bucket computations on metrics in the parent multi-bucket
aggregation.
:arg script: The script to run for this aggregation.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "bucket_script"
def __init__(
self,
*,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
script=script,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class BucketSelector(Pipeline[_R]):
"""
A parent pipeline aggregation which runs a script to determine whether
the current bucket will be retained in the parent multi-bucket
aggregation.
:arg script: The script to run for this aggregation.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "bucket_selector"
def __init__(
self,
*,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
script=script,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class BucketSort(Bucket[_R]):
"""
A parent pipeline aggregation which sorts the buckets of its parent
multi-bucket aggregation.
:arg from: Buckets in positions prior to `from` will be truncated.
:arg gap_policy: The policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg size: The number of buckets to return. Defaults to all buckets of
the parent aggregation.
:arg sort: The list of fields to sort on.
"""
name = "bucket_sort"
def __init__(
self,
*,
from_: Union[int, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
sort: Union[
Union[Union[str, "InstrumentedField"], "types.SortOptions"],
Sequence[Union[Union[str, "InstrumentedField"], "types.SortOptions"]],
Dict[str, Any],
"DefaultType",
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
from_=from_, gap_policy=gap_policy, size=size, sort=sort, **kwargs
)
class BucketCountKsTest(Pipeline[_R]):
"""
A sibling pipeline aggregation which runs a two sample
Kolmogorov–Smirnov test ("K-S test") against a provided distribution
and the distribution implied by the documents counts in the configured
sibling aggregation.
:arg alternative: A list of string values indicating which K-S test
alternative to calculate. The valid values are: "greater", "less",
"two_sided". This parameter is key for determining the K-S
statistic used when calculating the K-S test. Default value is all
possible alternative hypotheses.
:arg fractions: A list of doubles indicating the distribution of the
samples with which to compare to the `buckets_path` results. In
typical usage this is the overall proportion of documents in each
bucket, which is compared with the actual document proportions in
each bucket from the sibling aggregation counts. The default is to
assume that overall documents are uniformly distributed on these
buckets, which they would be if one used equal percentiles of a
metric to define the bucket end points.
:arg sampling_method: Indicates the sampling methodology when
calculating the K-S test. Note, this is sampling of the returned
values. This determines the cumulative distribution function (CDF)
points used comparing the two samples. Default is `upper_tail`,
which emphasizes the upper end of the CDF points. Valid options
are: `upper_tail`, `uniform`, and `lower_tail`.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "bucket_count_ks_test"
def __init__(
self,
*,
alternative: Union[Sequence[str], "DefaultType"] = DEFAULT,
fractions: Union[Sequence[float], "DefaultType"] = DEFAULT,
sampling_method: Union[str, "DefaultType"] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
alternative=alternative,
fractions=fractions,
sampling_method=sampling_method,
buckets_path=buckets_path,
**kwargs,
)
class BucketCorrelation(Pipeline[_R]):
"""
A sibling pipeline aggregation which runs a correlation function on
the configured sibling multi-bucket aggregation.
:arg function: (required) The correlation function to execute.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "bucket_correlation"
def __init__(
self,
*,
function: Union[
"types.BucketCorrelationFunction", Dict[str, Any], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(function=function, buckets_path=buckets_path, **kwargs)
class Cardinality(Agg[_R]):
"""
A single-value metrics aggregation that calculates an approximate
count of distinct values.
:arg precision_threshold: A unique count below which counts are
expected to be close to accurate. This allows to trade memory for
accuracy. Defaults to `3000` if omitted.
:arg rehash:
:arg execution_hint: Mechanism by which cardinality aggregations is
run.
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "cardinality"
def __init__(
self,
*,
precision_threshold: Union[int, "DefaultType"] = DEFAULT,
rehash: Union[bool, "DefaultType"] = DEFAULT,
execution_hint: Union[
Literal[
"global_ordinals",
"segment_ordinals",
"direct",
"save_memory_heuristic",
"save_time_heuristic",
],
"DefaultType",
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
precision_threshold=precision_threshold,
rehash=rehash,
execution_hint=execution_hint,
field=field,
missing=missing,
script=script,
**kwargs,
)
class CategorizeText(Bucket[_R]):
"""
A multi-bucket aggregation that groups semi-structured text into
buckets.
:arg field: (required) The semi-structured text field to categorize.
:arg max_unique_tokens: The maximum number of unique tokens at any
position up to max_matched_tokens. Must be larger than 1. Smaller
values use less memory and create fewer categories. Larger values
will use more memory and create narrower categories. Max allowed
value is 100. Defaults to `50` if omitted.
:arg max_matched_tokens: The maximum number of token positions to
match on before attempting to merge categories. Larger values will
use more memory and create narrower categories. Max allowed value
is 100. Defaults to `5` if omitted.
:arg similarity_threshold: The minimum percentage of tokens that must
match for text to be added to the category bucket. Must be between
1 and 100. The larger the value the narrower the categories.
Larger values will increase memory usage and create narrower
categories. Defaults to `50` if omitted.
:arg categorization_filters: This property expects an array of regular
expressions. The expressions are used to filter out matching
sequences from the categorization field values. You can use this
functionality to fine tune the categorization by excluding
sequences from consideration when categories are defined. For
example, you can exclude SQL statements that appear in your log
files. This property cannot be used at the same time as
categorization_analyzer. If you only want to define simple regular
expression filters that are applied prior to tokenization, setting
this property is the easiest method. If you also want to customize
the tokenizer or post-tokenization filtering, use the
categorization_analyzer property instead and include the filters
as pattern_replace character filters.
:arg categorization_analyzer: The categorization analyzer specifies
how the text is analyzed and tokenized before being categorized.
The syntax is very similar to that used to define the analyzer in
the analyze API. This property cannot be used at the same time as
`categorization_filters`.
:arg shard_size: The number of categorization buckets to return from
each shard before merging all the results.
:arg size: The number of buckets to return. Defaults to `10` if
omitted.
:arg min_doc_count: The minimum number of documents in a bucket to be
returned to the results.
:arg shard_min_doc_count: The minimum number of documents in a bucket
to be returned from the shard before merging.
"""
name = "categorize_text"
def __init__(
self,
*,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
max_unique_tokens: Union[int, "DefaultType"] = DEFAULT,
max_matched_tokens: Union[int, "DefaultType"] = DEFAULT,
similarity_threshold: Union[int, "DefaultType"] = DEFAULT,
categorization_filters: Union[Sequence[str], "DefaultType"] = DEFAULT,
categorization_analyzer: Union[
str, "types.CustomCategorizeTextAnalyzer", Dict[str, Any], "DefaultType"
] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
min_doc_count: Union[int, "DefaultType"] = DEFAULT,
shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
field=field,
max_unique_tokens=max_unique_tokens,
max_matched_tokens=max_matched_tokens,
similarity_threshold=similarity_threshold,
categorization_filters=categorization_filters,
categorization_analyzer=categorization_analyzer,
shard_size=shard_size,
size=size,
min_doc_count=min_doc_count,
shard_min_doc_count=shard_min_doc_count,
**kwargs,
)
class Children(Bucket[_R]):
"""
A single bucket aggregation that selects child documents that have the
specified type, as defined in a `join` field.
:arg type: The child type that should be selected.
"""
name = "children"
def __init__(self, type: Union[str, "DefaultType"] = DEFAULT, **kwargs: Any):
super().__init__(type=type, **kwargs)
class Composite(Bucket[_R]):
"""
A multi-bucket aggregation that creates composite buckets from
different sources. Unlike the other multi-bucket aggregations, you can
use the `composite` aggregation to paginate *all* buckets from a
multi-level aggregation efficiently.
:arg after: When paginating, use the `after_key` value returned in the
previous response to retrieve the next page.
:arg size: The number of composite buckets that should be returned.
Defaults to `10` if omitted.
:arg sources: The value sources used to build composite buckets. Keys
are returned in the order of the `sources` definition.
"""
name = "composite"
def __init__(
self,
*,
after: Union[
Mapping[
Union[str, "InstrumentedField"], Union[int, float, str, bool, None]
],
"DefaultType",
] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
sources: Union[Sequence[Mapping[str, Agg[_R]]], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(after=after, size=size, sources=sources, **kwargs)
class CumulativeCardinality(Pipeline[_R]):
"""
A parent pipeline aggregation which calculates the cumulative
cardinality in a parent `histogram` or `date_histogram` aggregation.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "cumulative_cardinality"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
)
class CumulativeSum(Pipeline[_R]):
"""
A parent pipeline aggregation which calculates the cumulative sum of a
specified metric in a parent `histogram` or `date_histogram`
aggregation.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "cumulative_sum"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
)
class DateHistogram(Bucket[_R]):
"""
A multi-bucket values source based aggregation that can be applied on
date values or date range values extracted from the documents. It
dynamically builds fixed size (interval) buckets over the values.
