1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
|
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import collections.abc
import copy
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Generic,
Iterator,
List,
Optional,
Protocol,
Tuple,
Type,
Union,
cast,
overload,
)
from typing_extensions import Self, TypeVar
from .aggs import A, Agg, AggBase
from .document_base import InstrumentedField
from .exceptions import IllegalOperation
from .query import Bool, Q, Query
from .response import Hit, Response
from .utils import _R, AnyUsingType, AttrDict, DslBase, recursive_to_dict
if TYPE_CHECKING:
from .field import Field, Object
class SupportsClone(Protocol):
def _clone(self) -> Self: ...
_S = TypeVar("_S", bound=SupportsClone)
class QueryProxy(Generic[_S]):
"""
Simple proxy around DSL objects (queries) that can be called
(to add query/post_filter) and also allows attribute access which is proxied to
the wrapped query.
"""
def __init__(self, search: _S, attr_name: str):
self._search = search
self._proxied: Optional[Query] = None
self._attr_name = attr_name
def __nonzero__(self) -> bool:
return self._proxied is not None
__bool__ = __nonzero__
def __call__(self, *args: Any, **kwargs: Any) -> _S:
"""
Add a query.
"""
s = self._search._clone()
# we cannot use self._proxied since we just cloned self._search and
# need to access the new self on the clone
proxied = getattr(s, self._attr_name)
if proxied._proxied is None:
proxied._proxied = Q(*args, **kwargs)
else:
proxied._proxied &= Q(*args, **kwargs)
# always return search to be chainable
return s
def __getattr__(self, attr_name: str) -> Any:
return getattr(self._proxied, attr_name)
def __setattr__(self, attr_name: str, value: Any) -> None:
if not attr_name.startswith("_"):
if self._proxied is not None:
self._proxied = Q(self._proxied.to_dict())
setattr(self._proxied, attr_name, value)
super().__setattr__(attr_name, value)
def __getstate__(self) -> Tuple[_S, Optional[Query], str]:
return self._search, self._proxied, self._attr_name
def __setstate__(self, state: Tuple[_S, Optional[Query], str]) -> None:
self._search, self._proxied, self._attr_name = state
class ProxyDescriptor(Generic[_S]):
"""
Simple descriptor to enable setting of queries and filters as:
s = Search()
s.query = Q(...)
"""
def __init__(self, name: str):
self._attr_name = f"_{name}_proxy"
def __get__(self, instance: Any, owner: object) -> QueryProxy[_S]:
return cast(QueryProxy[_S], getattr(instance, self._attr_name))
def __set__(self, instance: _S, value: Dict[str, Any]) -> None:
proxy: QueryProxy[_S] = getattr(instance, self._attr_name)
proxy._proxied = Q(value)
class AggsProxy(AggBase[_R], DslBase):
name = "aggs"
def __init__(self, search: "SearchBase[_R]"):
self._base = cast("Agg[_R]", self)
self._search = search
self._params = {"aggs": {}}
def to_dict(self) -> Dict[str, Any]:
return cast(Dict[str, Any], super().to_dict().get("aggs", {}))
class Request(Generic[_R]):
def __init__(
self,
using: AnyUsingType = "default",
index: Optional[Union[str, List[str]]] = None,
doc_type: Optional[
Union[type, str, List[Union[type, str]], Dict[str, Union[type, str]]]
] = None,
extra: Optional[Dict[str, Any]] = None,
):
self._using = using
self._index = None
if isinstance(index, (tuple, list)):
self._index = list(index)
elif index:
self._index = [index]
self._doc_type: List[Union[type, str]] = []
self._doc_type_map: Dict[str, Any] = {}
if isinstance(doc_type, (tuple, list)):
self._doc_type.extend(doc_type)
elif isinstance(doc_type, collections.abc.Mapping):
self._doc_type.extend(doc_type.keys())
self._doc_type_map.update(doc_type)
elif doc_type:
self._doc_type.append(doc_type)
self._params: Dict[str, Any] = {}
self._extra: Dict[str, Any] = extra or {}
def __eq__(self, other: Any) -> bool:
return (
isinstance(other, Request)
and other._params == self._params
and other._index == self._index
and other._doc_type == self._doc_type
and other.to_dict() == self.to_dict()
)
def __copy__(self) -> Self:
return self._clone()
def params(self, **kwargs: Any) -> Self:
"""
Specify query params to be used when executing the search. All the
keyword arguments will override the current values. See
https://elasticsearch-py.readthedocs.io/en/latest/api/elasticsearch.html#elasticsearch.Elasticsearch.search
for all available parameters.
