1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from datetime import datetime, timedelta
from typing import (
TYPE_CHECKING,
Any,
Dict,
Generic,
List,
Optional,
Sequence,
Tuple,
Type,
Union,
cast,
)
from typing_extensions import Self
from .aggs import A, Agg
from .query import MatchAll, Nested, Query, Range, Terms
from .response import Response
from .utils import _R, AttrDict
if TYPE_CHECKING:
from .document_base import DocumentBase
from .response.aggs import BucketData
from .search_base import SearchBase
FilterValueType = Union[str, int, float, bool]
__all__ = [
"FacetedSearchBase",
"HistogramFacet",
"TermsFacet",
"DateHistogramFacet",
"RangeFacet",
"NestedFacet",
]
class Facet(Generic[_R]):
"""
A facet on faceted search. Wraps and aggregation and provides functionality
to create a filter for selected values and return a list of facet values
from the result of the aggregation.
"""
agg_type: str = ""
def __init__(
self, metric: Optional[Agg[_R]] = None, metric_sort: str = "desc", **kwargs: Any
):
self.filter_values = ()
self._params = kwargs
self._metric = metric
if metric and metric_sort:
self._params["order"] = {"metric": metric_sort}
def get_aggregation(self) -> Agg[_R]:
"""
Return the aggregation object.
"""
agg: Agg[_R] = A(self.agg_type, **self._params)
if self._metric:
agg.metric("metric", self._metric)
return agg
def add_filter(self, filter_values: List[FilterValueType]) -> Optional[Query]:
"""
Construct a filter.
"""
if not filter_values:
return None
f = self.get_value_filter(filter_values[0])
for v in filter_values[1:]:
f |= self.get_value_filter(v)
return f
def get_value_filter(self, filter_value: FilterValueType) -> Query: # type: ignore[empty-body]
"""
Construct a filter for an individual value
"""
pass
def is_filtered(self, key: str, filter_values: List[FilterValueType]) -> bool:
"""
Is a filter active on the given key.
"""
return key in filter_values
def get_value(self, bucket: "BucketData[_R]") -> Any:
"""
return a value representing a bucket. Its key as default.
"""
return bucket["key"]
def get_metric(self, bucket: "BucketData[_R]") -> int:
"""
Return a metric, by default doc_count for a bucket.
"""
if self._metric:
return cast(int, bucket["metric"]["value"])
return cast(int, bucket["doc_count"])
def get_values(
self, data: "BucketData[_R]", filter_values: List[FilterValueType]
) -> List[Tuple[Any, int, bool]]:
"""
Turn the raw bucket data into a list of tuples containing the key,
number of documents and a flag indicating whether this value has been
selected or not.
"""
out = []
for bucket in data.buckets:
b = cast("BucketData[_R]", bucket)
key = self.get_value(b)
out.append((key, self.get_metric(b), self.is_filtered(key, filter_values)))
return out
class TermsFacet(Facet[_R]):
agg_type = "terms"
def add_filter(self, filter_values: List[FilterValueType]) -> Optional[Query]:
"""Create a terms filter instead of bool containing term filters."""