:arg calendar_interval: Calendar-aware interval. Can be specified
using the unit name, such as `month`, or as a single unit
quantity, such as `1M`.
:arg extended_bounds: Enables extending the bounds of the histogram
beyond the data itself.
:arg hard_bounds: Limits the histogram to specified bounds.
:arg field: The date field whose values are use to build a histogram.
:arg fixed_interval: Fixed intervals: a fixed number of SI units and
never deviate, regardless of where they fall on the calendar.
:arg format: The date format used to format `key_as_string` in the
response. If no `format` is specified, the first date format
specified in the field mapping is used.
:arg interval:
:arg min_doc_count: Only returns buckets that have `min_doc_count`
number of documents. By default, all buckets between the first
bucket that matches documents and the last one are returned.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg offset: Changes the start value of each bucket by the specified
positive (`+`) or negative offset (`-`) duration.
:arg order: The sort order of the returned buckets.
:arg params:
:arg script:
:arg time_zone: Time zone used for bucketing and rounding. Defaults to
Coordinated Universal Time (UTC).
:arg keyed: Set to `true` to associate a unique string key with each
bucket and return the ranges as a hash rather than an array.
"""
name = "date_histogram"
def __init__(
self,
*,
calendar_interval: Union[
Literal[
"second", "minute", "hour", "day", "week", "month", "quarter", "year"
],
"DefaultType",
] = DEFAULT,
extended_bounds: Union[
"types.ExtendedBounds", Dict[str, Any], "DefaultType"
] = DEFAULT,
hard_bounds: Union[
"types.ExtendedBounds", Dict[str, Any], "DefaultType"
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
fixed_interval: Any = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
interval: Any = DEFAULT,
min_doc_count: Union[int, "DefaultType"] = DEFAULT,
missing: Any = DEFAULT,
offset: Any = DEFAULT,
order: Union[
Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]],
Sequence[Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]]],
"DefaultType",
] = DEFAULT,
params: Union[Mapping[str, Any], "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
time_zone: Union[str, "DefaultType"] = DEFAULT,
keyed: Union[bool, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
calendar_interval=calendar_interval,
extended_bounds=extended_bounds,
hard_bounds=hard_bounds,
field=field,
fixed_interval=fixed_interval,
format=format,
interval=interval,
min_doc_count=min_doc_count,
missing=missing,
offset=offset,
order=order,
params=params,
script=script,
time_zone=time_zone,
keyed=keyed,
**kwargs,
)
def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
return FieldBucketData(self, search, data)
class DateRange(Bucket[_R]):
"""
A multi-bucket value source based aggregation that enables the user to
define a set of date ranges - each representing a bucket.
:arg field: The date field whose values are use to build ranges.
:arg format: The date format used to format `from` and `to` in the
response.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg ranges: Array of date ranges.
:arg time_zone: Time zone used to convert dates from another time zone
to UTC.
:arg keyed: Set to `true` to associate a unique string key with each
bucket and returns the ranges as a hash rather than an array.
"""
name = "date_range"
def __init__(
self,
*,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
ranges: Union[
Sequence["wrappers.AggregationRange"],
Sequence[Dict[str, Any]],
"DefaultType",
] = DEFAULT,
time_zone: Union[str, "DefaultType"] = DEFAULT,
keyed: Union[bool, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
field=field,
format=format,
missing=missing,
ranges=ranges,
time_zone=time_zone,
keyed=keyed,
**kwargs,
)
class Derivative(Pipeline[_R]):
"""
A parent pipeline aggregation which calculates the derivative of a
specified metric in a parent `histogram` or `date_histogram`
aggregation.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "derivative"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
)
class DiversifiedSampler(Bucket[_R]):
"""
A filtering aggregation used to limit any sub aggregations' processing
to a sample of the top-scoring documents. Similar to the `sampler`
aggregation, but adds the ability to limit the number of matches that
share a common value.
:arg execution_hint: The type of value used for de-duplication.
Defaults to `global_ordinals` if omitted.
:arg max_docs_per_value: Limits how many documents are permitted per
choice of de-duplicating value. Defaults to `1` if omitted.
:arg script:
:arg shard_size: Limits how many top-scoring documents are collected
in the sample processed on each shard. Defaults to `100` if
omitted.
:arg field: The field used to provide values used for de-duplication.
"""
name = "diversified_sampler"
def __init__(
self,
*,
execution_hint: Union[
Literal["map", "global_ordinals", "bytes_hash"], "DefaultType"
] = DEFAULT,
max_docs_per_value: Union[int, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
execution_hint=execution_hint,
max_docs_per_value=max_docs_per_value,
script=script,
shard_size=shard_size,
field=field,
**kwargs,
)
class ExtendedStats(Agg[_R]):
"""
A multi-value metrics aggregation that computes stats over numeric
values extracted from the aggregated documents.
:arg sigma: The number of standard deviations above/below the mean to
display.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "extended_stats"
def __init__(
self,
*,
sigma: Union[float, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
sigma=sigma,
format=format,
field=field,
missing=missing,
script=script,
**kwargs,
)
class ExtendedStatsBucket(Pipeline[_R]):
"""
A sibling pipeline aggregation which calculates a variety of stats
across all bucket of a specified metric in a sibling aggregation.
:arg sigma: The number of standard deviations above/below the mean to
display.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "extended_stats_bucket"
def __init__(
self,
*,
sigma: Union[float, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
sigma=sigma,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class FrequentItemSets(Agg[_R]):
"""
A bucket aggregation which finds frequent item sets, a form of
association rules mining that identifies items that often occur
together.
:arg fields: (required) Fields to analyze.
:arg minimum_set_size: The minimum size of one item set. Defaults to
`1` if omitted.
:arg minimum_support: The minimum support of one item set. Defaults to
`0.1` if omitted.
:arg size: The number of top item sets to return. Defaults to `10` if
omitted.
:arg filter: Query that filters documents from analysis.
"""
name = "frequent_item_sets"
_param_defs = {
"filter": {"type": "query"},
}
def __init__(
self,
*,
fields: Union[
Sequence["types.FrequentItemSetsField"],
Sequence[Dict[str, Any]],
"DefaultType",
] = DEFAULT,
minimum_set_size: Union[int, "DefaultType"] = DEFAULT,
minimum_support: Union[float, "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
filter: Union[Query, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
fields=fields,
minimum_set_size=minimum_set_size,
minimum_support=minimum_support,
size=size,
filter=filter,
**kwargs,
)
class Filter(Bucket[_R]):
"""
A single bucket aggregation that narrows the set of documents to those
that match a query.
:arg filter: A single bucket aggregation that narrows the set of
documents to those that match a query.
"""
name = "filter"
_param_defs = {
"filter": {"type": "query"},
"aggs": {"type": "agg", "hash": True},
}
def __init__(self, filter: Union[Query, "DefaultType"] = DEFAULT, **kwargs: Any):
super().__init__(filter=filter, **kwargs)
def to_dict(self) -> Dict[str, Any]:
d = super().to_dict()
if isinstance(d[self.name], dict):
n = cast(AttrDict[Any], d[self.name])
n.update(n.pop("filter", {}))
return d
class Filters(Bucket[_R]):
"""
A multi-bucket aggregation where each bucket contains the documents
that match a query.
:arg filters: Collection of queries from which to build buckets.
:arg other_bucket: Set to `true` to add a bucket to the response which
will contain all documents that do not match any of the given
filters.
:arg other_bucket_key: The key with which the other bucket is
returned. Defaults to `_other_` if omitted.
:arg keyed: By default, the named filters aggregation returns the
buckets as an object. Set to `false` to return the buckets as an
array of objects. Defaults to `True` if omitted.
"""
name = "filters"
_param_defs = {
"filters": {"type": "query", "hash": True},
"aggs": {"type": "agg", "hash": True},
}
def __init__(
self,
*,
filters: Union[Dict[str, Query], "DefaultType"] = DEFAULT,
other_bucket: Union[bool, "DefaultType"] = DEFAULT,
other_bucket_key: Union[str, "DefaultType"] = DEFAULT,
keyed: Union[bool, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
filters=filters,
other_bucket=other_bucket,
other_bucket_key=other_bucket_key,
keyed=keyed,
**kwargs,
)
class GeoBounds(Agg[_R]):
"""
A metric aggregation that computes the geographic bounding box
containing all values for a Geopoint or Geoshape field.