Example::
s = Search()
s = s.params(routing='user-1', preference='local')
"""
s = self._clone()
s._params.update(kwargs)
return s
def index(self, *index: Union[str, List[str], Tuple[str, ...]]) -> Self:
"""
Set the index for the search. If called empty it will remove all information.
Example::
s = Search()
s = s.index('twitter-2015.01.01', 'twitter-2015.01.02')
s = s.index(['twitter-2015.01.01', 'twitter-2015.01.02'])
"""
# .index() resets
s = self._clone()
if not index:
s._index = None
else:
indexes = []
for i in index:
if isinstance(i, str):
indexes.append(i)
elif isinstance(i, list):
indexes += i
elif isinstance(i, tuple):
indexes += list(i)
s._index = (self._index or []) + indexes
return s
def _resolve_field(self, path: str) -> Optional["Field"]:
for dt in self._doc_type:
if not hasattr(dt, "_index"):
continue
field = dt._index.resolve_field(path)
if field is not None:
return cast("Field", field)
return None
def _resolve_nested(
self, hit: AttrDict[Any], parent_class: Optional[type] = None
) -> Type[_R]:
doc_class = Hit
nested_path = []
nesting = hit["_nested"]
while nesting and "field" in nesting:
nested_path.append(nesting["field"])
nesting = nesting.get("_nested")
nested_path_str = ".".join(nested_path)
nested_field: Optional["Object"]
if parent_class is not None and hasattr(parent_class, "_index"):
nested_field = cast(
Optional["Object"], parent_class._index.resolve_field(nested_path_str)
)
else:
nested_field = cast(
Optional["Object"], self._resolve_field(nested_path_str)
)
if nested_field is not None:
return cast(Type[_R], nested_field._doc_class)
return cast(Type[_R], doc_class)
def _get_result(
self, hit: AttrDict[Any], parent_class: Optional[type] = None
) -> _R:
doc_class: Any = Hit
dt = hit.get("_type")
if "_nested" in hit:
doc_class = self._resolve_nested(hit, parent_class)
elif dt in self._doc_type_map:
doc_class = self._doc_type_map[dt]
else:
for doc_type in self._doc_type:
if hasattr(doc_type, "_matches") and doc_type._matches(hit):
doc_class = doc_type
break
for t in hit.get("inner_hits", ()):
hit["inner_hits"][t] = Response[_R](
self, hit["inner_hits"][t], doc_class=doc_class
)
callback = getattr(doc_class, "from_es", doc_class)
return cast(_R, callback(hit))
def doc_type(
self, *doc_type: Union[type, str], **kwargs: Callable[[AttrDict[Any]], Any]
) -> Self:
"""
Set the type to search through. You can supply a single value or
multiple. Values can be strings or subclasses of ``Document``.
You can also pass in any keyword arguments, mapping a doc_type to a
callback that should be used instead of the Hit class.
If no doc_type is supplied any information stored on the instance will
be erased.
Example:
s = Search().doc_type('product', 'store', User, custom=my_callback)
"""
# .doc_type() resets
s = self._clone()
if not doc_type and not kwargs:
s._doc_type = []
s._doc_type_map = {}
else:
s._doc_type.extend(doc_type)
s._doc_type.extend(kwargs.keys())
s._doc_type_map.update(kwargs)
return s
def using(self, client: AnyUsingType) -> Self:
"""
Associate the search request with an elasticsearch client. A fresh copy
will be returned with current instance remaining unchanged.
