File: aggs.py

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (3754 lines) | stat: -rw-r--r-- 132,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
#  Licensed to Elasticsearch B.V. under one or more contributor
#  license agreements. See the NOTICE file distributed with
#  this work for additional information regarding copyright
#  ownership. Elasticsearch B.V. licenses this file to you under
#  the Apache License, Version 2.0 (the "License"); you may
#  not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
# 	http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing,
#  software distributed under the License is distributed on an
#  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#  KIND, either express or implied.  See the License for the
#  specific language governing permissions and limitations
#  under the License.

import collections.abc
from copy import deepcopy
from typing import (
    TYPE_CHECKING,
    Any,
    ClassVar,
    Dict,
    Generic,
    Iterable,
    Literal,
    Mapping,
    MutableMapping,
    Optional,
    Sequence,
    Union,
    cast,
)

from elastic_transport.client_utils import DEFAULT

from . import wrappers
from .query import Query
from .response.aggs import AggResponse, BucketData, FieldBucketData, TopHitsData
from .utils import _R, AttrDict, DslBase

if TYPE_CHECKING:
    from elastic_transport.client_utils import DefaultType

    from . import types
    from .document_base import InstrumentedField
    from .search_base import SearchBase


def A(
    name_or_agg: Union[MutableMapping[str, Any], "Agg[_R]", str],
    filter: Optional[Union[str, "Query"]] = None,
    **params: Any,
) -> "Agg[_R]":
    if filter is not None:
        if name_or_agg != "filter":
            raise ValueError(
                "Aggregation %r doesn't accept positional argument 'filter'."
                % name_or_agg
            )
        params["filter"] = filter

    # {"terms": {"field": "tags"}, "aggs": {...}}
    if isinstance(name_or_agg, collections.abc.MutableMapping):
        if params:
            raise ValueError("A() cannot accept parameters when passing in a dict.")
        # copy to avoid modifying in-place
        agg = deepcopy(name_or_agg)
        # pop out nested aggs
        aggs = agg.pop("aggs", None)
        # pop out meta data
        meta = agg.pop("meta", None)
        # should be {"terms": {"field": "tags"}}
        if len(agg) != 1:
            raise ValueError(
                'A() can only accept dict with an aggregation ({"terms": {...}}). '
                "Instead it got (%r)" % name_or_agg
            )
        agg_type, params = agg.popitem()
        if aggs:
            params = params.copy()
            params["aggs"] = aggs
        if meta:
            params = params.copy()
            params["meta"] = meta
        return Agg[_R].get_dsl_class(agg_type)(_expand__to_dot=False, **params)

    # Terms(...) just return the nested agg
    elif isinstance(name_or_agg, Agg):
        if params:
            raise ValueError(
                "A() cannot accept parameters when passing in an Agg object."
            )
        return name_or_agg

    # "terms", field="tags"
    return Agg[_R].get_dsl_class(name_or_agg)(**params)


class Agg(DslBase, Generic[_R]):
    _type_name = "agg"
    _type_shortcut = staticmethod(A)
    name = ""

    def __contains__(self, key: str) -> bool:
        return False

    def to_dict(self) -> Dict[str, Any]:
        d = super().to_dict()
        if isinstance(d[self.name], dict):
            n = cast(Dict[str, Any], d[self.name])
            if "meta" in n:
                d["meta"] = n.pop("meta")
        return d

    def result(self, search: "SearchBase[_R]", data: Dict[str, Any]) -> AttrDict[Any]:
        return AggResponse[_R](self, search, data)


class AggBase(Generic[_R]):
    aggs: Dict[str, Agg[_R]]
    _base: Agg[_R]
    _params: Dict[str, Any]
    _param_defs: ClassVar[Dict[str, Any]] = {
        "aggs": {"type": "agg", "hash": True},
    }

    def __contains__(self, key: str) -> bool:
        return key in self._params.get("aggs", {})

    def __getitem__(self, agg_name: str) -> Agg[_R]:
        agg = cast(
            Agg[_R], self._params.setdefault("aggs", {})[agg_name]
        )  # propagate KeyError

        # make sure we're not mutating a shared state - whenever accessing a
        # bucket, return a shallow copy of it to be safe
        if isinstance(agg, Bucket):
            agg = A(agg.name, **agg._params)
            # be sure to store the copy so any modifications to it will affect us
            self._params["aggs"][agg_name] = agg

        return agg

    def __setitem__(self, agg_name: str, agg: Agg[_R]) -> None:
        self.aggs[agg_name] = A(agg)

    def __iter__(self) -> Iterable[str]:
        return iter(self.aggs)

    def _agg(
        self,
        bucket: bool,
        name: str,
        agg_type: Union[Dict[str, Any], Agg[_R], str],
        *args: Any,
        **params: Any,
    ) -> Agg[_R]:
        agg = self[name] = A(agg_type, *args, **params)

        # For chaining - when creating new buckets return them...
        if bucket:
            return agg
        # otherwise return self._base so we can keep chaining
        else:
            return self._base

    def metric(
        self,
        name: str,
        agg_type: Union[Dict[str, Any], Agg[_R], str],
        *args: Any,
        **params: Any,
    ) -> Agg[_R]:
        return self._agg(False, name, agg_type, *args, **params)

    def bucket(
        self,
        name: str,
        agg_type: Union[Dict[str, Any], Agg[_R], str],
        *args: Any,
        **params: Any,
    ) -> "Bucket[_R]":
        return cast("Bucket[_R]", self._agg(True, name, agg_type, *args, **params))

    def pipeline(
        self,
        name: str,
        agg_type: Union[Dict[str, Any], Agg[_R], str],
        *args: Any,
        **params: Any,
    ) -> "Pipeline[_R]":
        return cast("Pipeline[_R]", self._agg(False, name, agg_type, *args, **params))

    def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
        return BucketData(self, search, data)  # type: ignore[arg-type]


class Bucket(AggBase[_R], Agg[_R]):
    def __init__(self, **params: Any):
        super().__init__(**params)
        # remember self for chaining
        self._base = self

    def to_dict(self) -> Dict[str, Any]:
        d = super(AggBase, self).to_dict()
        if isinstance(d[self.name], dict):
            n = cast(AttrDict[Any], d[self.name])
            if "aggs" in n:
                d["aggs"] = n.pop("aggs")
        return d


class Pipeline(Agg[_R]):
    pass


class AdjacencyMatrix(Bucket[_R]):
    """
    A bucket aggregation returning a form of adjacency matrix. The request
    provides a collection of named filter expressions, similar to the
    `filters` aggregation. Each bucket in the response represents a non-
    empty cell in the matrix of intersecting filters.

    :arg filters: Filters used to create buckets. At least one filter is
        required.
    :arg separator: Separator used to concatenate filter names. Defaults
        to &.
    """

    name = "adjacency_matrix"
    _param_defs = {
        "filters": {"type": "query", "hash": True},
    }

    def __init__(
        self,
        *,
        filters: Union[Mapping[str, Query], "DefaultType"] = DEFAULT,
        separator: Union[str, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(filters=filters, separator=separator, **kwargs)


class AutoDateHistogram(Bucket[_R]):
    """
    A multi-bucket aggregation similar to the date histogram, except
    instead of providing an interval to use as the width of each bucket, a
    target number of buckets is provided.

    :arg buckets: The target number of buckets. Defaults to `10` if
        omitted.
    :arg field: The field on which to run the aggregation.
    :arg format: The date format used to format `key_as_string` in the
        response. If no `format` is specified, the first date format
        specified in the field mapping is used.
    :arg minimum_interval: The minimum rounding interval. This can make
        the collection process more efficient, as the aggregation will not
        attempt to round at any interval lower than `minimum_interval`.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg offset: Time zone specified as a ISO 8601 UTC offset.
    :arg params:
    :arg script:
    :arg time_zone: Time zone ID.
    """

    name = "auto_date_histogram"

    def __init__(
        self,
        *,
        buckets: Union[int, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        minimum_interval: Union[
            Literal["second", "minute", "hour", "day", "month", "year"], "DefaultType"
        ] = DEFAULT,
        missing: Any = DEFAULT,
        offset: Union[str, "DefaultType"] = DEFAULT,
        params: Union[Mapping[str, Any], "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        time_zone: Union[str, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            buckets=buckets,
            field=field,
            format=format,
            minimum_interval=minimum_interval,
            missing=missing,
            offset=offset,
            params=params,
            script=script,
            time_zone=time_zone,
            **kwargs,
        )

    def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
        return FieldBucketData(self, search, data)


class Avg(Agg[_R]):
    """
    A single-value metrics aggregation that computes the average of
    numeric values that are extracted from the aggregated documents.

    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "avg"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, field=field, missing=missing, script=script, **kwargs
        )


class AvgBucket(Pipeline[_R]):
    """
    A sibling pipeline aggregation which calculates the mean value of a
    specified metric in a sibling aggregation. The specified metric must
    be numeric and the sibling aggregation must be a multi-bucket
    aggregation.

    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "avg_bucket"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
        )


class Boxplot(Agg[_R]):
    """
    A metrics aggregation that computes a box plot of numeric values
    extracted from the aggregated documents.

    :arg compression: Limits the maximum number of nodes used by the
        underlying TDigest algorithm to `20 * compression`, enabling
        control of memory usage and approximation error.
    :arg execution_hint: The default implementation of TDigest is
        optimized for performance, scaling to millions or even billions of
        sample values while maintaining acceptable accuracy levels (close
        to 1% relative error for millions of samples in some cases). To
        use an implementation optimized for accuracy, set this parameter
        to high_accuracy instead. Defaults to `default` if omitted.
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "boxplot"

    def __init__(
        self,
        *,
        compression: Union[float, "DefaultType"] = DEFAULT,
        execution_hint: Union[
            Literal["default", "high_accuracy"], "DefaultType"
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            compression=compression,
            execution_hint=execution_hint,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class BucketScript(Pipeline[_R]):
    """
    A parent pipeline aggregation which runs a script which can perform
    per bucket computations on metrics in the parent multi-bucket
    aggregation.

