File: types.py

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (6677 lines) | stat: -rw-r--r-- 211,714 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
#  Licensed to Elasticsearch B.V. under one or more contributor
#  license agreements. See the NOTICE file distributed with
#  this work for additional information regarding copyright
#  ownership. Elasticsearch B.V. licenses this file to you under
#  the Apache License, Version 2.0 (the "License"); you may
#  not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
# 	http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing,
#  software distributed under the License is distributed on an
#  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#  KIND, either express or implied.  See the License for the
#  specific language governing permissions and limitations
#  under the License.

from typing import Any, Dict, Literal, Mapping, Sequence, Union

from elastic_transport.client_utils import DEFAULT, DefaultType

from . import Query
from .document_base import InstrumentedField
from .utils import AttrDict

PipeSeparatedFlags = str


class BucketCorrelationFunction(AttrDict[Any]):
    """
    :arg count_correlation: (required) The configuration to calculate a
        count correlation. This function is designed for determining the
        correlation of a term value and a given metric.
    """

    count_correlation: Union[
        "BucketCorrelationFunctionCountCorrelation", Dict[str, Any], DefaultType
    ]

    def __init__(
        self,
        *,
        count_correlation: Union[
            "BucketCorrelationFunctionCountCorrelation", Dict[str, Any], DefaultType
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if count_correlation is not DEFAULT:
            kwargs["count_correlation"] = count_correlation
        super().__init__(kwargs)


class BucketCorrelationFunctionCountCorrelation(AttrDict[Any]):
    """
    :arg indicator: (required) The indicator with which to correlate the
        configured `bucket_path` values.
    """

    indicator: Union[
        "BucketCorrelationFunctionCountCorrelationIndicator",
        Dict[str, Any],
        DefaultType,
    ]

    def __init__(
        self,
        *,
        indicator: Union[
            "BucketCorrelationFunctionCountCorrelationIndicator",
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if indicator is not DEFAULT:
            kwargs["indicator"] = indicator
        super().__init__(kwargs)


class BucketCorrelationFunctionCountCorrelationIndicator(AttrDict[Any]):
    """
    :arg doc_count: (required) The total number of documents that
        initially created the expectations. It’s required to be greater
        than or equal to the sum of all values in the buckets_path as this
        is the originating superset of data to which the term values are
        correlated.
    :arg expectations: (required) An array of numbers with which to
        correlate the configured `bucket_path` values. The length of this
        value must always equal the number of buckets returned by the
        `bucket_path`.
    :arg fractions: An array of fractions to use when averaging and
        calculating variance. This should be used if the pre-calculated
        data and the buckets_path have known gaps. The length of
        fractions, if provided, must equal expectations.
    """

    doc_count: Union[int, DefaultType]
    expectations: Union[Sequence[float], DefaultType]
    fractions: Union[Sequence[float], DefaultType]

    def __init__(
        self,
        *,
        doc_count: Union[int, DefaultType] = DEFAULT,
        expectations: Union[Sequence[float], DefaultType] = DEFAULT,
        fractions: Union[Sequence[float], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if doc_count is not DEFAULT:
            kwargs["doc_count"] = doc_count
        if expectations is not DEFAULT:
            kwargs["expectations"] = expectations
        if fractions is not DEFAULT:
            kwargs["fractions"] = fractions
        super().__init__(kwargs)


class ChiSquareHeuristic(AttrDict[Any]):
    """
    :arg background_is_superset: (required) Set to `false` if you defined
        a custom background filter that represents a different set of
        documents that you want to compare to.
    :arg include_negatives: (required) Set to `false` to filter out the
        terms that appear less often in the subset than in documents
        outside the subset.
    """

    background_is_superset: Union[bool, DefaultType]
    include_negatives: Union[bool, DefaultType]

    def __init__(
        self,
        *,
        background_is_superset: Union[bool, DefaultType] = DEFAULT,
        include_negatives: Union[bool, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if background_is_superset is not DEFAULT:
            kwargs["background_is_superset"] = background_is_superset
        if include_negatives is not DEFAULT:
            kwargs["include_negatives"] = include_negatives
        super().__init__(kwargs)


class ChunkingSettings(AttrDict[Any]):
    """
    :arg strategy: (required) The chunking strategy: `sentence` or `word`.
        Defaults to `sentence` if omitted.
    :arg max_chunk_size: (required) The maximum size of a chunk in words.
        This value cannot be higher than `300` or lower than `20` (for
        `sentence` strategy) or `10` (for `word` strategy). Defaults to
        `250` if omitted.
    :arg overlap: The number of overlapping words for chunks. It is
        applicable only to a `word` chunking strategy. This value cannot
        be higher than half the `max_chunk_size` value. Defaults to `100`
        if omitted.
    :arg sentence_overlap: The number of overlapping sentences for chunks.
        It is applicable only for a `sentence` chunking strategy. It can
        be either `1` or `0`. Defaults to `1` if omitted.
    """

    strategy: Union[str, DefaultType]
    max_chunk_size: Union[int, DefaultType]
    overlap: Union[int, DefaultType]
    sentence_overlap: Union[int, DefaultType]