:arg client: an instance of ``elasticsearch.Elasticsearch`` to use or
an alias to look up in ``elasticsearch.dsl.connections``
"""
s = self._clone()
s._using = client
return s
def extra(self, **kwargs: Any) -> Self:
"""
Add extra keys to the request body. Mostly here for backwards
compatibility.
"""
s = self._clone()
if "from_" in kwargs:
kwargs["from"] = kwargs.pop("from_")
s._extra.update(kwargs)
return s
def _clone(self) -> Self:
s = self.__class__(
using=self._using, index=self._index, doc_type=self._doc_type
)
s._doc_type_map = self._doc_type_map.copy()
s._extra = self._extra.copy()
s._params = self._params.copy()
return s
if TYPE_CHECKING:
def to_dict(self) -> Dict[str, Any]: ...
class SearchBase(Request[_R]):
query = ProxyDescriptor[Self]("query")
post_filter = ProxyDescriptor[Self]("post_filter")
_response: Response[_R]
def __init__(
self,
using: AnyUsingType = "default",
index: Optional[Union[str, List[str]]] = None,
**kwargs: Any,
):
"""
Search request to elasticsearch.
:arg using: `Elasticsearch` instance to use
:arg index: limit the search to index
All the parameters supplied (or omitted) at creation type can be later
overridden by methods (`using`, `index` and `doc_type` respectively).
"""
super().__init__(using=using, index=index, **kwargs)
self.aggs = AggsProxy[_R](self)
self._sort: List[Union[str, Dict[str, Dict[str, str]]]] = []
self._knn: List[Dict[str, Any]] = []
self._rank: Dict[str, Any] = {}
self._collapse: Dict[str, Any] = {}
self._source: Optional[Union[bool, List[str], Dict[str, List[str]]]] = None
self._highlight: Dict[str, Any] = {}
self._highlight_opts: Dict[str, Any] = {}
self._suggest: Dict[str, Any] = {}
self._script_fields: Dict[str, Any] = {}
self._response_class = Response[_R]
self._query_proxy = QueryProxy(self, "query")
self._post_filter_proxy = QueryProxy(self, "post_filter")
def filter(self, *args: Any, **kwargs: Any) -> Self:
"""
Add a query in filter context.
"""
return self.query(Bool(filter=[Q(*args, **kwargs)]))
def exclude(self, *args: Any, **kwargs: Any) -> Self:
"""
Add a negative query in filter context.
"""
return self.query(Bool(filter=[~Q(*args, **kwargs)]))
def __getitem__(self, n: Union[int, slice]) -> Self:
"""
Support slicing the `Search` instance for pagination.
Slicing equates to the from/size parameters. E.g.::
s = Search().query(...)[0:25]
is equivalent to::
s = Search().query(...).extra(from_=0, size=25)
"""
s = self._clone()
if isinstance(n, slice):
# If negative slicing, abort.
if n.start and n.start < 0 or n.stop and n.stop < 0:
raise ValueError("Search does not support negative slicing.")
slice_start = n.start
slice_stop = n.stop
else: # This is an index lookup, equivalent to slicing by [n:n+1].
# If negative index, abort.
if n < 0:
raise ValueError("Search does not support negative indexing.")
slice_start = n
slice_stop = n + 1
old_from = s._extra.get("from")
old_to = None
if "size" in s._extra:
old_to = (old_from or 0) + s._extra["size"]
new_from = old_from
if slice_start is not None:
new_from = (old_from or 0) + slice_start
new_to = old_to
if slice_stop is not None:
new_to = (old_from or 0) + slice_stop
if old_to is not None and old_to < new_to:
new_to = old_to
if new_from is not None:
s._extra["from"] = new_from
if new_to is not None:
s._extra["size"] = max(0, new_to - (new_from or 0))
return s
@classmethod
def from_dict(cls, d: Dict[str, Any]) -> Self:
"""
Construct a new `Search` instance from a raw dict containing the search
body. Useful when migrating from raw dictionaries.