:arg wrap_longitude: Specifies whether the bounding box should be
allowed to overlap the international date line. Defaults to `True`
if omitted.
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "geo_bounds"
def __init__(
self,
*,
wrap_longitude: Union[bool, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
wrap_longitude=wrap_longitude,
field=field,
missing=missing,
script=script,
**kwargs,
)
class GeoCentroid(Agg[_R]):
"""
A metric aggregation that computes the weighted centroid from all
coordinate values for geo fields.
:arg count:
:arg location:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "geo_centroid"
def __init__(
self,
*,
count: Union[int, "DefaultType"] = DEFAULT,
location: Union[
"types.LatLonGeoLocation",
"types.GeoHashLocation",
Sequence[float],
str,
Dict[str, Any],
"DefaultType",
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
count=count,
location=location,
field=field,
missing=missing,
script=script,
**kwargs,
)
class GeoDistance(Bucket[_R]):
"""
A multi-bucket aggregation that works on `geo_point` fields. Evaluates
the distance of each document value from an origin point and
determines the buckets it belongs to, based on ranges defined in the
request.
:arg distance_type: The distance calculation type. Defaults to `arc`
if omitted.
:arg field: A field of type `geo_point` used to evaluate the distance.
:arg origin: The origin used to evaluate the distance.
:arg ranges: An array of ranges used to bucket documents.
:arg unit: The distance unit. Defaults to `m` if omitted.
"""
name = "geo_distance"
def __init__(
self,
*,
distance_type: Union[Literal["arc", "plane"], "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
origin: Union[
"types.LatLonGeoLocation",
"types.GeoHashLocation",
Sequence[float],
str,
Dict[str, Any],
"DefaultType",
] = DEFAULT,
ranges: Union[
Sequence["wrappers.AggregationRange"],
Sequence[Dict[str, Any]],
"DefaultType",
] = DEFAULT,
unit: Union[
Literal["in", "ft", "yd", "mi", "nmi", "km", "m", "cm", "mm"], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
distance_type=distance_type,
field=field,
origin=origin,
ranges=ranges,
unit=unit,
**kwargs,
)
class GeohashGrid(Bucket[_R]):
"""
A multi-bucket aggregation that groups `geo_point` and `geo_shape`
values into buckets that represent a grid. Each cell is labeled using
a geohash which is of user-definable precision.
:arg bounds: The bounding box to filter the points in each bucket.
:arg field: Field containing indexed `geo_point` or `geo_shape`
values. If the field contains an array, `geohash_grid` aggregates
all array values.
:arg precision: The string length of the geohashes used to define
cells/buckets in the results. Defaults to `5` if omitted.
:arg shard_size: Allows for more accurate counting of the top cells
returned in the final result the aggregation. Defaults to
returning `max(10,(size x number-of-shards))` buckets from each
shard.
:arg size: The maximum number of geohash buckets to return. Defaults
to `10000` if omitted.
"""
name = "geohash_grid"
def __init__(
self,
*,
bounds: Union[
"types.CoordsGeoBounds",
"types.TopLeftBottomRightGeoBounds",
"types.TopRightBottomLeftGeoBounds",
"types.WktGeoBounds",
Dict[str, Any],
"DefaultType",
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
precision: Union[float, str, "DefaultType"] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
bounds=bounds,
field=field,
precision=precision,
shard_size=shard_size,
size=size,
**kwargs,
)
class GeoLine(Agg[_R]):
"""
Aggregates all `geo_point` values within a bucket into a `LineString`
ordered by the chosen sort field.
:arg point: (required) The name of the geo_point field.
:arg sort: (required) The name of the numeric field to use as the sort
key for ordering the points. When the `geo_line` aggregation is
nested inside a `time_series` aggregation, this field defaults to
`@timestamp`, and any other value will result in error.
:arg include_sort: When `true`, returns an additional array of the
sort values in the feature properties.
:arg sort_order: The order in which the line is sorted (ascending or
descending). Defaults to `asc` if omitted.
:arg size: The maximum length of the line represented in the
aggregation. Valid sizes are between 1 and 10000. Defaults to
`10000` if omitted.
"""
name = "geo_line"
def __init__(
self,
*,
point: Union["types.GeoLinePoint", Dict[str, Any], "DefaultType"] = DEFAULT,
sort: Union["types.GeoLineSort", Dict[str, Any], "DefaultType"] = DEFAULT,
include_sort: Union[bool, "DefaultType"] = DEFAULT,
sort_order: Union[Literal["asc", "desc"], "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
point=point,
sort=sort,
include_sort=include_sort,
sort_order=sort_order,
size=size,
**kwargs,
)
class GeotileGrid(Bucket[_R]):
"""
A multi-bucket aggregation that groups `geo_point` and `geo_shape`
values into buckets that represent a grid. Each cell corresponds to a
map tile as used by many online map sites.
:arg field: Field containing indexed `geo_point` or `geo_shape`
values. If the field contains an array, `geotile_grid` aggregates
all array values.
:arg precision: Integer zoom of the key used to define cells/buckets
in the results. Values outside of the range [0,29] will be
rejected. Defaults to `7` if omitted.
:arg shard_size: Allows for more accurate counting of the top cells
returned in the final result the aggregation. Defaults to
returning `max(10,(size x number-of-shards))` buckets from each
shard.
:arg size: The maximum number of buckets to return. Defaults to
`10000` if omitted.
:arg bounds: A bounding box to filter the geo-points or geo-shapes in
each bucket.
"""
name = "geotile_grid"
def __init__(
self,
*,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
precision: Union[float, "DefaultType"] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
bounds: Union[
"types.CoordsGeoBounds",
"types.TopLeftBottomRightGeoBounds",
"types.TopRightBottomLeftGeoBounds",
"types.WktGeoBounds",
Dict[str, Any],
"DefaultType",
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
field=field,
precision=precision,
shard_size=shard_size,
size=size,
bounds=bounds,
**kwargs,
)
class GeohexGrid(Bucket[_R]):
"""
A multi-bucket aggregation that groups `geo_point` and `geo_shape`
values into buckets that represent a grid. Each cell corresponds to a
H3 cell index and is labeled using the H3Index representation.
:arg field: (required) Field containing indexed `geo_point` or
`geo_shape` values. If the field contains an array, `geohex_grid`
aggregates all array values.
:arg precision: Integer zoom of the key used to defined cells or
buckets in the results. Value should be between 0-15. Defaults to
`6` if omitted.
:arg bounds: Bounding box used to filter the geo-points in each
bucket.
:arg size: Maximum number of buckets to return. Defaults to `10000` if
omitted.
:arg shard_size: Number of buckets returned from each shard.
"""
name = "geohex_grid"
def __init__(
self,
*,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
precision: Union[int, "DefaultType"] = DEFAULT,
bounds: Union[
"types.CoordsGeoBounds",
"types.TopLeftBottomRightGeoBounds",
"types.TopRightBottomLeftGeoBounds",
"types.WktGeoBounds",
Dict[str, Any],
"DefaultType",
] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
field=field,
precision=precision,
bounds=bounds,
size=size,
shard_size=shard_size,
**kwargs,
)
class Global(Bucket[_R]):
"""
Defines a single bucket of all the documents within the search
execution context. This context is defined by the indices and the
document types you’re searching on, but is not influenced by the
search query itself.
"""
name = "global"
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
class Histogram(Bucket[_R]):
"""
A multi-bucket values source based aggregation that can be applied on
numeric values or numeric range values extracted from the documents.
It dynamically builds fixed size (interval) buckets over the values.
:arg extended_bounds: Enables extending the bounds of the histogram
beyond the data itself.
:arg hard_bounds: Limits the range of buckets in the histogram. It is
particularly useful in the case of open data ranges that can
result in a very large number of buckets.
:arg field: The name of the field to aggregate on.
:arg interval: The interval for the buckets. Must be a positive
decimal.
:arg min_doc_count: Only returns buckets that have `min_doc_count`
number of documents. By default, the response will fill gaps in
the histogram with empty buckets.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg offset: By default, the bucket keys start with 0 and then
continue in even spaced steps of `interval`. The bucket boundaries
can be shifted by using the `offset` option.