    :arg script: The script to run for this aggregation.
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "bucket_script"

    def __init__(
        self,
        *,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            script=script,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class BucketSelector(Pipeline[_R]):
    """
    A parent pipeline aggregation which runs a script to determine whether
    the current bucket will be retained in the parent multi-bucket
    aggregation.

    :arg script: The script to run for this aggregation.
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "bucket_selector"

    def __init__(
        self,
        *,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            script=script,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class BucketSort(Bucket[_R]):
    """
    A parent pipeline aggregation which sorts the buckets of its parent
    multi-bucket aggregation.

    :arg from: Buckets in positions prior to `from` will be truncated.
    :arg gap_policy: The policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg size: The number of buckets to return. Defaults to all buckets of
        the parent aggregation.
    :arg sort: The list of fields to sort on.
    """

    name = "bucket_sort"

    def __init__(
        self,
        *,
        from_: Union[int, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        sort: Union[
            Union[Union[str, "InstrumentedField"], "types.SortOptions"],
            Sequence[Union[Union[str, "InstrumentedField"], "types.SortOptions"]],
            Dict[str, Any],
            "DefaultType",
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            from_=from_, gap_policy=gap_policy, size=size, sort=sort, **kwargs
        )


class BucketCountKsTest(Pipeline[_R]):
    """
    A sibling pipeline aggregation which runs a two sample
    Kolmogorov–Smirnov test ("K-S test") against a provided distribution
    and the distribution implied by the documents counts in the configured
    sibling aggregation.

    :arg alternative: A list of string values indicating which K-S test
        alternative to calculate. The valid values are: "greater", "less",
        "two_sided". This parameter is key for determining the K-S
        statistic used when calculating the K-S test. Default value is all
        possible alternative hypotheses.
    :arg fractions: A list of doubles indicating the distribution of the
        samples with which to compare to the `buckets_path` results. In
        typical usage this is the overall proportion of documents in each
        bucket, which is compared with the actual document proportions in
        each bucket from the sibling aggregation counts. The default is to
        assume that overall documents are uniformly distributed on these
        buckets, which they would be if one used equal percentiles of a
        metric to define the bucket end points.
    :arg sampling_method: Indicates the sampling methodology when
        calculating the K-S test. Note, this is sampling of the returned
        values. This determines the cumulative distribution function (CDF)
        points used comparing the two samples. Default is `upper_tail`,
        which emphasizes the upper end of the CDF points. Valid options
        are: `upper_tail`, `uniform`, and `lower_tail`.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "bucket_count_ks_test"

    def __init__(
        self,
        *,
        alternative: Union[Sequence[str], "DefaultType"] = DEFAULT,
        fractions: Union[Sequence[float], "DefaultType"] = DEFAULT,
        sampling_method: Union[str, "DefaultType"] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            alternative=alternative,
            fractions=fractions,
            sampling_method=sampling_method,
            buckets_path=buckets_path,
            **kwargs,
        )


class BucketCorrelation(Pipeline[_R]):
    """
    A sibling pipeline aggregation which runs a correlation function on
    the configured sibling multi-bucket aggregation.

    :arg function: (required) The correlation function to execute.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "bucket_correlation"

    def __init__(
        self,
        *,
        function: Union[
            "types.BucketCorrelationFunction", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(function=function, buckets_path=buckets_path, **kwargs)


class Cardinality(Agg[_R]):
    """
    A single-value metrics aggregation that calculates an approximate
    count of distinct values.

    :arg precision_threshold: A unique count below which counts are
        expected to be close to accurate. This allows to trade memory for
        accuracy. Defaults to `3000` if omitted.
    :arg rehash:
    :arg execution_hint: Mechanism by which cardinality aggregations is
        run.
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "cardinality"

    def __init__(
        self,
        *,
        precision_threshold: Union[int, "DefaultType"] = DEFAULT,
        rehash: Union[bool, "DefaultType"] = DEFAULT,
        execution_hint: Union[
            Literal[
                "global_ordinals",
                "segment_ordinals",
                "direct",
                "save_memory_heuristic",
                "save_time_heuristic",
            ],
            "DefaultType",
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            precision_threshold=precision_threshold,
            rehash=rehash,
            execution_hint=execution_hint,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class CategorizeText(Bucket[_R]):
    """
    A multi-bucket aggregation that groups semi-structured text into
    buckets.

    :arg field: (required) The semi-structured text field to categorize.
    :arg max_unique_tokens: The maximum number of unique tokens at any
        position up to max_matched_tokens. Must be larger than 1. Smaller
        values use less memory and create fewer categories. Larger values
        will use more memory and create narrower categories. Max allowed
        value is 100. Defaults to `50` if omitted.
    :arg max_matched_tokens: The maximum number of token positions to
        match on before attempting to merge categories. Larger values will
        use more memory and create narrower categories. Max allowed value
        is 100. Defaults to `5` if omitted.
    :arg similarity_threshold: The minimum percentage of tokens that must
        match for text to be added to the category bucket. Must be between
        1 and 100. The larger the value the narrower the categories.
        Larger values will increase memory usage and create narrower
        categories. Defaults to `50` if omitted.
    :arg categorization_filters: This property expects an array of regular
        expressions. The expressions are used to filter out matching
        sequences from the categorization field values. You can use this
        functionality to fine tune the categorization by excluding
        sequences from consideration when categories are defined. For
        example, you can exclude SQL statements that appear in your log
        files. This property cannot be used at the same time as
        categorization_analyzer. If you only want to define simple regular
        expression filters that are applied prior to tokenization, setting
        this property is the easiest method. If you also want to customize
        the tokenizer or post-tokenization filtering, use the
        categorization_analyzer property instead and include the filters
        as pattern_replace character filters.
    :arg categorization_analyzer: The categorization analyzer specifies
        how the text is analyzed and tokenized before being categorized.
        The syntax is very similar to that used to define the analyzer in
        the analyze API. This property cannot be used at the same time as
        `categorization_filters`.
    :arg shard_size: The number of categorization buckets to return from
        each shard before merging all the results.
    :arg size: The number of buckets to return. Defaults to `10` if
        omitted.
    :arg min_doc_count: The minimum number of documents in a bucket to be
        returned to the results.
    :arg shard_min_doc_count: The minimum number of documents in a bucket
        to be returned from the shard before merging.
    """

    name = "categorize_text"

    def __init__(
        self,
        *,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        max_unique_tokens: Union[int, "DefaultType"] = DEFAULT,
        max_matched_tokens: Union[int, "DefaultType"] = DEFAULT,
        similarity_threshold: Union[int, "DefaultType"] = DEFAULT,
        categorization_filters: Union[Sequence[str], "DefaultType"] = DEFAULT,
        categorization_analyzer: Union[
            str, "types.CustomCategorizeTextAnalyzer", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            field=field,
            max_unique_tokens=max_unique_tokens,
            max_matched_tokens=max_matched_tokens,
            similarity_threshold=similarity_threshold,
            categorization_filters=categorization_filters,
            categorization_analyzer=categorization_analyzer,
            shard_size=shard_size,
            size=size,
            min_doc_count=min_doc_count,
            shard_min_doc_count=shard_min_doc_count,
            **kwargs,
        )


class Children(Bucket[_R]):
    """
    A single bucket aggregation that selects child documents that have the
    specified type, as defined in a `join` field.

    :arg type: The child type that should be selected.
    """

    name = "children"

    def __init__(self, type: Union[str, "DefaultType"] = DEFAULT, **kwargs: Any):
        super().__init__(type=type, **kwargs)


class Composite(Bucket[_R]):
    """
    A multi-bucket aggregation that creates composite buckets from
    different sources. Unlike the other multi-bucket aggregations, you can
    use the `composite` aggregation to paginate *all* buckets from a
    multi-level aggregation efficiently.

    :arg after: When paginating, use the `after_key` value returned in the
        previous response to retrieve the next page.
    :arg size: The number of composite buckets that should be returned.
        Defaults to `10` if omitted.
    :arg sources: The value sources used to build composite buckets. Keys
        are returned in the order of the `sources` definition.
    """

    name = "composite"

    def __init__(
        self,
        *,
        after: Union[
            Mapping[
                Union[str, "InstrumentedField"], Union[int, float, str, bool, None]
            ],
            "DefaultType",
        ] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        sources: Union[Sequence[Mapping[str, Agg[_R]]], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(after=after, size=size, sources=sources, **kwargs)


class CumulativeCardinality(Pipeline[_R]):
    """
    A parent pipeline aggregation which calculates the cumulative
    cardinality in a parent `histogram` or `date_histogram` aggregation.

    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "cumulative_cardinality"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
        )


class CumulativeSum(Pipeline[_R]):
    """
    A parent pipeline aggregation which calculates the cumulative sum of a
    specified metric in a parent `histogram` or `date_histogram`
    aggregation.

    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "cumulative_sum"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
        )


class DateHistogram(Bucket[_R]):
    """
    A multi-bucket values source based aggregation that can be applied on
    date values or date range values extracted from the documents. It
    dynamically builds fixed size (interval) buckets over the values.