Example::
s = Search.from_dict({
"query": {
"bool": {
"must": [...]
}
},
"aggs": {...}
})
s = s.filter('term', published=True)
"""
s = cls()
s.update_from_dict(d)
return s
def _clone(self) -> Self:
"""
Return a clone of the current search request. Performs a shallow copy
of all the underlying objects. Used internally by most state modifying
APIs.
"""
s = super()._clone()
s._response_class = self._response_class
s._knn = [knn.copy() for knn in self._knn]
s._rank = self._rank.copy()
s._collapse = self._collapse.copy()
s._sort = self._sort[:]
s._source = copy.copy(self._source) if self._source is not None else None
s._highlight = self._highlight.copy()
s._highlight_opts = self._highlight_opts.copy()
s._suggest = self._suggest.copy()
s._script_fields = self._script_fields.copy()
for x in ("query", "post_filter"):
getattr(s, x)._proxied = getattr(self, x)._proxied
# copy top-level bucket definitions
if self.aggs._params.get("aggs"):
s.aggs._params = {"aggs": self.aggs._params["aggs"].copy()}
return s
def response_class(self, cls: Type[Response[_R]]) -> Self:
"""
Override the default wrapper used for the response.
"""
s = self._clone()
s._response_class = cls
return s
def update_from_dict(self, d: Dict[str, Any]) -> Self:
"""
Apply options from a serialized body to the current instance. Modifies
the object in-place. Used mostly by ``from_dict``.
"""
d = d.copy()
if "query" in d:
self.query._proxied = Q(d.pop("query"))
if "post_filter" in d:
self.post_filter._proxied = Q(d.pop("post_filter"))
aggs = d.pop("aggs", d.pop("aggregations", {}))
if aggs:
self.aggs._params = {
"aggs": {name: A(value) for (name, value) in aggs.items()}
}
if "knn" in d:
self._knn = d.pop("knn")
if isinstance(self._knn, dict):
self._knn = [self._knn]
if "rank" in d:
self._rank = d.pop("rank")
if "collapse" in d:
self._collapse = d.pop("collapse")
if "sort" in d:
self._sort = d.pop("sort")
if "_source" in d:
self._source = d.pop("_source")
if "highlight" in d:
high = d.pop("highlight").copy()
self._highlight = high.pop("fields")
self._highlight_opts = high
if "suggest" in d:
self._suggest = d.pop("suggest")
if "text" in self._suggest:
text = self._suggest.pop("text")
for s in self._suggest.values():
s.setdefault("text", text)
if "script_fields" in d:
self._script_fields = d.pop("script_fields")
self._extra.update(d)
return self
def script_fields(self, **kwargs: Any) -> Self:
"""
Define script fields to be calculated on hits. See
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-script-fields.html
for more details.
Example::
s = Search()
s = s.script_fields(times_two="doc['field'].value * 2")
s = s.script_fields(
times_three={
'script': {
'lang': 'painless',
'source': "doc['field'].value * params.n",
'params': {'n': 3}
}
}
)
"""
s = self._clone()
for name in kwargs:
if isinstance(kwargs[name], str):
kwargs[name] = {"script": kwargs[name]}
s._script_fields.update(kwargs)
return s
def knn(
self,
field: Union[str, "InstrumentedField"],
k: int,
num_candidates: int,
query_vector: Optional[List[float]] = None,
query_vector_builder: Optional[Dict[str, Any]] = None,
boost: Optional[float] = None,
filter: Optional[Query] = None,
similarity: Optional[float] = None,
inner_hits: Optional[Dict[str, Any]] = None,
) -> Self:
"""
Add a k-nearest neighbor (kNN) search.