:arg order: The sort order of the returned buckets. By default, the
returned buckets are sorted by their key ascending.
:arg script:
:arg format:
:arg keyed: If `true`, returns buckets as a hash instead of an array,
keyed by the bucket keys.
"""
name = "histogram"
def __init__(
self,
*,
extended_bounds: Union[
"types.ExtendedBounds", Dict[str, Any], "DefaultType"
] = DEFAULT,
hard_bounds: Union[
"types.ExtendedBounds", Dict[str, Any], "DefaultType"
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
interval: Union[float, "DefaultType"] = DEFAULT,
min_doc_count: Union[int, "DefaultType"] = DEFAULT,
missing: Union[float, "DefaultType"] = DEFAULT,
offset: Union[float, "DefaultType"] = DEFAULT,
order: Union[
Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]],
Sequence[Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]]],
"DefaultType",
] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
keyed: Union[bool, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
extended_bounds=extended_bounds,
hard_bounds=hard_bounds,
field=field,
interval=interval,
min_doc_count=min_doc_count,
missing=missing,
offset=offset,
order=order,
script=script,
format=format,
keyed=keyed,
**kwargs,
)
def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
return FieldBucketData(self, search, data)
class IPRange(Bucket[_R]):
"""
A multi-bucket value source based aggregation that enables the user to
define a set of IP ranges - each representing a bucket.
:arg field: The date field whose values are used to build ranges.
:arg ranges: Array of IP ranges.
"""
name = "ip_range"
def __init__(
self,
*,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
ranges: Union[
Sequence["types.IpRangeAggregationRange"],
Sequence[Dict[str, Any]],
"DefaultType",
] = DEFAULT,
**kwargs: Any,
):
super().__init__(field=field, ranges=ranges, **kwargs)
class IPPrefix(Bucket[_R]):
"""
A bucket aggregation that groups documents based on the network or
sub-network of an IP address.
:arg field: (required) The IP address field to aggregation on. The
field mapping type must be `ip`.
:arg prefix_length: (required) Length of the network prefix. For IPv4
addresses the accepted range is [0, 32]. For IPv6 addresses the
accepted range is [0, 128].
:arg is_ipv6: Defines whether the prefix applies to IPv6 addresses.
:arg append_prefix_length: Defines whether the prefix length is
appended to IP address keys in the response.
:arg keyed: Defines whether buckets are returned as a hash rather than
an array in the response.
:arg min_doc_count: Minimum number of documents in a bucket for it to
be included in the response. Defaults to `1` if omitted.
"""
name = "ip_prefix"
def __init__(
self,
*,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
prefix_length: Union[int, "DefaultType"] = DEFAULT,
is_ipv6: Union[bool, "DefaultType"] = DEFAULT,
append_prefix_length: Union[bool, "DefaultType"] = DEFAULT,
keyed: Union[bool, "DefaultType"] = DEFAULT,
min_doc_count: Union[int, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
field=field,
prefix_length=prefix_length,
is_ipv6=is_ipv6,
append_prefix_length=append_prefix_length,
keyed=keyed,
min_doc_count=min_doc_count,
**kwargs,
)
class Inference(Pipeline[_R]):
"""
A parent pipeline aggregation which loads a pre-trained model and
performs inference on the collated result fields from the parent
bucket aggregation.
:arg model_id: (required) The ID or alias for the trained model.
:arg inference_config: Contains the inference type and its options.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "inference"
def __init__(
self,
*,
model_id: Union[str, "DefaultType"] = DEFAULT,
inference_config: Union[
"types.InferenceConfigContainer", Dict[str, Any], "DefaultType"
] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
model_id=model_id,
inference_config=inference_config,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class Line(Agg[_R]):
"""
:arg point: (required) The name of the geo_point field.
:arg sort: (required) The name of the numeric field to use as the sort
key for ordering the points. When the `geo_line` aggregation is
nested inside a `time_series` aggregation, this field defaults to
`@timestamp`, and any other value will result in error.
:arg include_sort: When `true`, returns an additional array of the
sort values in the feature properties.
:arg sort_order: The order in which the line is sorted (ascending or
descending). Defaults to `asc` if omitted.
:arg size: The maximum length of the line represented in the
aggregation. Valid sizes are between 1 and 10000. Defaults to
`10000` if omitted.
"""
name = "line"
def __init__(
self,
*,
point: Union["types.GeoLinePoint", Dict[str, Any], "DefaultType"] = DEFAULT,
sort: Union["types.GeoLineSort", Dict[str, Any], "DefaultType"] = DEFAULT,
include_sort: Union[bool, "DefaultType"] = DEFAULT,
sort_order: Union[Literal["asc", "desc"], "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
point=point,
sort=sort,
include_sort=include_sort,
sort_order=sort_order,
size=size,
**kwargs,
)
class MatrixStats(Agg[_R]):
"""
A numeric aggregation that computes the following statistics over a
set of document fields: `count`, `mean`, `variance`, `skewness`,
`kurtosis`, `covariance`, and `covariance`.
:arg mode: Array value the aggregation will use for array or multi-
valued fields. Defaults to `avg` if omitted.
:arg fields: An array of fields for computing the statistics.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
"""
name = "matrix_stats"
def __init__(
self,
*,
mode: Union[
Literal["min", "max", "sum", "avg", "median"], "DefaultType"
] = DEFAULT,
fields: Union[
Union[str, "InstrumentedField"],
Sequence[Union[str, "InstrumentedField"]],
"DefaultType",
] = DEFAULT,
missing: Union[
Mapping[Union[str, "InstrumentedField"], float], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(mode=mode, fields=fields, missing=missing, **kwargs)
class Max(Agg[_R]):
"""
A single-value metrics aggregation that returns the maximum value
among the numeric values extracted from the aggregated documents.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "max"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, field=field, missing=missing, script=script, **kwargs
)
class MaxBucket(Pipeline[_R]):
"""
A sibling pipeline aggregation which identifies the bucket(s) with the
maximum value of a specified metric in a sibling aggregation and
outputs both the value and the key(s) of the bucket(s).
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "max_bucket"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
)
class MedianAbsoluteDeviation(Agg[_R]):
"""
A single-value aggregation that approximates the median absolute
deviation of its search results.
:arg compression: Limits the maximum number of nodes used by the
underlying TDigest algorithm to `20 * compression`, enabling
control of memory usage and approximation error. Defaults to
`1000` if omitted.
:arg execution_hint: The default implementation of TDigest is
optimized for performance, scaling to millions or even billions of
sample values while maintaining acceptable accuracy levels (close
to 1% relative error for millions of samples in some cases). To
use an implementation optimized for accuracy, set this parameter
to high_accuracy instead. Defaults to `default` if omitted.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "median_absolute_deviation"
def __init__(
self,
*,
compression: Union[float, "DefaultType"] = DEFAULT,
execution_hint: Union[
Literal["default", "high_accuracy"], "DefaultType"
] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
compression=compression,
execution_hint=execution_hint,
format=format,
field=field,
missing=missing,
script=script,
**kwargs,
)
class Min(Agg[_R]):
"""
A single-value metrics aggregation that returns the minimum value
among numeric values extracted from the aggregated documents.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "min"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, field=field, missing=missing, script=script, **kwargs
)
class MinBucket(Pipeline[_R]):
"""
A sibling pipeline aggregation which identifies the bucket(s) with the
minimum value of a specified metric in a sibling aggregation and
outputs both the value and the key(s) of the bucket(s).
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "min_bucket"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
)
class Missing(Bucket[_R]):
"""
A field data based single bucket aggregation, that creates a bucket of
all documents in the current document set context that are missing a
field value (effectively, missing a field or having the configured
NULL value set).
:arg field: The name of the field.