if filter_values:
return Terms(self._params["field"], filter_values, _expand__to_dot=False)
return None
class RangeFacet(Facet[_R]):
agg_type = "range"
def _range_to_dict(
self, range: Tuple[Any, Tuple[Optional[int], Optional[int]]]
) -> Dict[str, Any]:
key, _range = range
out: Dict[str, Any] = {"key": key}
if _range[0] is not None:
out["from"] = _range[0]
if _range[1] is not None:
out["to"] = _range[1]
return out
def __init__(
self,
ranges: Sequence[Tuple[Any, Tuple[Optional[int], Optional[int]]]],
**kwargs: Any,
):
super().__init__(**kwargs)
self._params["ranges"] = list(map(self._range_to_dict, ranges))
self._params["keyed"] = False
self._ranges = dict(ranges)
def get_value_filter(self, filter_value: FilterValueType) -> Query:
f, t = self._ranges[filter_value]
limits: Dict[str, Any] = {}
if f is not None:
limits["gte"] = f
if t is not None:
limits["lt"] = t
return Range(self._params["field"], limits, _expand__to_dot=False)
class HistogramFacet(Facet[_R]):
agg_type = "histogram"
def get_value_filter(self, filter_value: FilterValueType) -> Range:
return Range(
self._params["field"],
{
"gte": filter_value,
"lt": filter_value + self._params["interval"],
},
_expand__to_dot=False,
)
def _date_interval_year(d: datetime) -> datetime:
return d.replace(
year=d.year + 1, day=(28 if d.month == 2 and d.day == 29 else d.day)
)
def _date_interval_month(d: datetime) -> datetime:
return (d + timedelta(days=32)).replace(day=1)
def _date_interval_week(d: datetime) -> datetime:
return d + timedelta(days=7)
def _date_interval_day(d: datetime) -> datetime:
return d + timedelta(days=1)
def _date_interval_hour(d: datetime) -> datetime:
return d + timedelta(hours=1)
class DateHistogramFacet(Facet[_R]):
agg_type = "date_histogram"
DATE_INTERVALS = {
"year": _date_interval_year,
"1Y": _date_interval_year,
"month": _date_interval_month,
"1M": _date_interval_month,
"week": _date_interval_week,
"1w": _date_interval_week,
"day": _date_interval_day,
"1d": _date_interval_day,
"hour": _date_interval_hour,
"1h": _date_interval_hour,
}
def __init__(self, **kwargs: Any):
kwargs.setdefault("min_doc_count", 0)
super().__init__(**kwargs)
def get_value(self, bucket: "BucketData[_R]") -> Any:
if not isinstance(bucket["key"], datetime):
# Elasticsearch returns key=None instead of 0 for date 1970-01-01,
# so we need to set key to 0 to avoid TypeError exception
if bucket["key"] is None:
bucket["key"] = 0
# Preserve milliseconds in the datetime
return datetime.utcfromtimestamp(int(cast(int, bucket["key"])) / 1000.0)
else:
return bucket["key"]
def get_value_filter(self, filter_value: Any) -> Range:
for interval_type in ("calendar_interval", "fixed_interval"):
if interval_type in self._params:
break
else:
interval_type = "interval"
return Range(
self._params["field"],
{
"gte": filter_value,
"lt": self.DATE_INTERVALS[self._params[interval_type]](filter_value),
},
_expand__to_dot=False,
)
class NestedFacet(Facet[_R]):
agg_type = "nested"
def __init__(self, path: str, nested_facet: Facet[_R]):
self._path = path
self._inner = nested_facet
super().__init__(path=path, aggs={"inner": nested_facet.get_aggregation()})
def get_values(
self, data: "BucketData[_R]", filter_values: List[FilterValueType]
) -> List[Tuple[Any, int, bool]]:
return self._inner.get_values(data.inner, filter_values)
def add_filter(self, filter_values: List[FilterValueType]) -> Optional[Query]:
inner_q = self._inner.add_filter(filter_values)
if inner_q:
return Nested(path=self._path, query=inner_q)
return None
class FacetedResponse(Response[_R]):
if TYPE_CHECKING:
_faceted_search: "FacetedSearchBase[_R]"
_facets: Dict[str, List[Tuple[Any, int, bool]]]
@property
def query_string(self) -> Optional[Union[str, Query]]:
return self._faceted_search._query
@property
def facets(self) -> Dict[str, List[Tuple[Any, int, bool]]]:
if not hasattr(self, "_facets"):
super(AttrDict, self).__setattr__("_facets", AttrDict({}))
for name, facet in self._faceted_search.facets.items():
self._facets[name] = facet.get_values(
getattr(getattr(self.aggregations, "_filter_" + name), name),
self._faceted_search.filter_values.get(name, []),
)
return self._facets
class FacetedSearchBase(Generic[_R]):
"""
Abstraction for creating faceted navigation searches that takes care of
composing the queries, aggregations and filters as needed as well as
presenting the results in an easy-to-consume fashion::
class BlogSearch(FacetedSearch):
index = 'blogs'
doc_types = [Blog, Post]
fields = ['title^5', 'category', 'description', 'body']
facets = {
'type': TermsFacet(field='_type'),
'category': TermsFacet(field='category'),
'weekly_posts': DateHistogramFacet(field='published_from', interval='week')
}
def search(self):
' Override search to add your own filters '
s = super(BlogSearch, self).search()
return s.filter('term', published=True)
# when using:
blog_search = BlogSearch("web framework", filters={"category": "python"})
# supports pagination
blog_search[10:20]
response = blog_search.execute()
# easy access to aggregation results:
for category, hit_count, is_selected in response.facets.category:
print(
"Category %s has %d hits%s." % (
category,
hit_count,
' and is chosen' if is_selected else ''
)
)
"""
index: Optional[str] = None
doc_types: Optional[List[Union[str, Type["DocumentBase"]]]] = None
fields: Sequence[str] = []
facets: Dict[str, Facet[_R]] = {}
using = "default"
if TYPE_CHECKING:
def search(self) -> "SearchBase[_R]": ...