:arg field: the vector field to search against as a string or document class attribute
:arg k: number of nearest neighbors to return as top hits
:arg num_candidates: number of nearest neighbor candidates to consider per shard
:arg query_vector: the vector to search for
:arg query_vector_builder: A dictionary indicating how to build a query vector
:arg boost: A floating-point boost factor for kNN scores
:arg filter: query to filter the documents that can match
:arg similarity: the minimum similarity required for a document to be considered a match, as a float value
:arg inner_hits: retrieve hits from nested field
Example::
s = Search()
s = s.knn(field='embedding', k=5, num_candidates=10, query_vector=vector,
filter=Q('term', category='blog')))
"""
s = self._clone()
s._knn.append(
{
"field": str(field), # str() is for InstrumentedField instances
"k": k,
"num_candidates": num_candidates,
}
)
if query_vector is None and query_vector_builder is None:
raise ValueError("one of query_vector and query_vector_builder is required")
if query_vector is not None and query_vector_builder is not None:
raise ValueError(
"only one of query_vector and query_vector_builder must be given"
)
if query_vector is not None:
s._knn[-1]["query_vector"] = cast(Any, query_vector)
if query_vector_builder is not None:
s._knn[-1]["query_vector_builder"] = query_vector_builder
if boost is not None:
s._knn[-1]["boost"] = boost
if filter is not None:
if isinstance(filter, Query):
s._knn[-1]["filter"] = filter.to_dict()
else:
s._knn[-1]["filter"] = filter
if similarity is not None:
s._knn[-1]["similarity"] = similarity
if inner_hits is not None:
s._knn[-1]["inner_hits"] = inner_hits
return s
def rank(self, rrf: Optional[Union[bool, Dict[str, Any]]] = None) -> Self:
"""
Defines a method for combining and ranking results sets from a combination
of searches. Requires a minimum of 2 results sets.
:arg rrf: Set to ``True`` or an options dictionary to set the rank method to reciprocal rank fusion (RRF).
Example::
s = Search()
s = s.query('match', content='search text')
s = s.knn(field='embedding', k=5, num_candidates=10, query_vector=vector)
s = s.rank(rrf=True)
Note: This option is in technical preview and may change in the future. The syntax will likely change before GA.
"""
s = self._clone()
s._rank = {}
if rrf is not None and rrf is not False:
s._rank["rrf"] = {} if rrf is True else rrf
return s
def source(
self,
fields: Optional[
Union[
bool,
str,
"InstrumentedField",
List[Union[str, "InstrumentedField"]],
Dict[str, List[Union[str, "InstrumentedField"]]],
]
] = None,
**kwargs: Any,
) -> Self:
"""
Selectively control how the _source field is returned.
:arg fields: field name, wildcard string, list of field names or wildcards,
or dictionary of includes and excludes
:arg kwargs: ``includes`` or ``excludes`` arguments, when ``fields`` is ``None``.
When no arguments are given, the entire document will be returned for
each hit. If ``fields`` is a string or list of strings, the field names or field
wildcards given will be included. If ``fields`` is a dictionary with keys of
'includes' and/or 'excludes' the fields will be either included or excluded
appropriately.
Calling this multiple times with the same named parameter will override the
previous values with the new ones.
Example::
s = Search()
s = s.source(includes=['obj1.*'], excludes=["*.description"])
s = Search()
s = s.source(includes=['obj1.*']).source(excludes=["*.description"])
"""
s = self._clone()
if fields and kwargs:
raise ValueError("You cannot specify fields and kwargs at the same time.")
@overload
def ensure_strings(fields: str) -> str: ...
@overload
def ensure_strings(fields: "InstrumentedField") -> str: ...
@overload
def ensure_strings(
fields: List[Union[str, "InstrumentedField"]],
) -> List[str]: ...