:arg missing:
"""
name = "missing"
def __init__(
self,
*,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(field=field, missing=missing, **kwargs)
class MovingAvg(Pipeline[_R]):
""" """
name = "moving_avg"
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
class LinearMovingAverageAggregation(MovingAvg[_R]):
"""
:arg model: (required)
:arg settings: (required)
:arg minimize:
:arg predict:
:arg window:
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
def __init__(
self,
*,
model: Any = DEFAULT,
settings: Union["types.EmptyObject", Dict[str, Any], "DefaultType"] = DEFAULT,
minimize: Union[bool, "DefaultType"] = DEFAULT,
predict: Union[int, "DefaultType"] = DEFAULT,
window: Union[int, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
model=model,
settings=settings,
minimize=minimize,
predict=predict,
window=window,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class SimpleMovingAverageAggregation(MovingAvg[_R]):
"""
:arg model: (required)
:arg settings: (required)
:arg minimize:
:arg predict:
:arg window:
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
def __init__(
self,
*,
model: Any = DEFAULT,
settings: Union["types.EmptyObject", Dict[str, Any], "DefaultType"] = DEFAULT,
minimize: Union[bool, "DefaultType"] = DEFAULT,
predict: Union[int, "DefaultType"] = DEFAULT,
window: Union[int, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
model=model,
settings=settings,
minimize=minimize,
predict=predict,
window=window,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class EwmaMovingAverageAggregation(MovingAvg[_R]):
"""
:arg model: (required)
:arg settings: (required)
:arg minimize:
:arg predict:
:arg window:
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
def __init__(
self,
*,
model: Any = DEFAULT,
settings: Union[
"types.EwmaModelSettings", Dict[str, Any], "DefaultType"
] = DEFAULT,
minimize: Union[bool, "DefaultType"] = DEFAULT,
predict: Union[int, "DefaultType"] = DEFAULT,
window: Union[int, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
model=model,
settings=settings,
minimize=minimize,
predict=predict,
window=window,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class HoltMovingAverageAggregation(MovingAvg[_R]):
"""
:arg model: (required)
:arg settings: (required)
:arg minimize:
:arg predict:
:arg window:
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
def __init__(
self,
*,
model: Any = DEFAULT,
settings: Union[
"types.HoltLinearModelSettings", Dict[str, Any], "DefaultType"
] = DEFAULT,
minimize: Union[bool, "DefaultType"] = DEFAULT,
predict: Union[int, "DefaultType"] = DEFAULT,
window: Union[int, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
model=model,
settings=settings,
minimize=minimize,
predict=predict,
window=window,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class HoltWintersMovingAverageAggregation(MovingAvg[_R]):
"""
:arg model: (required)
:arg settings: (required)
:arg minimize:
:arg predict:
:arg window:
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
def __init__(
self,
*,
model: Any = DEFAULT,
settings: Union[
"types.HoltWintersModelSettings", Dict[str, Any], "DefaultType"
] = DEFAULT,
minimize: Union[bool, "DefaultType"] = DEFAULT,
predict: Union[int, "DefaultType"] = DEFAULT,
window: Union[int, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
model=model,
settings=settings,
minimize=minimize,
predict=predict,
window=window,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class MovingPercentiles(Pipeline[_R]):
"""
Given an ordered series of percentiles, "slides" a window across those
percentiles and computes cumulative percentiles.
:arg window: The size of window to "slide" across the histogram.
:arg shift: By default, the window consists of the last n values
excluding the current bucket. Increasing `shift` by 1, moves the
starting window position by 1 to the right.
:arg keyed:
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "moving_percentiles"
def __init__(
self,
*,
window: Union[int, "DefaultType"] = DEFAULT,
shift: Union[int, "DefaultType"] = DEFAULT,
keyed: Union[bool, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
window=window,
shift=shift,
keyed=keyed,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class MovingFn(Pipeline[_R]):
"""
Given an ordered series of data, "slides" a window across the data and
runs a custom script on each window of data. For convenience, a number
of common functions are predefined such as `min`, `max`, and moving
averages.
:arg script: The script that should be executed on each window of
data.
:arg shift: By default, the window consists of the last n values
excluding the current bucket. Increasing `shift` by 1, moves the
starting window position by 1 to the right.
:arg window: The size of window to "slide" across the histogram.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "moving_fn"
def __init__(
self,
*,
script: Union[str, "DefaultType"] = DEFAULT,
shift: Union[int, "DefaultType"] = DEFAULT,
window: Union[int, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
script=script,
shift=shift,
window=window,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class MultiTerms(Bucket[_R]):
"""
A multi-bucket value source based aggregation where buckets are
dynamically built - one per unique set of values.
:arg terms: (required) The field from which to generate sets of terms.
:arg collect_mode: Specifies the strategy for data collection.
Defaults to `breadth_first` if omitted.
:arg order: Specifies the sort order of the buckets. Defaults to
sorting by descending document count.
:arg min_doc_count: The minimum number of documents in a bucket for it
to be returned. Defaults to `1` if omitted.
:arg shard_min_doc_count: The minimum number of documents in a bucket
on each shard for it to be returned. Defaults to `1` if omitted.
:arg shard_size: The number of candidate terms produced by each shard.
By default, `shard_size` will be automatically estimated based on
the number of shards and the `size` parameter.
:arg show_term_doc_count_error: Calculates the doc count error on per
term basis.
:arg size: The number of term buckets should be returned out of the
overall terms list. Defaults to `10` if omitted.
"""
name = "multi_terms"
def __init__(
self,
*,
terms: Union[
Sequence["types.MultiTermLookup"], Sequence[Dict[str, Any]], "DefaultType"
] = DEFAULT,
collect_mode: Union[
Literal["depth_first", "breadth_first"], "DefaultType"
] = DEFAULT,
order: Union[
Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]],
Sequence[Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]]],
"DefaultType",
] = DEFAULT,
min_doc_count: Union[int, "DefaultType"] = DEFAULT,
shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
show_term_doc_count_error: Union[bool, "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
terms=terms,
collect_mode=collect_mode,
order=order,
min_doc_count=min_doc_count,
shard_min_doc_count=shard_min_doc_count,
shard_size=shard_size,
show_term_doc_count_error=show_term_doc_count_error,
size=size,
**kwargs,
)
class Nested(Bucket[_R]):
"""
A special single bucket aggregation that enables aggregating nested
documents.
:arg path: The path to the field of type `nested`.
"""
name = "nested"
def __init__(
self,
path: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(path=path, **kwargs)
class Normalize(Pipeline[_R]):
"""
A parent pipeline aggregation which calculates the specific
normalized/rescaled value for a specific bucket value.
:arg method: The specific method to apply.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "normalize"
def __init__(
self,
*,
method: Union[
Literal[
"rescale_0_1",
"rescale_0_100",
"percent_of_sum",
"mean",
"z-score",
"softmax",
],
"DefaultType",
] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
method=method,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class Parent(Bucket[_R]):
"""
A special single bucket aggregation that selects parent documents that
have the specified type, as defined in a `join` field.
:arg type: The child type that should be selected.
"""
name = "parent"
def __init__(self, type: Union[str, "DefaultType"] = DEFAULT, **kwargs: Any):
super().__init__(type=type, **kwargs)
class PercentileRanks(Agg[_R]):
"""
A multi-value metrics aggregation that calculates one or more
percentile ranks over numeric values extracted from the aggregated
documents.
:arg keyed: By default, the aggregation associates a unique string key
with each bucket and returns the ranges as a hash rather than an
array. Set to `false` to disable this behavior. Defaults to `True`
if omitted.
:arg values: An array of values for which to calculate the percentile
ranks.
:arg hdr: Uses the alternative High Dynamic Range Histogram algorithm
to calculate percentile ranks.
:arg tdigest: Sets parameters for the default TDigest algorithm used
to calculate percentile ranks.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "percentile_ranks"
def __init__(
self,
*,
keyed: Union[bool, "DefaultType"] = DEFAULT,
values: Union[Sequence[float], None, "DefaultType"] = DEFAULT,
hdr: Union["types.HdrMethod", Dict[str, Any], "DefaultType"] = DEFAULT,
tdigest: Union["types.TDigest", Dict[str, Any], "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
keyed=keyed,
values=values,
hdr=hdr,
tdigest=tdigest,
format=format,
field=field,
missing=missing,
script=script,
**kwargs,
)
class Percentiles(Agg[_R]):
"""
A multi-value metrics aggregation that calculates one or more
percentiles over numeric values extracted from the aggregated
documents.
:arg keyed: By default, the aggregation associates a unique string key
with each bucket and returns the ranges as a hash rather than an
array. Set to `false` to disable this behavior. Defaults to `True`
if omitted.
:arg percents: The percentiles to calculate.
:arg hdr: Uses the alternative High Dynamic Range Histogram algorithm
to calculate percentiles.
