File: faceted_search_base.py

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (489 lines) | stat: -rw-r--r-- 15,354 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
#  Licensed to Elasticsearch B.V. under one or more contributor
#  license agreements. See the NOTICE file distributed with
#  this work for additional information regarding copyright
#  ownership. Elasticsearch B.V. licenses this file to you under
#  the Apache License, Version 2.0 (the "License"); you may
#  not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
# 	http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing,
#  software distributed under the License is distributed on an
#  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#  KIND, either express or implied.  See the License for the
#  specific language governing permissions and limitations
#  under the License.

from datetime import datetime, timedelta
from typing import (
    TYPE_CHECKING,
    Any,
    Dict,
    Generic,
    List,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    cast,
)

from typing_extensions import Self

from .aggs import A, Agg
from .query import MatchAll, Nested, Query, Range, Terms
from .response import Response
from .utils import _R, AttrDict

if TYPE_CHECKING:
    from .document_base import DocumentBase
    from .response.aggs import BucketData
    from .search_base import SearchBase

FilterValueType = Union[str, int, float, bool]

__all__ = [
    "FacetedSearchBase",
    "HistogramFacet",
    "TermsFacet",
    "DateHistogramFacet",
    "RangeFacet",
    "NestedFacet",
]


class Facet(Generic[_R]):
    """
    A facet on faceted search. Wraps and aggregation and provides functionality
    to create a filter for selected values and return a list of facet values
    from the result of the aggregation.
    """

    agg_type: str = ""

    def __init__(
        self, metric: Optional[Agg[_R]] = None, metric_sort: str = "desc", **kwargs: Any
    ):
        self.filter_values = ()
        self._params = kwargs
        self._metric = metric
        if metric and metric_sort:
            self._params["order"] = {"metric": metric_sort}

    def get_aggregation(self) -> Agg[_R]:
        """
        Return the aggregation object.
        """
        agg: Agg[_R] = A(self.agg_type, **self._params)
        if self._metric:
            agg.metric("metric", self._metric)
        return agg

    def add_filter(self, filter_values: List[FilterValueType]) -> Optional[Query]:
        """
        Construct a filter.
        """
        if not filter_values:
            return None

        f = self.get_value_filter(filter_values[0])
        for v in filter_values[1:]:
            f |= self.get_value_filter(v)
        return f

    def get_value_filter(self, filter_value: FilterValueType) -> Query:  # type: ignore[empty-body]
        """
        Construct a filter for an individual value
        """
        pass

    def is_filtered(self, key: str, filter_values: List[FilterValueType]) -> bool:
        """
        Is a filter active on the given key.
        """
        return key in filter_values

    def get_value(self, bucket: "BucketData[_R]") -> Any:
        """
        return a value representing a bucket. Its key as default.
        """
        return bucket["key"]

    def get_metric(self, bucket: "BucketData[_R]") -> int:
        """
        Return a metric, by default doc_count for a bucket.
        """
        if self._metric:
            return cast(int, bucket["metric"]["value"])
        return cast(int, bucket["doc_count"])

    def get_values(
        self, data: "BucketData[_R]", filter_values: List[FilterValueType]
    ) -> List[Tuple[Any, int, bool]]:
        """
        Turn the raw bucket data into a list of tuples containing the key,
        number of documents and a flag indicating whether this value has been
        selected or not.
        """
        out = []
        for bucket in data.buckets:
            b = cast("BucketData[_R]", bucket)
            key = self.get_value(b)
            out.append((key, self.get_metric(b), self.is_filtered(key, filter_values)))
        return out


class TermsFacet(Facet[_R]):
    agg_type = "terms"

    def add_filter(self, filter_values: List[FilterValueType]) -> Optional[Query]:
        """Create a terms filter instead of bool containing term filters."""
        if filter_values:
            return Terms(self._params["field"], filter_values, _expand__to_dot=False)
        return None


class RangeFacet(Facet[_R]):
    agg_type = "range"

    def _range_to_dict(
        self, range: Tuple[Any, Tuple[Optional[int], Optional[int]]]
    ) -> Dict[str, Any]:
        key, _range = range
        out: Dict[str, Any] = {"key": key}
        if _range[0] is not None:
            out["from"] = _range[0]
        if _range[1] is not None:
            out["to"] = _range[1]
        return out

    def __init__(
        self,
        ranges: Sequence[Tuple[Any, Tuple[Optional[int], Optional[int]]]],
        **kwargs: Any,
    ):
        super().__init__(**kwargs)
        self._params["ranges"] = list(map(self._range_to_dict, ranges))
        self._params["keyed"] = False
        self._ranges = dict(ranges)