@overload
def ensure_strings(
fields: Dict[str, List[Union[str, "InstrumentedField"]]],
) -> Dict[str, List[str]]: ...
def ensure_strings(
fields: Union[
str,
"InstrumentedField",
List[Union[str, "InstrumentedField"]],
Dict[str, List[Union[str, "InstrumentedField"]]],
],
) -> Union[str, List[str], Dict[str, List[str]]]:
if isinstance(fields, dict):
return {k: ensure_strings(v) for k, v in fields.items()}
elif not isinstance(fields, (str, InstrumentedField)):
# we assume that if `fields` is not a any of [dict, str,
# InstrumentedField] then it is an iterable of strings or
# InstrumentedFields, so we convert them to a plain list of
# strings
return [str(f) for f in fields]
else:
return str(fields)
if fields is not None:
s._source = fields if isinstance(fields, bool) else ensure_strings(fields) # type: ignore[assignment]
return s
if kwargs and not isinstance(s._source, dict):
s._source = {}
if isinstance(s._source, dict):
for key, value in kwargs.items():
if value is None:
try:
del s._source[key]
except KeyError:
pass
else:
s._source[key] = ensure_strings(value)
return s
def sort(
self, *keys: Union[str, "InstrumentedField", Dict[str, Dict[str, str]]]
) -> Self:
"""
Add sorting information to the search request. If called without
arguments it will remove all sort requirements. Otherwise it will
replace them. Acceptable arguments are::
'some.field'
'-some.other.field'
{'different.field': {'any': 'dict'}}
so for example::
s = Search().sort(
'category',
'-title',
{"price" : {"order" : "asc", "mode" : "avg"}}
)
will sort by ``category``, ``title`` (in descending order) and
``price`` in ascending order using the ``avg`` mode.
The API returns a copy of the Search object and can thus be chained.
"""
s = self._clone()
s._sort = []
for k in keys:
if not isinstance(k, dict):
sort_field = str(k)
if sort_field.startswith("-"):
if sort_field[1:] == "_score":
raise IllegalOperation("Sorting by `-_score` is not allowed.")
s._sort.append({sort_field[1:]: {"order": "desc"}})
else:
s._sort.append(sort_field)
else:
s._sort.append(k)
return s
def collapse(
self,
field: Optional[Union[str, "InstrumentedField"]] = None,
inner_hits: Optional[Dict[str, Any]] = None,
max_concurrent_group_searches: Optional[int] = None,
) -> Self:
"""
Add collapsing information to the search request.
If called without providing ``field``, it will remove all collapse
requirements, otherwise it will replace them with the provided
arguments.
The API returns a copy of the Search object and can thus be chained.
"""
s = self._clone()
s._collapse = {}
if field is None:
return s
s._collapse["field"] = str(field)
if inner_hits:
s._collapse["inner_hits"] = inner_hits
if max_concurrent_group_searches:
s._collapse["max_concurrent_group_searches"] = max_concurrent_group_searches
return s
def highlight_options(self, **kwargs: Any) -> Self:
"""
Update the global highlighting options used for this request. For
example::
s = Search()
s = s.highlight_options(order='score')
"""
s = self._clone()
s._highlight_opts.update(kwargs)
return s
def highlight(
self, *fields: Union[str, "InstrumentedField"], **kwargs: Any
) -> Self:
"""
Request highlighting of some fields. All keyword arguments passed in will be
used as parameters for all the fields in the ``fields`` parameter. Example::
Search().highlight('title', 'body', fragment_size=50)
will produce the equivalent of::
{
"highlight": {
"fields": {
"body": {"fragment_size": 50},
"title": {"fragment_size": 50}
}
}
}
If you want to have different options for different fields
you can call ``highlight`` twice::
Search().highlight('title', fragment_size=50).highlight('body', fragment_size=100)
which will produce::
{
"highlight": {
"fields": {
"body": {"fragment_size": 100},
"title": {"fragment_size": 50}
}
}
}
"""
s = self._clone()
for f in fields:
s._highlight[str(f)] = kwargs
return s
def suggest(
self,
name: str,
text: Optional[str] = None,
regex: Optional[str] = None,
**kwargs: Any,
) -> Self:
"""
Add a suggestions request to the search.