:arg tdigest: Sets parameters for the default TDigest algorithm used
to calculate percentiles.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "percentiles"
def __init__(
self,
*,
keyed: Union[bool, "DefaultType"] = DEFAULT,
percents: Union[Sequence[float], "DefaultType"] = DEFAULT,
hdr: Union["types.HdrMethod", Dict[str, Any], "DefaultType"] = DEFAULT,
tdigest: Union["types.TDigest", Dict[str, Any], "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
keyed=keyed,
percents=percents,
hdr=hdr,
tdigest=tdigest,
format=format,
field=field,
missing=missing,
script=script,
**kwargs,
)
class PercentilesBucket(Pipeline[_R]):
"""
A sibling pipeline aggregation which calculates percentiles across all
bucket of a specified metric in a sibling aggregation.
:arg percents: The list of percentiles to calculate.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "percentiles_bucket"
def __init__(
self,
*,
percents: Union[Sequence[float], "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
percents=percents,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class Range(Bucket[_R]):
"""
A multi-bucket value source based aggregation that enables the user to
define a set of ranges - each representing a bucket.
:arg field: The date field whose values are use to build ranges.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg ranges: An array of ranges used to bucket documents.
:arg script:
:arg keyed: Set to `true` to associate a unique string key with each
bucket and return the ranges as a hash rather than an array.
:arg format:
"""
name = "range"
def __init__(
self,
*,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[int, "DefaultType"] = DEFAULT,
ranges: Union[
Sequence["wrappers.AggregationRange"],
Sequence[Dict[str, Any]],
"DefaultType",
] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
keyed: Union[bool, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
field=field,
missing=missing,
ranges=ranges,
script=script,
keyed=keyed,
format=format,
**kwargs,
)
class RareTerms(Bucket[_R]):
"""
A multi-bucket value source based aggregation which finds "rare"
terms — terms that are at the long-tail of the distribution and are
not frequent.
:arg exclude: Terms that should be excluded from the aggregation.
:arg field: The field from which to return rare terms.
:arg include: Terms that should be included in the aggregation.
:arg max_doc_count: The maximum number of documents a term should
appear in. Defaults to `1` if omitted.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg precision: The precision of the internal CuckooFilters. Smaller
precision leads to better approximation, but higher memory usage.
Defaults to `0.001` if omitted.
:arg value_type:
"""
name = "rare_terms"
def __init__(
self,
*,
exclude: Union[str, Sequence[str], "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
include: Union[
str, Sequence[str], "types.TermsPartition", Dict[str, Any], "DefaultType"
] = DEFAULT,
max_doc_count: Union[int, "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
precision: Union[float, "DefaultType"] = DEFAULT,
value_type: Union[str, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
exclude=exclude,
field=field,
include=include,
max_doc_count=max_doc_count,
missing=missing,
precision=precision,
value_type=value_type,
**kwargs,
)
class Rate(Agg[_R]):
"""
Calculates a rate of documents or a field in each bucket. Can only be
used inside a `date_histogram` or `composite` aggregation.
:arg unit: The interval used to calculate the rate. By default, the
interval of the `date_histogram` is used.
:arg mode: How the rate is calculated. Defaults to `sum` if omitted.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "rate"
def __init__(
self,
*,
unit: Union[
Literal[
"second", "minute", "hour", "day", "week", "month", "quarter", "year"
],
"DefaultType",
] = DEFAULT,
mode: Union[Literal["sum", "value_count"], "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
unit=unit,
mode=mode,
format=format,
field=field,
missing=missing,
script=script,
**kwargs,
)
class ReverseNested(Bucket[_R]):
"""
A special single bucket aggregation that enables aggregating on parent
documents from nested documents. Should only be defined inside a
`nested` aggregation.
:arg path: Defines the nested object field that should be joined back
to. The default is empty, which means that it joins back to the
root/main document level.
"""
name = "reverse_nested"
def __init__(
self,
path: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(path=path, **kwargs)
class RandomSampler(Bucket[_R]):
"""
A single bucket aggregation that randomly includes documents in the
aggregated results. Sampling provides significant speed improvement at
the cost of accuracy.
:arg probability: (required) The probability that a document will be
included in the aggregated data. Must be greater than 0, less than
0.5, or exactly 1. The lower the probability, the fewer documents
are matched.
:arg seed: The seed to generate the random sampling of documents. When
a seed is provided, the random subset of documents is the same
between calls.
:arg shard_seed: When combined with seed, setting shard_seed ensures
100% consistent sampling over shards where data is exactly the
same.
"""
name = "random_sampler"
def __init__(
self,
*,
probability: Union[float, "DefaultType"] = DEFAULT,
seed: Union[int, "DefaultType"] = DEFAULT,
shard_seed: Union[int, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
probability=probability, seed=seed, shard_seed=shard_seed, **kwargs
)
class Sampler(Bucket[_R]):
"""
A filtering aggregation used to limit any sub aggregations' processing
to a sample of the top-scoring documents.
:arg shard_size: Limits how many top-scoring documents are collected
in the sample processed on each shard. Defaults to `100` if
omitted.
"""
name = "sampler"
def __init__(self, shard_size: Union[int, "DefaultType"] = DEFAULT, **kwargs: Any):
super().__init__(shard_size=shard_size, **kwargs)
class ScriptedMetric(Agg[_R]):
"""
A metric aggregation that uses scripts to provide a metric output.
:arg combine_script: Runs once on each shard after document collection
is complete. Allows the aggregation to consolidate the state
returned from each shard.
:arg init_script: Runs prior to any collection of documents. Allows
the aggregation to set up any initial state.
:arg map_script: Run once per document collected. If no
`combine_script` is specified, the resulting state needs to be
stored in the `state` object.
:arg params: A global object with script parameters for `init`, `map`
and `combine` scripts. It is shared between the scripts.
:arg reduce_script: Runs once on the coordinating node after all
shards have returned their results. The script is provided with
access to a variable `states`, which is an array of the result of
the `combine_script` on each shard.
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "scripted_metric"
def __init__(
self,
*,
combine_script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
init_script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
map_script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
params: Union[Mapping[str, Any], "DefaultType"] = DEFAULT,
reduce_script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
combine_script=combine_script,
init_script=init_script,
map_script=map_script,
params=params,
reduce_script=reduce_script,
field=field,
missing=missing,
script=script,
**kwargs,
)
class SerialDiff(Pipeline[_R]):
"""
An aggregation that subtracts values in a time series from themselves
at different time lags or periods.
:arg lag: The historical bucket to subtract from the current value.
Must be a positive, non-zero integer.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "serial_diff"
def __init__(
self,
*,
lag: Union[int, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
lag=lag,
format=format,
gap_policy=gap_policy,
buckets_path=buckets_path,
**kwargs,
)
class SignificantTerms(Bucket[_R]):
"""
Returns interesting or unusual occurrences of terms in a set.
:arg background_filter: A background filter that can be used to focus
in on significant terms within a narrower context, instead of the
entire index.
:arg chi_square: Use Chi square, as described in "Information
Retrieval", Manning et al., Chapter 13.5.2, as the significance
score.
:arg exclude: Terms to exclude.
:arg execution_hint: Mechanism by which the aggregation should be
executed: using field values directly or using global ordinals.
:arg field: The field from which to return significant terms.
:arg gnd: Use Google normalized distance as described in "The Google
Similarity Distance", Cilibrasi and Vitanyi, 2007, as the
significance score.
:arg include: Terms to include.
:arg jlh: Use JLH score as the significance score.
:arg min_doc_count: Only return terms that are found in more than
`min_doc_count` hits. Defaults to `3` if omitted.
:arg mutual_information: Use mutual information as described in
"Information Retrieval", Manning et al., Chapter 13.5.1, as the
significance score.
:arg percentage: A simple calculation of the number of documents in
the foreground sample with a term divided by the number of
documents in the background with the term.
:arg script_heuristic: Customized score, implemented via a script.
:arg shard_min_doc_count: Regulates the certainty a shard has if the
term should actually be added to the candidate list or not with
respect to the `min_doc_count`. Terms will only be considered if
their local shard frequency within the set is higher than the
`shard_min_doc_count`.
:arg shard_size: Can be used to control the volumes of candidate terms
produced by each shard. By default, `shard_size` will be
automatically estimated based on the number of shards and the
`size` parameter.
:arg size: The number of buckets returned out of the overall terms
list.