    :arg calendar_interval: Calendar-aware interval. Can be specified
        using the unit name, such as `month`, or as a single unit
        quantity, such as `1M`.
    :arg extended_bounds: Enables extending the bounds of the histogram
        beyond the data itself.
    :arg hard_bounds: Limits the histogram to specified bounds.
    :arg field: The date field whose values are use to build a histogram.
    :arg fixed_interval: Fixed intervals: a fixed number of SI units and
        never deviate, regardless of where they fall on the calendar.
    :arg format: The date format used to format `key_as_string` in the
        response. If no `format` is specified, the first date format
        specified in the field mapping is used.
    :arg interval:
    :arg min_doc_count: Only returns buckets that have `min_doc_count`
        number of documents. By default, all buckets between the first
        bucket that matches documents and the last one are returned.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg offset: Changes the start value of each bucket by the specified
        positive (`+`) or negative offset (`-`) duration.
    :arg order: The sort order of the returned buckets.
    :arg params:
    :arg script:
    :arg time_zone: Time zone used for bucketing and rounding. Defaults to
        Coordinated Universal Time (UTC).
    :arg keyed: Set to `true` to associate a unique string key with each
        bucket and return the ranges as a hash rather than an array.
    """

    name = "date_histogram"

    def __init__(
        self,
        *,
        calendar_interval: Union[
            Literal[
                "second", "minute", "hour", "day", "week", "month", "quarter", "year"
            ],
            "DefaultType",
        ] = DEFAULT,
        extended_bounds: Union[
            "types.ExtendedBounds", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        hard_bounds: Union[
            "types.ExtendedBounds", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        fixed_interval: Any = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        interval: Any = DEFAULT,
        min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        missing: Any = DEFAULT,
        offset: Any = DEFAULT,
        order: Union[
            Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]],
            Sequence[Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]]],
            "DefaultType",
        ] = DEFAULT,
        params: Union[Mapping[str, Any], "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        time_zone: Union[str, "DefaultType"] = DEFAULT,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            calendar_interval=calendar_interval,
            extended_bounds=extended_bounds,
            hard_bounds=hard_bounds,
            field=field,
            fixed_interval=fixed_interval,
            format=format,
            interval=interval,
            min_doc_count=min_doc_count,
            missing=missing,
            offset=offset,
            order=order,
            params=params,
            script=script,
            time_zone=time_zone,
            keyed=keyed,
            **kwargs,
        )

    def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
        return FieldBucketData(self, search, data)


class DateRange(Bucket[_R]):
    """
    A multi-bucket value source based aggregation that enables the user to
    define a set of date ranges - each representing a bucket.

    :arg field: The date field whose values are use to build ranges.
    :arg format: The date format used to format `from` and `to` in the
        response.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg ranges: Array of date ranges.
    :arg time_zone: Time zone used to convert dates from another time zone
        to UTC.
    :arg keyed: Set to `true` to associate a unique string key with each
        bucket and returns the ranges as a hash rather than an array.
    """

    name = "date_range"

    def __init__(
        self,
        *,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        ranges: Union[
            Sequence["wrappers.AggregationRange"],
            Sequence[Dict[str, Any]],
            "DefaultType",
        ] = DEFAULT,
        time_zone: Union[str, "DefaultType"] = DEFAULT,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            field=field,
            format=format,
            missing=missing,
            ranges=ranges,
            time_zone=time_zone,
            keyed=keyed,
            **kwargs,
        )


class Derivative(Pipeline[_R]):
    """
    A parent pipeline aggregation which calculates the derivative of a
    specified metric in a parent `histogram` or `date_histogram`
    aggregation.

    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "derivative"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
        )


class DiversifiedSampler(Bucket[_R]):
    """
    A filtering aggregation used to limit any sub aggregations' processing
    to a sample of the top-scoring documents. Similar to the `sampler`
    aggregation, but adds the ability to limit the number of matches that
    share a common value.

    :arg execution_hint: The type of value used for de-duplication.
        Defaults to `global_ordinals` if omitted.
    :arg max_docs_per_value: Limits how many documents are permitted per
        choice of de-duplicating value. Defaults to `1` if omitted.
    :arg script:
    :arg shard_size: Limits how many top-scoring documents are collected
        in the sample processed on each shard. Defaults to `100` if
        omitted.
    :arg field: The field used to provide values used for de-duplication.
    """

    name = "diversified_sampler"

    def __init__(
        self,
        *,
        execution_hint: Union[
            Literal["map", "global_ordinals", "bytes_hash"], "DefaultType"
        ] = DEFAULT,
        max_docs_per_value: Union[int, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            execution_hint=execution_hint,
            max_docs_per_value=max_docs_per_value,
            script=script,
            shard_size=shard_size,
            field=field,
            **kwargs,
        )


class ExtendedStats(Agg[_R]):
    """
    A multi-value metrics aggregation that computes stats over numeric
    values extracted from the aggregated documents.

    :arg sigma: The number of standard deviations above/below the mean to
        display.
    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "extended_stats"

    def __init__(
        self,
        *,
        sigma: Union[float, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            sigma=sigma,
            format=format,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class ExtendedStatsBucket(Pipeline[_R]):
    """
    A sibling pipeline aggregation which calculates a variety of stats
    across all bucket of a specified metric in a sibling aggregation.

    :arg sigma: The number of standard deviations above/below the mean to
        display.
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "extended_stats_bucket"

    def __init__(
        self,
        *,
        sigma: Union[float, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            sigma=sigma,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class FrequentItemSets(Agg[_R]):
    """
    A bucket aggregation which finds frequent item sets, a form of
    association rules mining that identifies items that often occur
    together.

    :arg fields: (required) Fields to analyze.
    :arg minimum_set_size: The minimum size of one item set. Defaults to
        `1` if omitted.
    :arg minimum_support: The minimum support of one item set. Defaults to
        `0.1` if omitted.
    :arg size: The number of top item sets to return. Defaults to `10` if
        omitted.
    :arg filter: Query that filters documents from analysis.
    """

    name = "frequent_item_sets"
    _param_defs = {
        "filter": {"type": "query"},
    }

    def __init__(
        self,
        *,
        fields: Union[
            Sequence["types.FrequentItemSetsField"],
            Sequence[Dict[str, Any]],
            "DefaultType",
        ] = DEFAULT,
        minimum_set_size: Union[int, "DefaultType"] = DEFAULT,
        minimum_support: Union[float, "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        filter: Union[Query, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            fields=fields,
            minimum_set_size=minimum_set_size,
            minimum_support=minimum_support,
            size=size,
            filter=filter,
            **kwargs,
        )


class Filter(Bucket[_R]):
    """
    A single bucket aggregation that narrows the set of documents to those
    that match a query.

    :arg filter: A single bucket aggregation that narrows the set of
        documents to those that match a query.
    """

    name = "filter"
    _param_defs = {
        "filter": {"type": "query"},
        "aggs": {"type": "agg", "hash": True},
    }

    def __init__(self, filter: Union[Query, "DefaultType"] = DEFAULT, **kwargs: Any):
        super().__init__(filter=filter, **kwargs)

    def to_dict(self) -> Dict[str, Any]:
        d = super().to_dict()
        if isinstance(d[self.name], dict):
            n = cast(AttrDict[Any], d[self.name])
            n.update(n.pop("filter", {}))
        return d


class Filters(Bucket[_R]):
    """
    A multi-bucket aggregation where each bucket contains the documents
    that match a query.

    :arg filters: Collection of queries from which to build buckets.
    :arg other_bucket: Set to `true` to add a bucket to the response which
        will contain all documents that do not match any of the given
        filters.
    :arg other_bucket_key: The key with which the other bucket is
        returned. Defaults to `_other_` if omitted.
    :arg keyed: By default, the named filters aggregation returns the
        buckets as an object. Set to `false` to return the buckets as an
        array of objects. Defaults to `True` if omitted.
    """

    name = "filters"
    _param_defs = {
        "filters": {"type": "query", "hash": True},
        "aggs": {"type": "agg", "hash": True},
    }

    def __init__(
        self,
        *,
        filters: Union[Dict[str, Query], "DefaultType"] = DEFAULT,
        other_bucket: Union[bool, "DefaultType"] = DEFAULT,
        other_bucket_key: Union[str, "DefaultType"] = DEFAULT,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            filters=filters,
            other_bucket=other_bucket,
            other_bucket_key=other_bucket_key,
            keyed=keyed,
            **kwargs,
        )


class GeoBounds(Agg[_R]):
    """
    A metric aggregation that computes the geographic bounding box
    containing all values for a Geopoint or Geoshape field.

    :arg wrap_longitude: Specifies whether the bounding box should be
        allowed to overlap the international date line. Defaults to `True`
        if omitted.
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "geo_bounds"

    def __init__(
        self,
        *,
        wrap_longitude: Union[bool, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            wrap_longitude=wrap_longitude,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class GeoCentroid(Agg[_R]):
    """
    A metric aggregation that computes the weighted centroid from all
    coordinate values for geo fields.

    :arg count:
    :arg location:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "geo_centroid"

    def __init__(
        self,
        *,
        count: Union[int, "DefaultType"] = DEFAULT,
        location: Union[
            "types.LatLonGeoLocation",
            "types.GeoHashLocation",
            Sequence[float],
            str,
            Dict[str, Any],
            "DefaultType",
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            count=count,
            location=location,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class GeoDistance(Bucket[_R]):
    """
    A multi-bucket aggregation that works on `geo_point` fields. Evaluates
    the distance of each document value from an origin point and
    determines the buckets it belongs to, based on ranges defined in the
    request.

    :arg distance_type: The distance calculation type. Defaults to `arc`
        if omitted.
    :arg field: A field of type `geo_point` used to evaluate the distance.
    :arg origin: The origin  used to evaluate the distance.
    :arg ranges: An array of ranges used to bucket documents.
    :arg unit: The distance unit. Defaults to `m` if omitted.
    """

    name = "geo_distance"

    def __init__(
        self,
        *,
        distance_type: Union[Literal["arc", "plane"], "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        origin: Union[
            "types.LatLonGeoLocation",
            "types.GeoHashLocation",
            Sequence[float],
            str,
            Dict[str, Any],
            "DefaultType",
        ] = DEFAULT,
        ranges: Union[
            Sequence["wrappers.AggregationRange"],
            Sequence[Dict[str, Any]],
            "DefaultType",
        ] = DEFAULT,
        unit: Union[
            Literal["in", "ft", "yd", "mi", "nmi", "km", "m", "cm", "mm"], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            distance_type=distance_type,
            field=field,
            origin=origin,
            ranges=ranges,
            unit=unit,
            **kwargs,
        )


class GeohashGrid(Bucket[_R]):
    """
    A multi-bucket aggregation that groups `geo_point` and `geo_shape`
    values into buckets that represent a grid. Each cell is labeled using
    a geohash which is of user-definable precision.

