1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Any, ClassVar, Dict, List, Optional, Union, cast
from . import async_connections, connections
from .utils import AsyncUsingType, AttrDict, DslBase, UsingType, merge
__all__ = ["tokenizer", "analyzer", "char_filter", "token_filter", "normalizer"]
class AnalysisBase:
@classmethod
def _type_shortcut(
cls,
name_or_instance: Union[str, "AnalysisBase"],
type: Optional[str] = None,
**kwargs: Any,
) -> DslBase:
if isinstance(name_or_instance, cls):
if type or kwargs:
raise ValueError(f"{cls.__name__}() cannot accept parameters.")
return name_or_instance # type: ignore[return-value]
if not (type or kwargs):
return cls.get_dsl_class("builtin")(name_or_instance) # type: ignore[no-any-return, attr-defined]
return cls.get_dsl_class(type, "custom")( # type: ignore[no-any-return, attr-defined]
name_or_instance, type or "custom", **kwargs
)
class CustomAnalysis:
name = "custom"
def __init__(self, filter_name: str, builtin_type: str = "custom", **kwargs: Any):
self._builtin_type = builtin_type
self._name = filter_name
super().__init__(**kwargs)
def to_dict(self) -> Dict[str, Any]:
# only name to present in lists
return self._name # type: ignore[return-value]
def get_definition(self) -> Dict[str, Any]:
d = super().to_dict() # type: ignore[misc]
d = d.pop(self.name)
d["type"] = self._builtin_type
return d # type: ignore[no-any-return]
class CustomAnalysisDefinition(CustomAnalysis):
_type_name: str
_param_defs: ClassVar[Dict[str, Any]]
filter: List[Any]
char_filter: List[Any]
def get_analysis_definition(self) -> Dict[str, Any]:
out = {self._type_name: {self._name: self.get_definition()}}
t = cast("Tokenizer", getattr(self, "tokenizer", None))
if "tokenizer" in self._param_defs and hasattr(t, "get_definition"):
out["tokenizer"] = {t._name: t.get_definition()}
filters = {
f._name: f.get_definition()
for f in self.filter
if hasattr(f, "get_definition")
}
if filters:
out["filter"] = filters
# any sub filter definitions like multiplexers etc?
for f in self.filter:
if hasattr(f, "get_analysis_definition"):
d = f.get_analysis_definition()
if d:
merge(out, d, True)
char_filters = {
f._name: f.get_definition()
for f in self.char_filter
if hasattr(f, "get_definition")
}
if char_filters:
out["char_filter"] = char_filters
return out
class BuiltinAnalysis:
name = "builtin"
def __init__(self, name: str):
self._name = name
super().__init__()
def to_dict(self) -> Dict[str, Any]:
# only name to present in lists
return self._name # type: ignore[return-value]
class Analyzer(AnalysisBase, DslBase):
_type_name = "analyzer"
name = ""
class BuiltinAnalyzer(BuiltinAnalysis, Analyzer):
def get_analysis_definition(self) -> Dict[str, Any]:
return {}
class CustomAnalyzer(CustomAnalysisDefinition, Analyzer):
_param_defs = {
"filter": {"type": "token_filter", "multi": True},
"char_filter": {"type": "char_filter", "multi": True},
"tokenizer": {"type": "tokenizer"},
}
def _get_body(
self, text: str, explain: bool, attributes: Optional[Dict[str, Any]]
) -> Dict[str, Any]:
body = {"text": text, "explain": explain}
if attributes:
body["attributes"] = attributes
definition = self.get_analysis_definition()
analyzer_def = self.get_definition()
for section in ("tokenizer", "char_filter", "filter"):
if section not in analyzer_def:
continue
sec_def = definition.get(section, {})
sec_names = analyzer_def[section]
if isinstance(sec_names, str):
body[section] = sec_def.get(sec_names, sec_names)
else:
body[section] = [
sec_def.get(sec_name, sec_name) for sec_name in sec_names
]
if self._builtin_type != "custom":
body["analyzer"] = self._builtin_type
return body
def simulate(
self,
text: str,
using: UsingType = "default",
explain: bool = False,
attributes: Optional[Dict[str, Any]] = None,
) -> AttrDict[Any]:
"""
Use the Analyze API of elasticsearch to test the outcome of this analyzer.