"""
name = "significant_terms"
_param_defs = {
"background_filter": {"type": "query"},
}
def __init__(
self,
*,
background_filter: Union[Query, "DefaultType"] = DEFAULT,
chi_square: Union[
"types.ChiSquareHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
exclude: Union[str, Sequence[str], "DefaultType"] = DEFAULT,
execution_hint: Union[
Literal[
"map",
"global_ordinals",
"global_ordinals_hash",
"global_ordinals_low_cardinality",
],
"DefaultType",
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
gnd: Union[
"types.GoogleNormalizedDistanceHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
include: Union[
str, Sequence[str], "types.TermsPartition", Dict[str, Any], "DefaultType"
] = DEFAULT,
jlh: Union["types.EmptyObject", Dict[str, Any], "DefaultType"] = DEFAULT,
min_doc_count: Union[int, "DefaultType"] = DEFAULT,
mutual_information: Union[
"types.MutualInformationHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
percentage: Union[
"types.PercentageScoreHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
script_heuristic: Union[
"types.ScriptedHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
background_filter=background_filter,
chi_square=chi_square,
exclude=exclude,
execution_hint=execution_hint,
field=field,
gnd=gnd,
include=include,
jlh=jlh,
min_doc_count=min_doc_count,
mutual_information=mutual_information,
percentage=percentage,
script_heuristic=script_heuristic,
shard_min_doc_count=shard_min_doc_count,
shard_size=shard_size,
size=size,
**kwargs,
)
class SignificantText(Bucket[_R]):
"""
Returns interesting or unusual occurrences of free-text terms in a
set.
:arg background_filter: A background filter that can be used to focus
in on significant terms within a narrower context, instead of the
entire index.
:arg chi_square: Use Chi square, as described in "Information
Retrieval", Manning et al., Chapter 13.5.2, as the significance
score.
:arg exclude: Values to exclude.
:arg execution_hint: Determines whether the aggregation will use field
values directly or global ordinals.
:arg field: The field from which to return significant text.
:arg filter_duplicate_text: Whether to out duplicate text to deal with
noisy data.
:arg gnd: Use Google normalized distance as described in "The Google
Similarity Distance", Cilibrasi and Vitanyi, 2007, as the
significance score.
:arg include: Values to include.
:arg jlh: Use JLH score as the significance score.
:arg min_doc_count: Only return values that are found in more than
`min_doc_count` hits. Defaults to `3` if omitted.
:arg mutual_information: Use mutual information as described in
"Information Retrieval", Manning et al., Chapter 13.5.1, as the
significance score.
:arg percentage: A simple calculation of the number of documents in
the foreground sample with a term divided by the number of
documents in the background with the term.
:arg script_heuristic: Customized score, implemented via a script.
:arg shard_min_doc_count: Regulates the certainty a shard has if the
values should actually be added to the candidate list or not with
respect to the min_doc_count. Values will only be considered if
their local shard frequency within the set is higher than the
`shard_min_doc_count`.
:arg shard_size: The number of candidate terms produced by each shard.
By default, `shard_size` will be automatically estimated based on
the number of shards and the `size` parameter.
:arg size: The number of buckets returned out of the overall terms
list.
:arg source_fields: Overrides the JSON `_source` fields from which
text will be analyzed.
"""
name = "significant_text"
_param_defs = {
"background_filter": {"type": "query"},
}
def __init__(
self,
*,
background_filter: Union[Query, "DefaultType"] = DEFAULT,
chi_square: Union[
"types.ChiSquareHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
exclude: Union[str, Sequence[str], "DefaultType"] = DEFAULT,
execution_hint: Union[
Literal[
"map",
"global_ordinals",
"global_ordinals_hash",
"global_ordinals_low_cardinality",
],
"DefaultType",
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
filter_duplicate_text: Union[bool, "DefaultType"] = DEFAULT,
gnd: Union[
"types.GoogleNormalizedDistanceHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
include: Union[
str, Sequence[str], "types.TermsPartition", Dict[str, Any], "DefaultType"
] = DEFAULT,
jlh: Union["types.EmptyObject", Dict[str, Any], "DefaultType"] = DEFAULT,
min_doc_count: Union[int, "DefaultType"] = DEFAULT,
mutual_information: Union[
"types.MutualInformationHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
percentage: Union[
"types.PercentageScoreHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
script_heuristic: Union[
"types.ScriptedHeuristic", Dict[str, Any], "DefaultType"
] = DEFAULT,
shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
source_fields: Union[
Union[str, "InstrumentedField"],
Sequence[Union[str, "InstrumentedField"]],
"DefaultType",
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
background_filter=background_filter,
chi_square=chi_square,
exclude=exclude,
execution_hint=execution_hint,
field=field,
filter_duplicate_text=filter_duplicate_text,
gnd=gnd,
include=include,
jlh=jlh,
min_doc_count=min_doc_count,
mutual_information=mutual_information,
percentage=percentage,
script_heuristic=script_heuristic,
shard_min_doc_count=shard_min_doc_count,
shard_size=shard_size,
size=size,
source_fields=source_fields,
**kwargs,
)
class Stats(Agg[_R]):
"""
A multi-value metrics aggregation that computes stats over numeric
values extracted from the aggregated documents.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "stats"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, field=field, missing=missing, script=script, **kwargs
)
class StatsBucket(Pipeline[_R]):
"""
A sibling pipeline aggregation which calculates a variety of stats
across all bucket of a specified metric in a sibling aggregation.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "stats_bucket"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
)
class StringStats(Agg[_R]):
"""
A multi-value metrics aggregation that computes statistics over string
values extracted from the aggregated documents.
:arg show_distribution: Shows the probability distribution for all
characters.
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "string_stats"
def __init__(
self,
*,
show_distribution: Union[bool, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
show_distribution=show_distribution,
field=field,
missing=missing,
script=script,
**kwargs,
)
class Sum(Agg[_R]):
"""
A single-value metrics aggregation that sums numeric values that are
extracted from the aggregated documents.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "sum"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, field=field, missing=missing, script=script, **kwargs
)
class SumBucket(Pipeline[_R]):
"""
A sibling pipeline aggregation which calculates the sum of a specified
metric across all buckets in a sibling aggregation.
:arg format: `DecimalFormat` pattern for the output value. If
specified, the formatted value is returned in the aggregation’s
`value_as_string` property.
:arg gap_policy: Policy to apply when gaps are found in the data.
Defaults to `skip` if omitted.
:arg buckets_path: Path to the buckets that contain one set of values
to correlate.
"""
name = "sum_bucket"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
gap_policy: Union[
Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
] = DEFAULT,
buckets_path: Union[
str, Sequence[str], Mapping[str, str], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
)
class Terms(Bucket[_R]):
"""
A multi-bucket value source based aggregation where buckets are
dynamically built - one per unique value.
:arg collect_mode: Determines how child aggregations should be
calculated: breadth-first or depth-first.
:arg exclude: Values to exclude. Accepts regular expressions and
partitions.
:arg execution_hint: Determines whether the aggregation will use field
values directly or global ordinals.
:arg field: The field from which to return terms.
:arg include: Values to include. Accepts regular expressions and
partitions.
:arg min_doc_count: Only return values that are found in more than
`min_doc_count` hits. Defaults to `1` if omitted.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg missing_order:
:arg missing_bucket:
:arg value_type: Coerced unmapped fields into the specified type.
:arg order: Specifies the sort order of the buckets. Defaults to
sorting by descending document count.
:arg script:
:arg shard_min_doc_count: Regulates the certainty a shard has if the
term should actually be added to the candidate list or not with
respect to the `min_doc_count`. Terms will only be considered if
their local shard frequency within the set is higher than the
`shard_min_doc_count`.
:arg shard_size: The number of candidate terms produced by each shard.
By default, `shard_size` will be automatically estimated based on
the number of shards and the `size` parameter.
:arg show_term_doc_count_error: Set to `true` to return the
`doc_count_error_upper_bound`, which is an upper bound to the
error on the `doc_count` returned by each shard.
:arg size: The number of buckets returned out of the overall terms
list. Defaults to `10` if omitted.