    :arg bounds: The bounding box to filter the points in each bucket.
    :arg field: Field containing indexed `geo_point` or `geo_shape`
        values. If the field contains an array, `geohash_grid` aggregates
        all array values.
    :arg precision: The string length of the geohashes used to define
        cells/buckets in the results. Defaults to `5` if omitted.
    :arg shard_size: Allows for more accurate counting of the top cells
        returned in the final result the aggregation. Defaults to
        returning `max(10,(size x number-of-shards))` buckets from each
        shard.
    :arg size: The maximum number of geohash buckets to return. Defaults
        to `10000` if omitted.
    """

    name = "geohash_grid"

    def __init__(
        self,
        *,
        bounds: Union[
            "types.CoordsGeoBounds",
            "types.TopLeftBottomRightGeoBounds",
            "types.TopRightBottomLeftGeoBounds",
            "types.WktGeoBounds",
            Dict[str, Any],
            "DefaultType",
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        precision: Union[float, str, "DefaultType"] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            bounds=bounds,
            field=field,
            precision=precision,
            shard_size=shard_size,
            size=size,
            **kwargs,
        )


class GeoLine(Agg[_R]):
    """
    Aggregates all `geo_point` values within a bucket into a `LineString`
    ordered by the chosen sort field.

    :arg point: (required) The name of the geo_point field.
    :arg sort: (required) The name of the numeric field to use as the sort
        key for ordering the points. When the `geo_line` aggregation is
        nested inside a `time_series` aggregation, this field defaults to
        `@timestamp`, and any other value will result in error.
    :arg include_sort: When `true`, returns an additional array of the
        sort values in the feature properties.
    :arg sort_order: The order in which the line is sorted (ascending or
        descending). Defaults to `asc` if omitted.
    :arg size: The maximum length of the line represented in the
        aggregation. Valid sizes are between 1 and 10000. Defaults to
        `10000` if omitted.
    """

    name = "geo_line"

    def __init__(
        self,
        *,
        point: Union["types.GeoLinePoint", Dict[str, Any], "DefaultType"] = DEFAULT,
        sort: Union["types.GeoLineSort", Dict[str, Any], "DefaultType"] = DEFAULT,
        include_sort: Union[bool, "DefaultType"] = DEFAULT,
        sort_order: Union[Literal["asc", "desc"], "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            point=point,
            sort=sort,
            include_sort=include_sort,
            sort_order=sort_order,
            size=size,
            **kwargs,
        )


class GeotileGrid(Bucket[_R]):
    """
    A multi-bucket aggregation that groups `geo_point` and `geo_shape`
    values into buckets that represent a grid. Each cell corresponds to a
    map tile as used by many online map sites.

    :arg field: Field containing indexed `geo_point` or `geo_shape`
        values. If the field contains an array, `geotile_grid` aggregates
        all array values.
    :arg precision: Integer zoom of the key used to define cells/buckets
        in the results. Values outside of the range [0,29] will be
        rejected. Defaults to `7` if omitted.
    :arg shard_size: Allows for more accurate counting of the top cells
        returned in the final result the aggregation. Defaults to
        returning `max(10,(size x number-of-shards))` buckets from each
        shard.
    :arg size: The maximum number of buckets to return. Defaults to
        `10000` if omitted.
    :arg bounds: A bounding box to filter the geo-points or geo-shapes in
        each bucket.
    """

    name = "geotile_grid"

    def __init__(
        self,
        *,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        precision: Union[float, "DefaultType"] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        bounds: Union[
            "types.CoordsGeoBounds",
            "types.TopLeftBottomRightGeoBounds",
            "types.TopRightBottomLeftGeoBounds",
            "types.WktGeoBounds",
            Dict[str, Any],
            "DefaultType",
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            field=field,
            precision=precision,
            shard_size=shard_size,
            size=size,
            bounds=bounds,
            **kwargs,
        )


class GeohexGrid(Bucket[_R]):
    """
    A multi-bucket aggregation that groups `geo_point` and `geo_shape`
    values into buckets that represent a grid. Each cell corresponds to a
    H3 cell index and is labeled using the H3Index representation.

    :arg field: (required) Field containing indexed `geo_point` or
        `geo_shape` values. If the field contains an array, `geohex_grid`
        aggregates all array values.
    :arg precision: Integer zoom of the key used to defined cells or
        buckets in the results. Value should be between 0-15. Defaults to
        `6` if omitted.
    :arg bounds: Bounding box used to filter the geo-points in each
        bucket.
    :arg size: Maximum number of buckets to return. Defaults to `10000` if
        omitted.
    :arg shard_size: Number of buckets returned from each shard.
    """

    name = "geohex_grid"

    def __init__(
        self,
        *,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        precision: Union[int, "DefaultType"] = DEFAULT,
        bounds: Union[
            "types.CoordsGeoBounds",
            "types.TopLeftBottomRightGeoBounds",
            "types.TopRightBottomLeftGeoBounds",
            "types.WktGeoBounds",
            Dict[str, Any],
            "DefaultType",
        ] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            field=field,
            precision=precision,
            bounds=bounds,
            size=size,
            shard_size=shard_size,
            **kwargs,
        )


class Global(Bucket[_R]):
    """
    Defines a single bucket of all the documents within the search
    execution context. This context is defined by the indices and the
    document types you’re searching on, but is not influenced by the
    search query itself.
    """

    name = "global"

    def __init__(self, **kwargs: Any):
        super().__init__(**kwargs)


class Histogram(Bucket[_R]):
    """
    A multi-bucket values source based aggregation that can be applied on
    numeric values or numeric range values extracted from the documents.
    It dynamically builds fixed size (interval) buckets over the values.

    :arg extended_bounds: Enables extending the bounds of the histogram
        beyond the data itself.
    :arg hard_bounds: Limits the range of buckets in the histogram. It is
        particularly useful in the case of open data ranges that can
        result in a very large number of buckets.
    :arg field: The name of the field to aggregate on.
    :arg interval: The interval for the buckets. Must be a positive
        decimal.
    :arg min_doc_count: Only returns buckets that have `min_doc_count`
        number of documents. By default, the response will fill gaps in
        the histogram with empty buckets.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg offset: By default, the bucket keys start with 0 and then
        continue in even spaced steps of `interval`. The bucket boundaries
        can be shifted by using the `offset` option.
    :arg order: The sort order of the returned buckets. By default, the
        returned buckets are sorted by their key ascending.
    :arg script:
    :arg format:
    :arg keyed: If `true`, returns buckets as a hash instead of an array,
        keyed by the bucket keys.
    """

    name = "histogram"

    def __init__(
        self,
        *,
        extended_bounds: Union[
            "types.ExtendedBounds", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        hard_bounds: Union[
            "types.ExtendedBounds", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        interval: Union[float, "DefaultType"] = DEFAULT,
        min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        missing: Union[float, "DefaultType"] = DEFAULT,
        offset: Union[float, "DefaultType"] = DEFAULT,
        order: Union[
            Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]],
            Sequence[Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]]],
            "DefaultType",
        ] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            extended_bounds=extended_bounds,
            hard_bounds=hard_bounds,
            field=field,
            interval=interval,
            min_doc_count=min_doc_count,
            missing=missing,
            offset=offset,
            order=order,
            script=script,
            format=format,
            keyed=keyed,
            **kwargs,
        )

    def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
        return FieldBucketData(self, search, data)


class IPRange(Bucket[_R]):
    """
    A multi-bucket value source based aggregation that enables the user to
    define a set of IP ranges - each representing a bucket.

    :arg field: The date field whose values are used to build ranges.
    :arg ranges: Array of IP ranges.
    """

    name = "ip_range"

    def __init__(
        self,
        *,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        ranges: Union[
            Sequence["types.IpRangeAggregationRange"],
            Sequence[Dict[str, Any]],
            "DefaultType",
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(field=field, ranges=ranges, **kwargs)


class IPPrefix(Bucket[_R]):
    """
    A bucket aggregation that groups documents based on the network or
    sub-network of an IP address.

    :arg field: (required) The IP address field to aggregation on. The
        field mapping type must be `ip`.
    :arg prefix_length: (required) Length of the network prefix. For IPv4
        addresses the accepted range is [0, 32]. For IPv6 addresses the
        accepted range is [0, 128].
    :arg is_ipv6: Defines whether the prefix applies to IPv6 addresses.
    :arg append_prefix_length: Defines whether the prefix length is
        appended to IP address keys in the response.
    :arg keyed: Defines whether buckets are returned as a hash rather than
        an array in the response.
    :arg min_doc_count: Minimum number of documents in a bucket for it to
        be included in the response. Defaults to `1` if omitted.
    """

    name = "ip_prefix"

    def __init__(
        self,
        *,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        prefix_length: Union[int, "DefaultType"] = DEFAULT,
        is_ipv6: Union[bool, "DefaultType"] = DEFAULT,
        append_prefix_length: Union[bool, "DefaultType"] = DEFAULT,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            field=field,
            prefix_length=prefix_length,
            is_ipv6=is_ipv6,
            append_prefix_length=append_prefix_length,
            keyed=keyed,
            min_doc_count=min_doc_count,
            **kwargs,
        )


class Inference(Pipeline[_R]):
    """
    A parent pipeline aggregation which loads a pre-trained model and
    performs inference on the collated result fields from the parent
    bucket aggregation.