    def get_value_filter(self, filter_value: FilterValueType) -> Query:
        f, t = self._ranges[filter_value]
        limits: Dict[str, Any] = {}
        if f is not None:
            limits["gte"] = f
        if t is not None:
            limits["lt"] = t

        return Range(self._params["field"], limits, _expand__to_dot=False)


class HistogramFacet(Facet[_R]):
    agg_type = "histogram"

    def get_value_filter(self, filter_value: FilterValueType) -> Range:
        return Range(
            self._params["field"],
            {
                "gte": filter_value,
                "lt": filter_value + self._params["interval"],
            },
            _expand__to_dot=False,
        )


def _date_interval_year(d: datetime) -> datetime:
    return d.replace(
        year=d.year + 1, day=(28 if d.month == 2 and d.day == 29 else d.day)
    )


def _date_interval_month(d: datetime) -> datetime:
    return (d + timedelta(days=32)).replace(day=1)


def _date_interval_week(d: datetime) -> datetime:
    return d + timedelta(days=7)


def _date_interval_day(d: datetime) -> datetime:
    return d + timedelta(days=1)


def _date_interval_hour(d: datetime) -> datetime:
    return d + timedelta(hours=1)


class DateHistogramFacet(Facet[_R]):
    agg_type = "date_histogram"

    DATE_INTERVALS = {
        "year": _date_interval_year,
        "1Y": _date_interval_year,
        "month": _date_interval_month,
        "1M": _date_interval_month,
        "week": _date_interval_week,
        "1w": _date_interval_week,
        "day": _date_interval_day,
        "1d": _date_interval_day,
        "hour": _date_interval_hour,
        "1h": _date_interval_hour,
    }

    def __init__(self, **kwargs: Any):
        kwargs.setdefault("min_doc_count", 0)
        super().__init__(**kwargs)

    def get_value(self, bucket: "BucketData[_R]") -> Any:
        if not isinstance(bucket["key"], datetime):
            # Elasticsearch returns key=None instead of 0 for date 1970-01-01,
            # so we need to set key to 0 to avoid TypeError exception
            if bucket["key"] is None:
                bucket["key"] = 0
            # Preserve milliseconds in the datetime
            return datetime.utcfromtimestamp(int(cast(int, bucket["key"])) / 1000.0)
        else:
            return bucket["key"]

    def get_value_filter(self, filter_value: Any) -> Range:
        for interval_type in ("calendar_interval", "fixed_interval"):
            if interval_type in self._params:
                break
        else:
            interval_type = "interval"

        return Range(
            self._params["field"],
            {
                "gte": filter_value,
                "lt": self.DATE_INTERVALS[self._params[interval_type]](filter_value),
            },
            _expand__to_dot=False,
        )


class NestedFacet(Facet[_R]):
    agg_type = "nested"

    def __init__(self, path: str, nested_facet: Facet[_R]):
        self._path = path
        self._inner = nested_facet
        super().__init__(path=path, aggs={"inner": nested_facet.get_aggregation()})

    def get_values(
        self, data: "BucketData[_R]", filter_values: List[FilterValueType]
    ) -> List[Tuple[Any, int, bool]]:
        return self._inner.get_values(data.inner, filter_values)

    def add_filter(self, filter_values: List[FilterValueType]) -> Optional[Query]:
        inner_q = self._inner.add_filter(filter_values)
        if inner_q:
            return Nested(path=self._path, query=inner_q)
        return None


class FacetedResponse(Response[_R]):
    if TYPE_CHECKING:
        _faceted_search: "FacetedSearchBase[_R]"
        _facets: Dict[str, List[Tuple[Any, int, bool]]]

    @property
    def query_string(self) -> Optional[Union[str, Query]]:
        return self._faceted_search._query

    @property
    def facets(self) -> Dict[str, List[Tuple[Any, int, bool]]]:
        if not hasattr(self, "_facets"):
            super(AttrDict, self).__setattr__("_facets", AttrDict({}))
            for name, facet in self._faceted_search.facets.items():
                self._facets[name] = facet.get_values(
                    getattr(getattr(self.aggregations, "_filter_" + name), name),
                    self._faceted_search.filter_values.get(name, []),
                )
        return self._facets


class FacetedSearchBase(Generic[_R]):
    """
    Abstraction for creating faceted navigation searches that takes care of
    composing the queries, aggregations and filters as needed as well as
    presenting the results in an easy-to-consume fashion::

        class BlogSearch(FacetedSearch):
            index = 'blogs'
            doc_types = [Blog, Post]
            fields = ['title^5', 'category', 'description', 'body']

            facets = {
                'type': TermsFacet(field='_type'),
                'category': TermsFacet(field='category'),
                'weekly_posts': DateHistogramFacet(field='published_from', interval='week')
            }

            def search(self):
                ' Override search to add your own filters '
                s = super(BlogSearch, self).search()
                return s.filter('term', published=True)