:arg format:
"""
name = "terms"
def __init__(
self,
*,
collect_mode: Union[
Literal["depth_first", "breadth_first"], "DefaultType"
] = DEFAULT,
exclude: Union[str, Sequence[str], "DefaultType"] = DEFAULT,
execution_hint: Union[
Literal[
"map",
"global_ordinals",
"global_ordinals_hash",
"global_ordinals_low_cardinality",
],
"DefaultType",
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
include: Union[
str, Sequence[str], "types.TermsPartition", Dict[str, Any], "DefaultType"
] = DEFAULT,
min_doc_count: Union[int, "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
missing_order: Union[
Literal["first", "last", "default"], "DefaultType"
] = DEFAULT,
missing_bucket: Union[bool, "DefaultType"] = DEFAULT,
value_type: Union[str, "DefaultType"] = DEFAULT,
order: Union[
Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]],
Sequence[Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]]],
"DefaultType",
] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
show_term_doc_count_error: Union[bool, "DefaultType"] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
format: Union[str, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
collect_mode=collect_mode,
exclude=exclude,
execution_hint=execution_hint,
field=field,
include=include,
min_doc_count=min_doc_count,
missing=missing,
missing_order=missing_order,
missing_bucket=missing_bucket,
value_type=value_type,
order=order,
script=script,
shard_min_doc_count=shard_min_doc_count,
shard_size=shard_size,
show_term_doc_count_error=show_term_doc_count_error,
size=size,
format=format,
**kwargs,
)
def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
return FieldBucketData(self, search, data)
class TimeSeries(Bucket[_R]):
"""
The time series aggregation queries data created using a time series
index. This is typically data such as metrics or other data streams
with a time component, and requires creating an index using the time
series mode.
:arg size: The maximum number of results to return. Defaults to
`10000` if omitted.
:arg keyed: Set to `true` to associate a unique string key with each
bucket and returns the ranges as a hash rather than an array.
"""
name = "time_series"
def __init__(
self,
*,
size: Union[int, "DefaultType"] = DEFAULT,
keyed: Union[bool, "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(size=size, keyed=keyed, **kwargs)
class TopHits(Agg[_R]):
"""
A metric aggregation that returns the top matching documents per
bucket.
:arg docvalue_fields: Fields for which to return doc values.
:arg explain: If `true`, returns detailed information about score
computation as part of a hit.
:arg fields: Array of wildcard (*) patterns. The request returns
values for field names matching these patterns in the hits.fields
property of the response.
:arg from: Starting document offset.
:arg highlight: Specifies the highlighter to use for retrieving
highlighted snippets from one or more fields in the search
results.
:arg script_fields: Returns the result of one or more script
evaluations for each hit.
:arg size: The maximum number of top matching hits to return per
bucket. Defaults to `3` if omitted.
:arg sort: Sort order of the top matching hits. By default, the hits
are sorted by the score of the main query.
:arg _source: Selects the fields of the source that are returned.
:arg stored_fields: Returns values for the specified stored fields
(fields that use the `store` mapping option).
:arg track_scores: If `true`, calculates and returns document scores,
even if the scores are not used for sorting.
:arg version: If `true`, returns document version as part of a hit.
:arg seq_no_primary_term: If `true`, returns sequence number and
primary term of the last modification of each hit.
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "top_hits"
def __init__(
self,
*,
docvalue_fields: Union[
Sequence["types.FieldAndFormat"], Sequence[Dict[str, Any]], "DefaultType"
] = DEFAULT,
explain: Union[bool, "DefaultType"] = DEFAULT,
fields: Union[
Sequence["types.FieldAndFormat"], Sequence[Dict[str, Any]], "DefaultType"
] = DEFAULT,
from_: Union[int, "DefaultType"] = DEFAULT,
highlight: Union["types.Highlight", Dict[str, Any], "DefaultType"] = DEFAULT,
script_fields: Union[
Mapping[str, "types.ScriptField"], Dict[str, Any], "DefaultType"
] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
sort: Union[
Union[Union[str, "InstrumentedField"], "types.SortOptions"],
Sequence[Union[Union[str, "InstrumentedField"], "types.SortOptions"]],
Dict[str, Any],
"DefaultType",
] = DEFAULT,
_source: Union[
bool, "types.SourceFilter", Dict[str, Any], "DefaultType"
] = DEFAULT,
stored_fields: Union[
Union[str, "InstrumentedField"],
Sequence[Union[str, "InstrumentedField"]],
"DefaultType",
] = DEFAULT,
track_scores: Union[bool, "DefaultType"] = DEFAULT,
version: Union[bool, "DefaultType"] = DEFAULT,
seq_no_primary_term: Union[bool, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
docvalue_fields=docvalue_fields,
explain=explain,
fields=fields,
from_=from_,
highlight=highlight,
script_fields=script_fields,
size=size,
sort=sort,
_source=_source,
stored_fields=stored_fields,
track_scores=track_scores,
version=version,
seq_no_primary_term=seq_no_primary_term,
field=field,
missing=missing,
script=script,
**kwargs,
)
def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
return TopHitsData(self, search, data)
class TTest(Agg[_R]):
"""
A metrics aggregation that performs a statistical hypothesis test in
which the test statistic follows a Student’s t-distribution under the
null hypothesis on numeric values extracted from the aggregated
documents.
:arg a: Test population A.
:arg b: Test population B.
:arg type: The type of test. Defaults to `heteroscedastic` if omitted.
"""
name = "t_test"
def __init__(
self,
*,
a: Union["types.TestPopulation", Dict[str, Any], "DefaultType"] = DEFAULT,
b: Union["types.TestPopulation", Dict[str, Any], "DefaultType"] = DEFAULT,
type: Union[
Literal["paired", "homoscedastic", "heteroscedastic"], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(a=a, b=b, type=type, **kwargs)
class TopMetrics(Agg[_R]):
"""
A metric aggregation that selects metrics from the document with the
largest or smallest sort value.
:arg metrics: The fields of the top document to return.
:arg size: The number of top documents from which to return metrics.
Defaults to `1` if omitted.
:arg sort: The sort order of the documents.
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "top_metrics"
def __init__(
self,
*,
metrics: Union[
"types.TopMetricsValue",
Sequence["types.TopMetricsValue"],
Sequence[Dict[str, Any]],
"DefaultType",
] = DEFAULT,
size: Union[int, "DefaultType"] = DEFAULT,
sort: Union[
Union[Union[str, "InstrumentedField"], "types.SortOptions"],
Sequence[Union[Union[str, "InstrumentedField"], "types.SortOptions"]],
Dict[str, Any],
"DefaultType",
] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
metrics=metrics,
size=size,
sort=sort,
field=field,
missing=missing,
script=script,
**kwargs,
)
class ValueCount(Agg[_R]):
"""
A single-value metrics aggregation that counts the number of values
that are extracted from the aggregated documents.
:arg format:
:arg field: The field on which to run the aggregation.
:arg missing: The value to apply to documents that do not have a
value. By default, documents without a value are ignored.
:arg script:
"""
name = "value_count"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, field=field, missing=missing, script=script, **kwargs
)
class WeightedAvg(Agg[_R]):
"""
A single-value metrics aggregation that computes the weighted average
of numeric values that are extracted from the aggregated documents.
:arg format: A numeric response formatter.
:arg value: Configuration for the field that provides the values.
:arg value_type:
:arg weight: Configuration for the field or script that provides the
weights.
"""
name = "weighted_avg"
def __init__(
self,
*,
format: Union[str, "DefaultType"] = DEFAULT,
value: Union[
"types.WeightedAverageValue", Dict[str, Any], "DefaultType"
] = DEFAULT,
value_type: Union[
Literal[
"string",
"long",
"double",
"number",
"date",
"date_nanos",
"ip",
"numeric",
"geo_point",
"boolean",
],
"DefaultType",
] = DEFAULT,
weight: Union[
"types.WeightedAverageValue", Dict[str, Any], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
super().__init__(
format=format, value=value, value_type=value_type, weight=weight, **kwargs
)
class VariableWidthHistogram(Bucket[_R]):
"""
A multi-bucket aggregation similar to the histogram, except instead of
providing an interval to use as the width of each bucket, a target
number of buckets is provided.
:arg field: The name of the field.
:arg buckets: The target number of buckets. Defaults to `10` if
omitted.
:arg shard_size: The number of buckets that the coordinating node will
request from each shard. Defaults to `buckets * 50`.
:arg initial_buffer: Specifies the number of individual documents that
will be stored in memory on a shard before the initial bucketing
algorithm is run. Defaults to `min(10 * shard_size, 50000)`.
:arg script:
"""
name = "variable_width_histogram"
def __init__(
self,
*,
field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
buckets: Union[int, "DefaultType"] = DEFAULT,
shard_size: Union[int, "DefaultType"] = DEFAULT,
initial_buffer: Union[int, "DefaultType"] = DEFAULT,
script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
**kwargs: Any,
):
super().__init__(
field=field,
buckets=buckets,
shard_size=shard_size,
initial_buffer=initial_buffer,
script=script,
**kwargs,
)
def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
return FieldBucketData(self, search, data)
|