    :arg model_id: (required) The ID or alias for the trained model.
    :arg inference_config: Contains the inference type and its options.
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "inference"

    def __init__(
        self,
        *,
        model_id: Union[str, "DefaultType"] = DEFAULT,
        inference_config: Union[
            "types.InferenceConfigContainer", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            model_id=model_id,
            inference_config=inference_config,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class Line(Agg[_R]):
    """
    :arg point: (required) The name of the geo_point field.
    :arg sort: (required) The name of the numeric field to use as the sort
        key for ordering the points. When the `geo_line` aggregation is
        nested inside a `time_series` aggregation, this field defaults to
        `@timestamp`, and any other value will result in error.
    :arg include_sort: When `true`, returns an additional array of the
        sort values in the feature properties.
    :arg sort_order: The order in which the line is sorted (ascending or
        descending). Defaults to `asc` if omitted.
    :arg size: The maximum length of the line represented in the
        aggregation. Valid sizes are between 1 and 10000. Defaults to
        `10000` if omitted.
    """

    name = "line"

    def __init__(
        self,
        *,
        point: Union["types.GeoLinePoint", Dict[str, Any], "DefaultType"] = DEFAULT,
        sort: Union["types.GeoLineSort", Dict[str, Any], "DefaultType"] = DEFAULT,
        include_sort: Union[bool, "DefaultType"] = DEFAULT,
        sort_order: Union[Literal["asc", "desc"], "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            point=point,
            sort=sort,
            include_sort=include_sort,
            sort_order=sort_order,
            size=size,
            **kwargs,
        )


class MatrixStats(Agg[_R]):
    """
    A numeric aggregation that computes the following statistics over a
    set of document fields: `count`, `mean`, `variance`, `skewness`,
    `kurtosis`, `covariance`, and `covariance`.

    :arg mode: Array value the aggregation will use for array or multi-
        valued fields. Defaults to `avg` if omitted.
    :arg fields: An array of fields for computing the statistics.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    """

    name = "matrix_stats"

    def __init__(
        self,
        *,
        mode: Union[
            Literal["min", "max", "sum", "avg", "median"], "DefaultType"
        ] = DEFAULT,
        fields: Union[
            Union[str, "InstrumentedField"],
            Sequence[Union[str, "InstrumentedField"]],
            "DefaultType",
        ] = DEFAULT,
        missing: Union[
            Mapping[Union[str, "InstrumentedField"], float], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(mode=mode, fields=fields, missing=missing, **kwargs)


class Max(Agg[_R]):
    """
    A single-value metrics aggregation that returns the maximum value
    among the numeric values extracted from the aggregated documents.

    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "max"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, field=field, missing=missing, script=script, **kwargs
        )


class MaxBucket(Pipeline[_R]):
    """
    A sibling pipeline aggregation which identifies the bucket(s) with the
    maximum value of a specified metric in a sibling aggregation and
    outputs both the value and the key(s) of the bucket(s).

    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "max_bucket"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
        )


class MedianAbsoluteDeviation(Agg[_R]):
    """
    A single-value aggregation that approximates the median absolute
    deviation of its search results.

    :arg compression: Limits the maximum number of nodes used by the
        underlying TDigest algorithm to `20 * compression`, enabling
        control of memory usage and approximation error. Defaults to
        `1000` if omitted.
    :arg execution_hint: The default implementation of TDigest is
        optimized for performance, scaling to millions or even billions of
        sample values while maintaining acceptable accuracy levels (close
        to 1% relative error for millions of samples in some cases). To
        use an implementation optimized for accuracy, set this parameter
        to high_accuracy instead. Defaults to `default` if omitted.
    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "median_absolute_deviation"

    def __init__(
        self,
        *,
        compression: Union[float, "DefaultType"] = DEFAULT,
        execution_hint: Union[
            Literal["default", "high_accuracy"], "DefaultType"
        ] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            compression=compression,
            execution_hint=execution_hint,
            format=format,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class Min(Agg[_R]):
    """
    A single-value metrics aggregation that returns the minimum value
    among numeric values extracted from the aggregated documents.

    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "min"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, field=field, missing=missing, script=script, **kwargs
        )


class MinBucket(Pipeline[_R]):
    """
    A sibling pipeline aggregation which identifies the bucket(s) with the
    minimum value of a specified metric in a sibling aggregation and
    outputs both the value and the key(s) of the bucket(s).

    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "min_bucket"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
        )


class Missing(Bucket[_R]):
    """
    A field data based single bucket aggregation, that creates a bucket of
    all documents in the current document set context that are missing a
    field value (effectively, missing a field or having the configured
    NULL value set).

    :arg field: The name of the field.
    :arg missing:
    """

    name = "missing"

    def __init__(
        self,
        *,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(field=field, missing=missing, **kwargs)


class MovingAvg(Pipeline[_R]):
    """ """

    name = "moving_avg"

    def __init__(self, **kwargs: Any):
        super().__init__(**kwargs)


class LinearMovingAverageAggregation(MovingAvg[_R]):
    """
    :arg model: (required)
    :arg settings: (required)
    :arg minimize:
    :arg predict:
    :arg window:
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    def __init__(
        self,
        *,
        model: Any = DEFAULT,
        settings: Union["types.EmptyObject", Dict[str, Any], "DefaultType"] = DEFAULT,
        minimize: Union[bool, "DefaultType"] = DEFAULT,
        predict: Union[int, "DefaultType"] = DEFAULT,
        window: Union[int, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            model=model,
            settings=settings,
            minimize=minimize,
            predict=predict,
            window=window,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class SimpleMovingAverageAggregation(MovingAvg[_R]):
    """
    :arg model: (required)
    :arg settings: (required)
    :arg minimize:
    :arg predict:
    :arg window:
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    def __init__(
        self,
        *,
        model: Any = DEFAULT,
        settings: Union["types.EmptyObject", Dict[str, Any], "DefaultType"] = DEFAULT,
        minimize: Union[bool, "DefaultType"] = DEFAULT,
        predict: Union[int, "DefaultType"] = DEFAULT,
        window: Union[int, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            model=model,
            settings=settings,
            minimize=minimize,
            predict=predict,
            window=window,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class EwmaMovingAverageAggregation(MovingAvg[_R]):
    """
    :arg model: (required)
    :arg settings: (required)
    :arg minimize:
    :arg predict:
    :arg window:
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    def __init__(
        self,
        *,
        model: Any = DEFAULT,
        settings: Union[
            "types.EwmaModelSettings", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        minimize: Union[bool, "DefaultType"] = DEFAULT,
        predict: Union[int, "DefaultType"] = DEFAULT,
        window: Union[int, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            model=model,
            settings=settings,
            minimize=minimize,
            predict=predict,
            window=window,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class HoltMovingAverageAggregation(MovingAvg[_R]):
    """
    :arg model: (required)
    :arg settings: (required)
    :arg minimize:
    :arg predict:
    :arg window:
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    def __init__(
        self,
        *,
        model: Any = DEFAULT,
        settings: Union[
            "types.HoltLinearModelSettings", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        minimize: Union[bool, "DefaultType"] = DEFAULT,
        predict: Union[int, "DefaultType"] = DEFAULT,
        window: Union[int, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            model=model,
            settings=settings,
            minimize=minimize,
            predict=predict,
            window=window,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class HoltWintersMovingAverageAggregation(MovingAvg[_R]):
    """
    :arg model: (required)
    :arg settings: (required)
    :arg minimize:
    :arg predict:
    :arg window:
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    def __init__(
        self,
        *,
        model: Any = DEFAULT,
        settings: Union[
            "types.HoltWintersModelSettings", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        minimize: Union[bool, "DefaultType"] = DEFAULT,
        predict: Union[int, "DefaultType"] = DEFAULT,
        window: Union[int, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            model=model,
            settings=settings,
            minimize=minimize,
            predict=predict,
            window=window,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class MovingPercentiles(Pipeline[_R]):
    """
    Given an ordered series of percentiles, "slides" a window across those
    percentiles and computes cumulative percentiles.

    :arg window: The size of window to "slide" across the histogram.
    :arg shift: By default, the window consists of the last n values
        excluding the current bucket. Increasing `shift` by 1, moves the
        starting window position by 1 to the right.
    :arg keyed:
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "moving_percentiles"

    def __init__(
        self,
        *,
        window: Union[int, "DefaultType"] = DEFAULT,
        shift: Union[int, "DefaultType"] = DEFAULT,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            window=window,
            shift=shift,
            keyed=keyed,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class MovingFn(Pipeline[_R]):
    """
    Given an ordered series of data, "slides" a window across the data and
    runs a custom script on each window of data. For convenience, a number
    of common functions are predefined such as `min`, `max`, and moving
    averages.

    :arg script: The script that should be executed on each window of
        data.
    :arg shift: By default, the window consists of the last n values
        excluding the current bucket. Increasing `shift` by 1, moves the
        starting window position by 1 to the right.
    :arg window: The size of window to "slide" across the histogram.
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "moving_fn"

    def __init__(
        self,
        *,
        script: Union[str, "DefaultType"] = DEFAULT,
        shift: Union[int, "DefaultType"] = DEFAULT,
        window: Union[int, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            script=script,
            shift=shift,
            window=window,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class MultiTerms(Bucket[_R]):
    """
    A multi-bucket value source based aggregation where buckets are
    dynamically built - one per unique set of values.

    :arg terms: (required) The field from which to generate sets of terms.
    :arg collect_mode: Specifies the strategy for data collection.
        Defaults to `breadth_first` if omitted.
    :arg order: Specifies the sort order of the buckets. Defaults to
        sorting by descending document count.
    :arg min_doc_count: The minimum number of documents in a bucket for it
        to be returned. Defaults to `1` if omitted.
    :arg shard_min_doc_count: The minimum number of documents in a bucket
        on each shard for it to be returned. Defaults to `1` if omitted.
    :arg shard_size: The number of candidate terms produced by each shard.
        By default, `shard_size` will be automatically estimated based on
        the number of shards and the `size` parameter.
    :arg show_term_doc_count_error: Calculates the doc count error on per
        term basis.
    :arg size: The number of term buckets should be returned out of the
        overall terms list. Defaults to `10` if omitted.
    """

    name = "multi_terms"

    def __init__(
        self,
        *,
        terms: Union[
            Sequence["types.MultiTermLookup"], Sequence[Dict[str, Any]], "DefaultType"
        ] = DEFAULT,
        collect_mode: Union[
            Literal["depth_first", "breadth_first"], "DefaultType"
        ] = DEFAULT,
        order: Union[
            Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]],
            Sequence[Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]]],
            "DefaultType",
        ] = DEFAULT,
        min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        show_term_doc_count_error: Union[bool, "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            terms=terms,
            collect_mode=collect_mode,
            order=order,
            min_doc_count=min_doc_count,
            shard_min_doc_count=shard_min_doc_count,
            shard_size=shard_size,
            show_term_doc_count_error=show_term_doc_count_error,
            size=size,
            **kwargs,
        )


class Nested(Bucket[_R]):
    """
    A special single bucket aggregation that enables aggregating nested
    documents.