        # when using:
        blog_search = BlogSearch("web framework", filters={"category": "python"})

        # supports pagination
        blog_search[10:20]

        response = blog_search.execute()

        # easy access to aggregation results:
        for category, hit_count, is_selected in response.facets.category:
            print(
                "Category %s has %d hits%s." % (
                    category,
                    hit_count,
                    ' and is chosen' if is_selected else ''
                )
            )

    """

    index: Optional[str] = None
    doc_types: Optional[List[Union[str, Type["DocumentBase"]]]] = None
    fields: Sequence[str] = []
    facets: Dict[str, Facet[_R]] = {}
    using = "default"

    if TYPE_CHECKING:

        def search(self) -> "SearchBase[_R]": ...

    def __init__(
        self,
        query: Optional[Union[str, Query]] = None,
        filters: Dict[str, FilterValueType] = {},
        sort: Sequence[str] = [],
    ):
        """
        :arg query: the text to search for
        :arg filters: facet values to filter
        :arg sort: sort information to be passed to :class:`~elasticsearch.dsl.Search`
        """
        self._query = query
        self._filters: Dict[str, Query] = {}
        self._sort = sort
        self.filter_values: Dict[str, List[FilterValueType]] = {}
        for name, value in filters.items():
            self.add_filter(name, value)

        self._s = self.build_search()

    def __getitem__(self, k: Union[int, slice]) -> Self:
        self._s = self._s[k]
        return self

    def add_filter(
        self, name: str, filter_values: Union[FilterValueType, List[FilterValueType]]
    ) -> None:
        """
        Add a filter for a facet.
        """
        # normalize the value into a list
        if not isinstance(filter_values, (tuple, list)):
            if filter_values is None:
                return
            filter_values = [
                filter_values,
            ]

        # remember the filter values for use in FacetedResponse
        self.filter_values[name] = filter_values

        # get the filter from the facet
        f = self.facets[name].add_filter(filter_values)
        if f is None:
            return

        self._filters[name] = f

    def query(
        self, search: "SearchBase[_R]", query: Union[str, Query]
    ) -> "SearchBase[_R]":
        """
        Add query part to ``search``.

        Override this if you wish to customize the query used.
        """
        if query:
            if self.fields:
                return search.query("multi_match", fields=self.fields, query=query)
            else:
                return search.query("multi_match", query=query)
        return search

    def aggregate(self, search: "SearchBase[_R]") -> None:
        """
        Add aggregations representing the facets selected, including potential
        filters.
        """
        for f, facet in self.facets.items():
            agg = facet.get_aggregation()
            agg_filter: Query = MatchAll()
            for field, filter in self._filters.items():
                if f == field:
                    continue
                agg_filter &= filter
            search.aggs.bucket("_filter_" + f, "filter", filter=agg_filter).bucket(
                f, agg
            )

    def filter(self, search: "SearchBase[_R]") -> "SearchBase[_R]":
        """
        Add a ``post_filter`` to the search request narrowing the results based
        on the facet filters.
        """
        if not self._filters:
            return search

        post_filter: Query = MatchAll()
        for f in self._filters.values():
            post_filter &= f
        return search.post_filter(post_filter)

    def highlight(self, search: "SearchBase[_R]") -> "SearchBase[_R]":
        """
        Add highlighting for all the fields
        """
        return search.highlight(
            *(f if "^" not in f else f.split("^", 1)[0] for f in self.fields)
        )

    def sort(self, search: "SearchBase[_R]") -> "SearchBase[_R]":
        """
        Add sorting information to the request.
        """
        if self._sort:
            search = search.sort(*self._sort)
        return search

    def params(self, **kwargs: Any) -> None:
        """
        Specify query params to be used when executing the search. All the
        keyword arguments will override the current values. See
        https://elasticsearch-py.readthedocs.io/en/latest/api/elasticsearch.html#elasticsearch.Elasticsearch.search
        for all available parameters.
        """
        self._s = self._s.params(**kwargs)

    def build_search(self) -> "SearchBase[_R]":
        """
        Construct the ``Search`` object.
        """
        s = self.search()
        if self._query is not None:
            s = self.query(s, self._query)
        s = self.filter(s)
        if self.fields:
            s = self.highlight(s)
        s = self.sort(s)
        self.aggregate(s)
        return s