def __init__(
self,
query: Optional[Union[str, Query]] = None,
filters: Dict[str, FilterValueType] = {},
sort: Sequence[str] = [],
):
"""
:arg query: the text to search for
:arg filters: facet values to filter
:arg sort: sort information to be passed to :class:`~elasticsearch.dsl.Search`
"""
self._query = query
self._filters: Dict[str, Query] = {}
self._sort = sort
self.filter_values: Dict[str, List[FilterValueType]] = {}
for name, value in filters.items():
self.add_filter(name, value)
self._s = self.build_search()
def __getitem__(self, k: Union[int, slice]) -> Self:
self._s = self._s[k]
return self
def add_filter(
self, name: str, filter_values: Union[FilterValueType, List[FilterValueType]]
) -> None:
"""
Add a filter for a facet.
"""
# normalize the value into a list
if not isinstance(filter_values, (tuple, list)):
if filter_values is None:
return
filter_values = [
filter_values,
]
# remember the filter values for use in FacetedResponse
self.filter_values[name] = filter_values
# get the filter from the facet
f = self.facets[name].add_filter(filter_values)
if f is None:
return
self._filters[name] = f
def query(
self, search: "SearchBase[_R]", query: Union[str, Query]
) -> "SearchBase[_R]":
"""
Add query part to ``search``.
Override this if you wish to customize the query used.
"""
if query:
if self.fields:
return search.query("multi_match", fields=self.fields, query=query)
else:
return search.query("multi_match", query=query)
return search
def aggregate(self, search: "SearchBase[_R]") -> None:
"""
Add aggregations representing the facets selected, including potential
filters.
"""
for f, facet in self.facets.items():
agg = facet.get_aggregation()
agg_filter: Query = MatchAll()
for field, filter in self._filters.items():
if f == field:
continue
agg_filter &= filter
search.aggs.bucket("_filter_" + f, "filter", filter=agg_filter).bucket(
f, agg
)
def filter(self, search: "SearchBase[_R]") -> "SearchBase[_R]":
"""
Add a ``post_filter`` to the search request narrowing the results based
on the facet filters.
"""
if not self._filters:
return search
post_filter: Query = MatchAll()
for f in self._filters.values():
post_filter &= f
return search.post_filter(post_filter)
def highlight(self, search: "SearchBase[_R]") -> "SearchBase[_R]":
"""
Add highlighting for all the fields
"""
return search.highlight(
*(f if "^" not in f else f.split("^", 1)[0] for f in self.fields)
)
def sort(self, search: "SearchBase[_R]") -> "SearchBase[_R]":
"""
Add sorting information to the request.
"""
if self._sort:
search = search.sort(*self._sort)
return search
def params(self, **kwargs: Any) -> None:
"""
Specify query params to be used when executing the search. All the
keyword arguments will override the current values. See
https://elasticsearch-py.readthedocs.io/en/latest/api/elasticsearch.html#elasticsearch.Elasticsearch.search
for all available parameters.
"""
self._s = self._s.params(**kwargs)
def build_search(self) -> "SearchBase[_R]":
"""
Construct the ``Search`` object.
"""
s = self.search()
if self._query is not None:
s = self.query(s, self._query)
s = self.filter(s)
if self.fields:
s = self.highlight(s)
s = self.sort(s)
self.aggregate(s)
return s
|