    :arg path: The path to the field of type `nested`.
    """

    name = "nested"

    def __init__(
        self,
        path: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(path=path, **kwargs)


class Normalize(Pipeline[_R]):
    """
    A parent pipeline aggregation which calculates the specific
    normalized/rescaled value for a specific bucket value.

    :arg method: The specific method to apply.
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "normalize"

    def __init__(
        self,
        *,
        method: Union[
            Literal[
                "rescale_0_1",
                "rescale_0_100",
                "percent_of_sum",
                "mean",
                "z-score",
                "softmax",
            ],
            "DefaultType",
        ] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            method=method,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class Parent(Bucket[_R]):
    """
    A special single bucket aggregation that selects parent documents that
    have the specified type, as defined in a `join` field.

    :arg type: The child type that should be selected.
    """

    name = "parent"

    def __init__(self, type: Union[str, "DefaultType"] = DEFAULT, **kwargs: Any):
        super().__init__(type=type, **kwargs)


class PercentileRanks(Agg[_R]):
    """
    A multi-value metrics aggregation that calculates one or more
    percentile ranks over numeric values extracted from the aggregated
    documents.

    :arg keyed: By default, the aggregation associates a unique string key
        with each bucket and returns the ranges as a hash rather than an
        array. Set to `false` to disable this behavior. Defaults to `True`
        if omitted.
    :arg values: An array of values for which to calculate the percentile
        ranks.
    :arg hdr: Uses the alternative High Dynamic Range Histogram algorithm
        to calculate percentile ranks.
    :arg tdigest: Sets parameters for the default TDigest algorithm used
        to calculate percentile ranks.
    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "percentile_ranks"

    def __init__(
        self,
        *,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        values: Union[Sequence[float], None, "DefaultType"] = DEFAULT,
        hdr: Union["types.HdrMethod", Dict[str, Any], "DefaultType"] = DEFAULT,
        tdigest: Union["types.TDigest", Dict[str, Any], "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            keyed=keyed,
            values=values,
            hdr=hdr,
            tdigest=tdigest,
            format=format,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class Percentiles(Agg[_R]):
    """
    A multi-value metrics aggregation that calculates one or more
    percentiles over numeric values extracted from the aggregated
    documents.

    :arg keyed: By default, the aggregation associates a unique string key
        with each bucket and returns the ranges as a hash rather than an
        array. Set to `false` to disable this behavior. Defaults to `True`
        if omitted.
    :arg percents: The percentiles to calculate.
    :arg hdr: Uses the alternative High Dynamic Range Histogram algorithm
        to calculate percentiles.
    :arg tdigest: Sets parameters for the default TDigest algorithm used
        to calculate percentiles.
    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "percentiles"

    def __init__(
        self,
        *,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        percents: Union[Sequence[float], "DefaultType"] = DEFAULT,
        hdr: Union["types.HdrMethod", Dict[str, Any], "DefaultType"] = DEFAULT,
        tdigest: Union["types.TDigest", Dict[str, Any], "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            keyed=keyed,
            percents=percents,
            hdr=hdr,
            tdigest=tdigest,
            format=format,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class PercentilesBucket(Pipeline[_R]):
    """
    A sibling pipeline aggregation which calculates percentiles across all
    bucket of a specified metric in a sibling aggregation.

    :arg percents: The list of percentiles to calculate.
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "percentiles_bucket"

    def __init__(
        self,
        *,
        percents: Union[Sequence[float], "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            percents=percents,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class Range(Bucket[_R]):
    """
    A multi-bucket value source based aggregation that enables the user to
    define a set of ranges - each representing a bucket.

    :arg field: The date field whose values are use to build ranges.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg ranges: An array of ranges used to bucket documents.
    :arg script:
    :arg keyed: Set to `true` to associate a unique string key with each
        bucket and return the ranges as a hash rather than an array.
    :arg format:
    """

    name = "range"

    def __init__(
        self,
        *,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[int, "DefaultType"] = DEFAULT,
        ranges: Union[
            Sequence["wrappers.AggregationRange"],
            Sequence[Dict[str, Any]],
            "DefaultType",
        ] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            field=field,
            missing=missing,
            ranges=ranges,
            script=script,
            keyed=keyed,
            format=format,
            **kwargs,
        )


class RareTerms(Bucket[_R]):
    """
    A multi-bucket value source based aggregation which finds "rare"
    terms — terms that are at the long-tail of the distribution and are
    not frequent.

    :arg exclude: Terms that should be excluded from the aggregation.
    :arg field: The field from which to return rare terms.
    :arg include: Terms that should be included in the aggregation.
    :arg max_doc_count: The maximum number of documents a term should
        appear in. Defaults to `1` if omitted.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg precision: The precision of the internal CuckooFilters. Smaller
        precision leads to better approximation, but higher memory usage.
        Defaults to `0.001` if omitted.
    :arg value_type:
    """

    name = "rare_terms"

    def __init__(
        self,
        *,
        exclude: Union[str, Sequence[str], "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        include: Union[
            str, Sequence[str], "types.TermsPartition", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        max_doc_count: Union[int, "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        precision: Union[float, "DefaultType"] = DEFAULT,
        value_type: Union[str, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            exclude=exclude,
            field=field,
            include=include,
            max_doc_count=max_doc_count,
            missing=missing,
            precision=precision,
            value_type=value_type,
            **kwargs,
        )


class Rate(Agg[_R]):
    """
    Calculates a rate of documents or a field in each bucket. Can only be
    used inside a `date_histogram` or `composite` aggregation.

    :arg unit: The interval used to calculate the rate. By default, the
        interval of the `date_histogram` is used.
    :arg mode: How the rate is calculated. Defaults to `sum` if omitted.
    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "rate"

    def __init__(
        self,
        *,
        unit: Union[
            Literal[
                "second", "minute", "hour", "day", "week", "month", "quarter", "year"
            ],
            "DefaultType",
        ] = DEFAULT,
        mode: Union[Literal["sum", "value_count"], "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            unit=unit,
            mode=mode,
            format=format,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class ReverseNested(Bucket[_R]):
    """
    A special single bucket aggregation that enables aggregating on parent
    documents from nested documents. Should only be defined inside a
    `nested` aggregation.

    :arg path: Defines the nested object field that should be joined back
        to. The default is empty, which means that it joins back to the
        root/main document level.
    """

    name = "reverse_nested"

    def __init__(
        self,
        path: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(path=path, **kwargs)


class RandomSampler(Bucket[_R]):
    """
    A single bucket aggregation that randomly includes documents in the
    aggregated results. Sampling provides significant speed improvement at
    the cost of accuracy.

    :arg probability: (required) The probability that a document will be
        included in the aggregated data. Must be greater than 0, less than
        0.5, or exactly 1. The lower the probability, the fewer documents
        are matched.
    :arg seed: The seed to generate the random sampling of documents. When
        a seed is provided, the random subset of documents is the same
        between calls.
    :arg shard_seed: When combined with seed, setting shard_seed ensures
        100% consistent sampling over shards where data is exactly the
        same.
    """

    name = "random_sampler"

    def __init__(
        self,
        *,
        probability: Union[float, "DefaultType"] = DEFAULT,
        seed: Union[int, "DefaultType"] = DEFAULT,
        shard_seed: Union[int, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            probability=probability, seed=seed, shard_seed=shard_seed, **kwargs
        )


class Sampler(Bucket[_R]):
    """
    A filtering aggregation used to limit any sub aggregations' processing
    to a sample of the top-scoring documents.

    :arg shard_size: Limits how many top-scoring documents are collected
        in the sample processed on each shard. Defaults to `100` if
        omitted.
    """

    name = "sampler"

    def __init__(self, shard_size: Union[int, "DefaultType"] = DEFAULT, **kwargs: Any):
        super().__init__(shard_size=shard_size, **kwargs)


class ScriptedMetric(Agg[_R]):
    """
    A metric aggregation that uses scripts to provide a metric output.

    :arg combine_script: Runs once on each shard after document collection
        is complete. Allows the aggregation to consolidate the state
        returned from each shard.
    :arg init_script: Runs prior to any collection of documents. Allows
        the aggregation to set up any initial state.
    :arg map_script: Run once per document collected. If no
        `combine_script` is specified, the resulting state needs to be
        stored in the `state` object.
    :arg params: A global object with script parameters for `init`, `map`
        and `combine` scripts. It is shared between the scripts.
    :arg reduce_script: Runs once on the coordinating node after all
        shards have returned their results. The script is provided with
        access to a variable `states`, which is an array of the result of
        the `combine_script` on each shard.
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "scripted_metric"

    def __init__(
        self,
        *,
        combine_script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        init_script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        map_script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        params: Union[Mapping[str, Any], "DefaultType"] = DEFAULT,
        reduce_script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            combine_script=combine_script,
            init_script=init_script,
            map_script=map_script,
            params=params,
            reduce_script=reduce_script,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class SerialDiff(Pipeline[_R]):
    """
    An aggregation that subtracts values in a time series from themselves
    at different time lags or periods.

