1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import collections.abc
from copy import deepcopy
from typing import (
Any,
ClassVar,
Dict,
Literal,
MutableMapping,
Optional,
Union,
overload,
)
from elastic_transport.client_utils import DEFAULT, DefaultType
from .utils import AttrDict, DslBase
@overload
def SF(name_or_sf: MutableMapping[str, Any]) -> "ScoreFunction": ...
@overload
def SF(name_or_sf: "ScoreFunction") -> "ScoreFunction": ...
@overload
def SF(name_or_sf: str, **params: Any) -> "ScoreFunction": ...
def SF(
name_or_sf: Union[str, "ScoreFunction", MutableMapping[str, Any]],
**params: Any,
) -> "ScoreFunction":
# {"script_score": {"script": "_score"}, "filter": {}}
if isinstance(name_or_sf, collections.abc.MutableMapping):
if params:
raise ValueError("SF() cannot accept parameters when passing in a dict.")
kwargs: Dict[str, Any] = {}
sf = deepcopy(name_or_sf)
for k in ScoreFunction._param_defs:
if k in name_or_sf:
kwargs[k] = sf.pop(k)
# not sf, so just filter+weight, which used to be boost factor
sf_params = params
if not sf:
name = "boost_factor"
# {'FUNCTION': {...}}
elif len(sf) == 1:
name, sf_params = sf.popitem()
else:
raise ValueError(f"SF() got an unexpected fields in the dictionary: {sf!r}")
# boost factor special case, see elasticsearch #6343
if not isinstance(sf_params, collections.abc.Mapping):
sf_params = {"value": sf_params}
# mix known params (from _param_defs) and from inside the function
kwargs.update(sf_params)
return ScoreFunction.get_dsl_class(name)(**kwargs)
# ScriptScore(script="_score", filter=Q())
if isinstance(name_or_sf, ScoreFunction):
if params:
raise ValueError(
"SF() cannot accept parameters when passing in a ScoreFunction object."
)
return name_or_sf
# "script_score", script="_score", filter=Q()
return ScoreFunction.get_dsl_class(name_or_sf)(**params)
class ScoreFunction(DslBase):
_type_name = "score_function"
_type_shortcut = staticmethod(SF)
_param_defs = {
"query": {"type": "query"},
"filter": {"type": "query"},
"weight": {},
}
name: ClassVar[Optional[str]] = None
def to_dict(self) -> Dict[str, Any]:
d = super().to_dict()
# filter and query dicts should be at the same level as us
for k in self._param_defs:
if self.name is not None:
val = d[self.name]
if isinstance(val, dict) and k in val:
d[k] = val.pop(k)
return d
class ScriptScore(ScoreFunction):
name = "script_score"
class BoostFactor(ScoreFunction):
name = "boost_factor"
def to_dict(self) -> Dict[str, Any]:
d = super().to_dict()
if self.name is not None:
val = d[self.name]
if isinstance(val, dict):
if "value" in val:
d[self.name] = val.pop("value")
else:
del d[self.name]
return d
class RandomScore(ScoreFunction):
name = "random_score"
class FieldValueFactorScore(ScoreFunction):
name = "field_value_factor"
class FieldValueFactor(FieldValueFactorScore): # alias of the above
pass
class Linear(ScoreFunction):
name = "linear"
class Gauss(ScoreFunction):
name = "gauss"
class Exp(ScoreFunction):
name = "exp"
class DecayFunction(AttrDict[Any]):
def __init__(
self,
*,
decay: Union[float, "DefaultType"] = DEFAULT,
offset: Any = DEFAULT,
scale: Any = DEFAULT,
origin: Any = DEFAULT,
multi_value_mode: Union[
Literal["min", "max", "avg", "sum"], "DefaultType"
] = DEFAULT,
**kwargs: Any,
):
if decay != DEFAULT:
kwargs["decay"] = decay
if offset != DEFAULT:
kwargs["offset"] = offset
if scale != DEFAULT:
kwargs["scale"] = scale
if origin != DEFAULT:
kwargs["origin"] = origin
if multi_value_mode != DEFAULT:
kwargs["multi_value_mode"] = multi_value_mode
super().__init__(kwargs)
|