:arg text: Text to be analyzed
:arg using: connection alias to use, defaults to ``'default'``
:arg explain: will output all token attributes for each token. You can
filter token attributes you want to output by setting ``attributes``
option.
:arg attributes: if ``explain`` is specified, filter the token
attributes to return.
"""
es = connections.get_connection(using)
return AttrDict(
cast(
Dict[str, Any],
es.indices.analyze(body=self._get_body(text, explain, attributes)),
)
)
async def async_simulate(
self,
text: str,
using: AsyncUsingType = "default",
explain: bool = False,
attributes: Optional[Dict[str, Any]] = None,
) -> AttrDict[Any]:
"""
Use the Analyze API of elasticsearch to test the outcome of this analyzer.
:arg text: Text to be analyzed
:arg using: connection alias to use, defaults to ``'default'``
:arg explain: will output all token attributes for each token. You can
filter token attributes you want to output by setting ``attributes``
option.
:arg attributes: if ``explain`` is specified, filter the token
attributes to return.
"""
es = async_connections.get_connection(using)
return AttrDict(
cast(
Dict[str, Any],
await es.indices.analyze(
body=self._get_body(text, explain, attributes)
),
)
)
class Normalizer(AnalysisBase, DslBase):
_type_name = "normalizer"
name = ""
class BuiltinNormalizer(BuiltinAnalysis, Normalizer):
def get_analysis_definition(self) -> Dict[str, Any]:
return {}
class CustomNormalizer(CustomAnalysisDefinition, Normalizer):
_param_defs = {
"filter": {"type": "token_filter", "multi": True},
"char_filter": {"type": "char_filter", "multi": True},
}
class Tokenizer(AnalysisBase, DslBase):
_type_name = "tokenizer"
name = ""
class BuiltinTokenizer(BuiltinAnalysis, Tokenizer):
pass
class CustomTokenizer(CustomAnalysis, Tokenizer):
pass
class TokenFilter(AnalysisBase, DslBase):
_type_name = "token_filter"
name = ""
class BuiltinTokenFilter(BuiltinAnalysis, TokenFilter):
pass
class CustomTokenFilter(CustomAnalysis, TokenFilter):
pass
class MultiplexerTokenFilter(CustomTokenFilter):
name = "multiplexer"
def get_definition(self) -> Dict[str, Any]:
d = super(CustomTokenFilter, self).get_definition()
if "filters" in d:
d["filters"] = [
# comma delimited string given by user
(
fs
if isinstance(fs, str)
else
# list of strings or TokenFilter objects
", ".join(f.to_dict() if hasattr(f, "to_dict") else f for f in fs)
)
for fs in self.filters
]
return d
def get_analysis_definition(self) -> Dict[str, Any]:
if not hasattr(self, "filters"):
return {}
fs: Dict[str, Any] = {}
d = {"filter": fs}
for filters in self.filters:
if isinstance(filters, str):
continue
fs.update(
{
f._name: f.get_definition()
for f in filters
if hasattr(f, "get_definition")
}
)
return d
class ConditionalTokenFilter(CustomTokenFilter):
name = "condition"
def get_definition(self) -> Dict[str, Any]:
d = super(CustomTokenFilter, self).get_definition()
if "filter" in d:
d["filter"] = [
f.to_dict() if hasattr(f, "to_dict") else f for f in self.filter
]
return d
def get_analysis_definition(self) -> Dict[str, Any]:
if not hasattr(self, "filter"):
return {}
return {
"filter": {
f._name: f.get_definition()
for f in self.filter
if hasattr(f, "get_definition")
}
}
class CharFilter(AnalysisBase, DslBase):
_type_name = "char_filter"
name = ""
class BuiltinCharFilter(BuiltinAnalysis, CharFilter):
pass
class CustomCharFilter(CustomAnalysis, CharFilter):
pass
# shortcuts for direct use
analyzer = Analyzer._type_shortcut
tokenizer = Tokenizer._type_shortcut
token_filter = TokenFilter._type_shortcut
char_filter = CharFilter._type_shortcut
normalizer = Normalizer._type_shortcut
|