    :arg lag: The historical bucket to subtract from the current value.
        Must be a positive, non-zero integer.
    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "serial_diff"

    def __init__(
        self,
        *,
        lag: Union[int, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            lag=lag,
            format=format,
            gap_policy=gap_policy,
            buckets_path=buckets_path,
            **kwargs,
        )


class SignificantTerms(Bucket[_R]):
    """
    Returns interesting or unusual occurrences of terms in a set.

    :arg background_filter: A background filter that can be used to focus
        in on significant terms within a narrower context, instead of the
        entire index.
    :arg chi_square: Use Chi square, as described in "Information
        Retrieval", Manning et al., Chapter 13.5.2, as the significance
        score.
    :arg exclude: Terms to exclude.
    :arg execution_hint: Mechanism by which the aggregation should be
        executed: using field values directly or using global ordinals.
    :arg field: The field from which to return significant terms.
    :arg gnd: Use Google normalized distance as described in "The Google
        Similarity Distance", Cilibrasi and Vitanyi, 2007, as the
        significance score.
    :arg include: Terms to include.
    :arg jlh: Use JLH score as the significance score.
    :arg min_doc_count: Only return terms that are found in more than
        `min_doc_count` hits. Defaults to `3` if omitted.
    :arg mutual_information: Use mutual information as described in
        "Information Retrieval", Manning et al., Chapter 13.5.1, as the
        significance score.
    :arg percentage: A simple calculation of the number of documents in
        the foreground sample with a term divided by the number of
        documents in the background with the term.
    :arg script_heuristic: Customized score, implemented via a script.
    :arg shard_min_doc_count: Regulates the certainty a shard has if the
        term should actually be added to the candidate list or not with
        respect to the `min_doc_count`. Terms will only be considered if
        their local shard frequency within the set is higher than the
        `shard_min_doc_count`.
    :arg shard_size: Can be used to control the volumes of candidate terms
        produced by each shard. By default, `shard_size` will be
        automatically estimated based on the number of shards and the
        `size` parameter.
    :arg size: The number of buckets returned out of the overall terms
        list.
    """

    name = "significant_terms"
    _param_defs = {
        "background_filter": {"type": "query"},
    }

    def __init__(
        self,
        *,
        background_filter: Union[Query, "DefaultType"] = DEFAULT,
        chi_square: Union[
            "types.ChiSquareHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        exclude: Union[str, Sequence[str], "DefaultType"] = DEFAULT,
        execution_hint: Union[
            Literal[
                "map",
                "global_ordinals",
                "global_ordinals_hash",
                "global_ordinals_low_cardinality",
            ],
            "DefaultType",
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        gnd: Union[
            "types.GoogleNormalizedDistanceHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        include: Union[
            str, Sequence[str], "types.TermsPartition", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        jlh: Union["types.EmptyObject", Dict[str, Any], "DefaultType"] = DEFAULT,
        min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        mutual_information: Union[
            "types.MutualInformationHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        percentage: Union[
            "types.PercentageScoreHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        script_heuristic: Union[
            "types.ScriptedHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            background_filter=background_filter,
            chi_square=chi_square,
            exclude=exclude,
            execution_hint=execution_hint,
            field=field,
            gnd=gnd,
            include=include,
            jlh=jlh,
            min_doc_count=min_doc_count,
            mutual_information=mutual_information,
            percentage=percentage,
            script_heuristic=script_heuristic,
            shard_min_doc_count=shard_min_doc_count,
            shard_size=shard_size,
            size=size,
            **kwargs,
        )


class SignificantText(Bucket[_R]):
    """
    Returns interesting or unusual occurrences of free-text terms in a
    set.

    :arg background_filter: A background filter that can be used to focus
        in on significant terms within a narrower context, instead of the
        entire index.
    :arg chi_square: Use Chi square, as described in "Information
        Retrieval", Manning et al., Chapter 13.5.2, as the significance
        score.
    :arg exclude: Values to exclude.
    :arg execution_hint: Determines whether the aggregation will use field
        values directly or global ordinals.
    :arg field: The field from which to return significant text.
    :arg filter_duplicate_text: Whether to out duplicate text to deal with
        noisy data.
    :arg gnd: Use Google normalized distance as described in "The Google
        Similarity Distance", Cilibrasi and Vitanyi, 2007, as the
        significance score.
    :arg include: Values to include.
    :arg jlh: Use JLH score as the significance score.
    :arg min_doc_count: Only return values that are found in more than
        `min_doc_count` hits. Defaults to `3` if omitted.
    :arg mutual_information: Use mutual information as described in
        "Information Retrieval", Manning et al., Chapter 13.5.1, as the
        significance score.
    :arg percentage: A simple calculation of the number of documents in
        the foreground sample with a term divided by the number of
        documents in the background with the term.
    :arg script_heuristic: Customized score, implemented via a script.
    :arg shard_min_doc_count: Regulates the certainty a shard has if the
        values should actually be added to the candidate list or not with
        respect to the min_doc_count. Values will only be considered if
        their local shard frequency within the set is higher than the
        `shard_min_doc_count`.
    :arg shard_size: The number of candidate terms produced by each shard.
        By default, `shard_size` will be automatically estimated based on
        the number of shards and the `size` parameter.
    :arg size: The number of buckets returned out of the overall terms
        list.
    :arg source_fields: Overrides the JSON `_source` fields from which
        text will be analyzed.
    """

    name = "significant_text"
    _param_defs = {
        "background_filter": {"type": "query"},
    }

    def __init__(
        self,
        *,
        background_filter: Union[Query, "DefaultType"] = DEFAULT,
        chi_square: Union[
            "types.ChiSquareHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        exclude: Union[str, Sequence[str], "DefaultType"] = DEFAULT,
        execution_hint: Union[
            Literal[
                "map",
                "global_ordinals",
                "global_ordinals_hash",
                "global_ordinals_low_cardinality",
            ],
            "DefaultType",
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        filter_duplicate_text: Union[bool, "DefaultType"] = DEFAULT,
        gnd: Union[
            "types.GoogleNormalizedDistanceHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        include: Union[
            str, Sequence[str], "types.TermsPartition", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        jlh: Union["types.EmptyObject", Dict[str, Any], "DefaultType"] = DEFAULT,
        min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        mutual_information: Union[
            "types.MutualInformationHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        percentage: Union[
            "types.PercentageScoreHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        script_heuristic: Union[
            "types.ScriptedHeuristic", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        source_fields: Union[
            Union[str, "InstrumentedField"],
            Sequence[Union[str, "InstrumentedField"]],
            "DefaultType",
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            background_filter=background_filter,
            chi_square=chi_square,
            exclude=exclude,
            execution_hint=execution_hint,
            field=field,
            filter_duplicate_text=filter_duplicate_text,
            gnd=gnd,
            include=include,
            jlh=jlh,
            min_doc_count=min_doc_count,
            mutual_information=mutual_information,
            percentage=percentage,
            script_heuristic=script_heuristic,
            shard_min_doc_count=shard_min_doc_count,
            shard_size=shard_size,
            size=size,
            source_fields=source_fields,
            **kwargs,
        )


class Stats(Agg[_R]):
    """
    A multi-value metrics aggregation that computes stats over numeric
    values extracted from the aggregated documents.

    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "stats"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, field=field, missing=missing, script=script, **kwargs
        )


class StatsBucket(Pipeline[_R]):
    """
    A sibling pipeline aggregation which calculates a variety of stats
    across all bucket of a specified metric in a sibling aggregation.

    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "stats_bucket"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
        )


class StringStats(Agg[_R]):
    """
    A multi-value metrics aggregation that computes statistics over string
    values extracted from the aggregated documents.

    :arg show_distribution: Shows the probability distribution for all
        characters.
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "string_stats"

    def __init__(
        self,
        *,
        show_distribution: Union[bool, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            show_distribution=show_distribution,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class Sum(Agg[_R]):
    """
    A single-value metrics aggregation that sums numeric values that are
    extracted from the aggregated documents.

    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "sum"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, field=field, missing=missing, script=script, **kwargs
        )


class SumBucket(Pipeline[_R]):
    """
    A sibling pipeline aggregation which calculates the sum of a specified
    metric across all buckets in a sibling aggregation.

    :arg format: `DecimalFormat` pattern for the output value. If
        specified, the formatted value is returned in the aggregation’s
        `value_as_string` property.
    :arg gap_policy: Policy to apply when gaps are found in the data.
        Defaults to `skip` if omitted.
    :arg buckets_path: Path to the buckets that contain one set of values
        to correlate.
    """

    name = "sum_bucket"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        gap_policy: Union[
            Literal["skip", "insert_zeros", "keep_values"], "DefaultType"
        ] = DEFAULT,
        buckets_path: Union[
            str, Sequence[str], Mapping[str, str], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, gap_policy=gap_policy, buckets_path=buckets_path, **kwargs
        )


class Terms(Bucket[_R]):
    """
    A multi-bucket value source based aggregation where buckets are
    dynamically built - one per unique value.