:arg name: name of the suggestion
:arg text: text to suggest on
All keyword arguments will be added to the suggestions body. For example::
s = Search()
s = s.suggest('suggestion-1', 'Elasticsearch', term={'field': 'body'})
# regex query for Completion Suggester
s = Search()
s = s.suggest('suggestion-1', regex='py[thon|py]', completion={'field': 'body'})
"""
if text is None and regex is None:
raise ValueError('You have to pass "text" or "regex" argument.')
if text and regex:
raise ValueError('You can only pass either "text" or "regex" argument.')
if regex and "completion" not in kwargs:
raise ValueError(
'"regex" argument must be passed with "completion" keyword argument.'
)
s = self._clone()
if regex:
s._suggest[name] = {"regex": regex}
elif text:
if "completion" in kwargs:
s._suggest[name] = {"prefix": text}
else:
s._suggest[name] = {"text": text}
s._suggest[name].update(kwargs)
return s
def search_after(self) -> Self:
"""
Return a ``Search`` instance that retrieves the next page of results.
This method provides an easy way to paginate a long list of results using
the ``search_after`` option. For example::
page_size = 20
s = Search()[:page_size].sort("date")
while True:
# get a page of results
r = await s.execute()
# do something with this page of results
# exit the loop if we reached the end
if len(r.hits) < page_size:
break
# get a search object with the next page of results
s = s.search_after()
Note that the ``search_after`` option requires the search to have an
explicit ``sort`` order.
"""
if not hasattr(self, "_response"):
raise ValueError("A search must be executed before using search_after")
return cast(Self, self._response.search_after())
def to_dict(self, count: bool = False, **kwargs: Any) -> Dict[str, Any]:
"""
Serialize the search into the dictionary that will be sent over as the
request's body.
:arg count: a flag to specify if we are interested in a body for count -
no aggregations, no pagination bounds etc.
All additional keyword arguments will be included into the dictionary.
"""
d = {}
if self.query:
d["query"] = recursive_to_dict(self.query)
if self._knn:
if len(self._knn) == 1:
d["knn"] = self._knn[0]
else:
d["knn"] = self._knn
if self._rank:
d["rank"] = self._rank
# count request doesn't care for sorting and other things
if not count:
if self.post_filter:
d["post_filter"] = recursive_to_dict(self.post_filter.to_dict())
if self.aggs.aggs:
d.update(recursive_to_dict(self.aggs.to_dict()))
if self._sort:
d["sort"] = self._sort
if self._collapse:
d["collapse"] = self._collapse
d.update(recursive_to_dict(self._extra))
if self._source not in (None, {}):
d["_source"] = self._source
if self._highlight:
d["highlight"] = {"fields": self._highlight}
d["highlight"].update(self._highlight_opts)
if self._suggest:
d["suggest"] = self._suggest
if self._script_fields:
d["script_fields"] = self._script_fields
d.update(recursive_to_dict(kwargs))
return d
class MultiSearchBase(Request[_R]):
"""
Combine multiple :class:`~elasticsearch.dsl.Search` objects into a single
request.
"""
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
self._searches: List[SearchBase[_R]] = []
def __getitem__(self, key: Union[int, slice]) -> Any:
return self._searches[key]
def __iter__(self) -> Iterator[SearchBase[_R]]:
return iter(self._searches)
def _clone(self) -> Self:
ms = super()._clone()
ms._searches = self._searches[:]
return ms
def add(self, search: SearchBase[_R]) -> Self:
"""
Adds a new :class:`~elasticsearch.dsl.Search` object to the request::
ms = MultiSearch(index='my-index')
ms = ms.add(Search(doc_type=Category).filter('term', category='python'))
ms = ms.add(Search(doc_type=Blog))
"""
ms = self._clone()
ms._searches.append(search)
return ms
def to_dict(self) -> List[Dict[str, Any]]: # type: ignore[override]
out: List[Dict[str, Any]] = []
for s in self._searches:
meta: Dict[str, Any] = {}
if s._index:
meta["index"] = cast(Any, s._index)
meta.update(s._params)
out.append(meta)
out.append(s.to_dict())
return out
|