    :arg collect_mode: Determines how child aggregations should be
        calculated: breadth-first or depth-first.
    :arg exclude: Values to exclude. Accepts regular expressions and
        partitions.
    :arg execution_hint: Determines whether the aggregation will use field
        values directly or global ordinals.
    :arg field: The field from which to return terms.
    :arg include: Values to include. Accepts regular expressions and
        partitions.
    :arg min_doc_count: Only return values that are found in more than
        `min_doc_count` hits. Defaults to `1` if omitted.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg missing_order:
    :arg missing_bucket:
    :arg value_type: Coerced unmapped fields into the specified type.
    :arg order: Specifies the sort order of the buckets. Defaults to
        sorting by descending document count.
    :arg script:
    :arg shard_min_doc_count: Regulates the certainty a shard has if the
        term should actually be added to the candidate list or not with
        respect to the `min_doc_count`. Terms will only be considered if
        their local shard frequency within the set is higher than the
        `shard_min_doc_count`.
    :arg shard_size: The number of candidate terms produced by each shard.
        By default, `shard_size` will be automatically estimated based on
        the number of shards and the `size` parameter.
    :arg show_term_doc_count_error: Set to `true` to return the
        `doc_count_error_upper_bound`, which is an upper bound to the
        error on the `doc_count` returned by each shard.
    :arg size: The number of buckets returned out of the overall terms
        list. Defaults to `10` if omitted.
    :arg format:
    """

    name = "terms"

    def __init__(
        self,
        *,
        collect_mode: Union[
            Literal["depth_first", "breadth_first"], "DefaultType"
        ] = DEFAULT,
        exclude: Union[str, Sequence[str], "DefaultType"] = DEFAULT,
        execution_hint: Union[
            Literal[
                "map",
                "global_ordinals",
                "global_ordinals_hash",
                "global_ordinals_low_cardinality",
            ],
            "DefaultType",
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        include: Union[
            str, Sequence[str], "types.TermsPartition", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        missing_order: Union[
            Literal["first", "last", "default"], "DefaultType"
        ] = DEFAULT,
        missing_bucket: Union[bool, "DefaultType"] = DEFAULT,
        value_type: Union[str, "DefaultType"] = DEFAULT,
        order: Union[
            Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]],
            Sequence[Mapping[Union[str, "InstrumentedField"], Literal["asc", "desc"]]],
            "DefaultType",
        ] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        shard_min_doc_count: Union[int, "DefaultType"] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        show_term_doc_count_error: Union[bool, "DefaultType"] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        format: Union[str, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            collect_mode=collect_mode,
            exclude=exclude,
            execution_hint=execution_hint,
            field=field,
            include=include,
            min_doc_count=min_doc_count,
            missing=missing,
            missing_order=missing_order,
            missing_bucket=missing_bucket,
            value_type=value_type,
            order=order,
            script=script,
            shard_min_doc_count=shard_min_doc_count,
            shard_size=shard_size,
            show_term_doc_count_error=show_term_doc_count_error,
            size=size,
            format=format,
            **kwargs,
        )

    def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
        return FieldBucketData(self, search, data)


class TimeSeries(Bucket[_R]):
    """
    The time series aggregation queries data created using a time series
    index. This is typically data such as metrics or other data streams
    with a time component, and requires creating an index using the time
    series mode.

    :arg size: The maximum number of results to return. Defaults to
        `10000` if omitted.
    :arg keyed: Set to `true` to associate a unique string key with each
        bucket and returns the ranges as a hash rather than an array.
    """

    name = "time_series"

    def __init__(
        self,
        *,
        size: Union[int, "DefaultType"] = DEFAULT,
        keyed: Union[bool, "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(size=size, keyed=keyed, **kwargs)


class TopHits(Agg[_R]):
    """
    A metric aggregation that returns the top matching documents per
    bucket.

    :arg docvalue_fields: Fields for which to return doc values.
    :arg explain: If `true`, returns detailed information about score
        computation as part of a hit.
    :arg fields: Array of wildcard (*) patterns. The request returns
        values for field names matching these patterns in the hits.fields
        property of the response.
    :arg from: Starting document offset.
    :arg highlight: Specifies the highlighter to use for retrieving
        highlighted snippets from one or more fields in the search
        results.
    :arg script_fields: Returns the result of one or more script
        evaluations for each hit.
    :arg size: The maximum number of top matching hits to return per
        bucket. Defaults to `3` if omitted.
    :arg sort: Sort order of the top matching hits. By default, the hits
        are sorted by the score of the main query.
    :arg _source: Selects the fields of the source that are returned.
    :arg stored_fields: Returns values for the specified stored fields
        (fields that use the `store` mapping option).
    :arg track_scores: If `true`, calculates and returns document scores,
        even if the scores are not used for sorting.
    :arg version: If `true`, returns document version as part of a hit.
    :arg seq_no_primary_term: If `true`, returns sequence number and
        primary term of the last modification of each hit.
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "top_hits"

    def __init__(
        self,
        *,
        docvalue_fields: Union[
            Sequence["types.FieldAndFormat"], Sequence[Dict[str, Any]], "DefaultType"
        ] = DEFAULT,
        explain: Union[bool, "DefaultType"] = DEFAULT,
        fields: Union[
            Sequence["types.FieldAndFormat"], Sequence[Dict[str, Any]], "DefaultType"
        ] = DEFAULT,
        from_: Union[int, "DefaultType"] = DEFAULT,
        highlight: Union["types.Highlight", Dict[str, Any], "DefaultType"] = DEFAULT,
        script_fields: Union[
            Mapping[str, "types.ScriptField"], Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        sort: Union[
            Union[Union[str, "InstrumentedField"], "types.SortOptions"],
            Sequence[Union[Union[str, "InstrumentedField"], "types.SortOptions"]],
            Dict[str, Any],
            "DefaultType",
        ] = DEFAULT,
        _source: Union[
            bool, "types.SourceFilter", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        stored_fields: Union[
            Union[str, "InstrumentedField"],
            Sequence[Union[str, "InstrumentedField"]],
            "DefaultType",
        ] = DEFAULT,
        track_scores: Union[bool, "DefaultType"] = DEFAULT,
        version: Union[bool, "DefaultType"] = DEFAULT,
        seq_no_primary_term: Union[bool, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            docvalue_fields=docvalue_fields,
            explain=explain,
            fields=fields,
            from_=from_,
            highlight=highlight,
            script_fields=script_fields,
            size=size,
            sort=sort,
            _source=_source,
            stored_fields=stored_fields,
            track_scores=track_scores,
            version=version,
            seq_no_primary_term=seq_no_primary_term,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )

    def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
        return TopHitsData(self, search, data)


class TTest(Agg[_R]):
    """
    A metrics aggregation that performs a statistical hypothesis test in
    which the test statistic follows a Student’s t-distribution under the
    null hypothesis on numeric values extracted from the aggregated
    documents.

    :arg a: Test population A.
    :arg b: Test population B.
    :arg type: The type of test. Defaults to `heteroscedastic` if omitted.
    """

    name = "t_test"

    def __init__(
        self,
        *,
        a: Union["types.TestPopulation", Dict[str, Any], "DefaultType"] = DEFAULT,
        b: Union["types.TestPopulation", Dict[str, Any], "DefaultType"] = DEFAULT,
        type: Union[
            Literal["paired", "homoscedastic", "heteroscedastic"], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(a=a, b=b, type=type, **kwargs)


class TopMetrics(Agg[_R]):
    """
    A metric aggregation that selects metrics from the document with the
    largest or smallest sort value.

    :arg metrics: The fields of the top document to return.
    :arg size: The number of top documents from which to return metrics.
        Defaults to `1` if omitted.
    :arg sort: The sort order of the documents.
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "top_metrics"

    def __init__(
        self,
        *,
        metrics: Union[
            "types.TopMetricsValue",
            Sequence["types.TopMetricsValue"],
            Sequence[Dict[str, Any]],
            "DefaultType",
        ] = DEFAULT,
        size: Union[int, "DefaultType"] = DEFAULT,
        sort: Union[
            Union[Union[str, "InstrumentedField"], "types.SortOptions"],
            Sequence[Union[Union[str, "InstrumentedField"], "types.SortOptions"]],
            Dict[str, Any],
            "DefaultType",
        ] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            metrics=metrics,
            size=size,
            sort=sort,
            field=field,
            missing=missing,
            script=script,
            **kwargs,
        )


class ValueCount(Agg[_R]):
    """
    A single-value metrics aggregation that counts the number of values
    that are extracted from the aggregated documents.

    :arg format:
    :arg field: The field on which to run the aggregation.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    :arg script:
    """

    name = "value_count"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        missing: Union[str, int, float, bool, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, field=field, missing=missing, script=script, **kwargs
        )


class WeightedAvg(Agg[_R]):
    """
    A single-value metrics aggregation that computes the weighted average
    of numeric values that are extracted from the aggregated documents.

    :arg format: A numeric response formatter.
    :arg value: Configuration for the field that provides the values.
    :arg value_type:
    :arg weight: Configuration for the field or script that provides the
        weights.
    """

    name = "weighted_avg"

    def __init__(
        self,
        *,
        format: Union[str, "DefaultType"] = DEFAULT,
        value: Union[
            "types.WeightedAverageValue", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        value_type: Union[
            Literal[
                "string",
                "long",
                "double",
                "number",
                "date",
                "date_nanos",
                "ip",
                "numeric",
                "geo_point",
                "boolean",
            ],
            "DefaultType",
        ] = DEFAULT,
        weight: Union[
            "types.WeightedAverageValue", Dict[str, Any], "DefaultType"
        ] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            format=format, value=value, value_type=value_type, weight=weight, **kwargs
        )


class VariableWidthHistogram(Bucket[_R]):
    """
    A multi-bucket aggregation similar to the histogram, except instead of
    providing an interval to use as the width of each bucket, a target
    number of buckets is provided.

    :arg field: The name of the field.
    :arg buckets: The target number of buckets. Defaults to `10` if
        omitted.
    :arg shard_size: The number of buckets that the coordinating node will
        request from each shard. Defaults to `buckets * 50`.
    :arg initial_buffer: Specifies the number of individual documents that
        will be stored in memory on a shard before the initial bucketing
        algorithm is run. Defaults to `min(10 * shard_size, 50000)`.
    :arg script:
    """

    name = "variable_width_histogram"

    def __init__(
        self,
        *,
        field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        buckets: Union[int, "DefaultType"] = DEFAULT,
        shard_size: Union[int, "DefaultType"] = DEFAULT,
        initial_buffer: Union[int, "DefaultType"] = DEFAULT,
        script: Union["types.Script", Dict[str, Any], "DefaultType"] = DEFAULT,
        **kwargs: Any,
    ):
        super().__init__(
            field=field,
            buckets=buckets,
            shard_size=shard_size,
            initial_buffer=initial_buffer,
            script=script,
            **kwargs,
        )

    def result(self, search: "SearchBase[_R]", data: Any) -> AttrDict[Any]:
        return FieldBucketData(self, search, data)