    def __init__(
        self,
        *,
        strategy: Union[str, DefaultType] = DEFAULT,
        max_chunk_size: Union[int, DefaultType] = DEFAULT,
        overlap: Union[int, DefaultType] = DEFAULT,
        sentence_overlap: Union[int, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if strategy is not DEFAULT:
            kwargs["strategy"] = strategy
        if max_chunk_size is not DEFAULT:
            kwargs["max_chunk_size"] = max_chunk_size
        if overlap is not DEFAULT:
            kwargs["overlap"] = overlap
        if sentence_overlap is not DEFAULT:
            kwargs["sentence_overlap"] = sentence_overlap
        super().__init__(kwargs)


class ClassificationInferenceOptions(AttrDict[Any]):
    """
    :arg num_top_classes: Specifies the number of top class predictions to
        return. Defaults to 0.
    :arg num_top_feature_importance_values: Specifies the maximum number
        of feature importance values per document.
    :arg prediction_field_type: Specifies the type of the predicted field
        to write. Acceptable values are: string, number, boolean. When
        boolean is provided 1.0 is transformed to true and 0.0 to false.
    :arg results_field: The field that is added to incoming documents to
        contain the inference prediction. Defaults to predicted_value.
    :arg top_classes_results_field: Specifies the field to which the top
        classes are written. Defaults to top_classes.
    """

    num_top_classes: Union[int, DefaultType]
    num_top_feature_importance_values: Union[int, DefaultType]
    prediction_field_type: Union[str, DefaultType]
    results_field: Union[str, DefaultType]
    top_classes_results_field: Union[str, DefaultType]

    def __init__(
        self,
        *,
        num_top_classes: Union[int, DefaultType] = DEFAULT,
        num_top_feature_importance_values: Union[int, DefaultType] = DEFAULT,
        prediction_field_type: Union[str, DefaultType] = DEFAULT,
        results_field: Union[str, DefaultType] = DEFAULT,
        top_classes_results_field: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if num_top_classes is not DEFAULT:
            kwargs["num_top_classes"] = num_top_classes
        if num_top_feature_importance_values is not DEFAULT:
            kwargs["num_top_feature_importance_values"] = (
                num_top_feature_importance_values
            )
        if prediction_field_type is not DEFAULT:
            kwargs["prediction_field_type"] = prediction_field_type
        if results_field is not DEFAULT:
            kwargs["results_field"] = results_field
        if top_classes_results_field is not DEFAULT:
            kwargs["top_classes_results_field"] = top_classes_results_field
        super().__init__(kwargs)


class CommonTermsQuery(AttrDict[Any]):
    """
    :arg query: (required)
    :arg analyzer:
    :arg cutoff_frequency:
    :arg high_freq_operator:
    :arg low_freq_operator:
    :arg minimum_should_match:
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    query: Union[str, DefaultType]
    analyzer: Union[str, DefaultType]
    cutoff_frequency: Union[float, DefaultType]
    high_freq_operator: Union[Literal["and", "or"], DefaultType]
    low_freq_operator: Union[Literal["and", "or"], DefaultType]
    minimum_should_match: Union[int, str, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        query: Union[str, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        cutoff_frequency: Union[float, DefaultType] = DEFAULT,
        high_freq_operator: Union[Literal["and", "or"], DefaultType] = DEFAULT,
        low_freq_operator: Union[Literal["and", "or"], DefaultType] = DEFAULT,
        minimum_should_match: Union[int, str, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if query is not DEFAULT:
            kwargs["query"] = query
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if cutoff_frequency is not DEFAULT:
            kwargs["cutoff_frequency"] = cutoff_frequency
        if high_freq_operator is not DEFAULT:
            kwargs["high_freq_operator"] = high_freq_operator
        if low_freq_operator is not DEFAULT:
            kwargs["low_freq_operator"] = low_freq_operator
        if minimum_should_match is not DEFAULT:
            kwargs["minimum_should_match"] = minimum_should_match
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class CoordsGeoBounds(AttrDict[Any]):
    """
    :arg top: (required)
    :arg bottom: (required)
    :arg left: (required)
    :arg right: (required)
    """

    top: Union[float, DefaultType]
    bottom: Union[float, DefaultType]
    left: Union[float, DefaultType]
    right: Union[float, DefaultType]

    def __init__(
        self,
        *,
        top: Union[float, DefaultType] = DEFAULT,
        bottom: Union[float, DefaultType] = DEFAULT,
        left: Union[float, DefaultType] = DEFAULT,
        right: Union[float, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if top is not DEFAULT:
            kwargs["top"] = top
        if bottom is not DEFAULT:
            kwargs["bottom"] = bottom
        if left is not DEFAULT:
            kwargs["left"] = left
        if right is not DEFAULT:
            kwargs["right"] = right
        super().__init__(kwargs)


class CustomCategorizeTextAnalyzer(AttrDict[Any]):
    """
    :arg char_filter:
    :arg tokenizer:
    :arg filter:
    """

    char_filter: Union[Sequence[str], DefaultType]
    tokenizer: Union[str, DefaultType]
    filter: Union[Sequence[str], DefaultType]

    def __init__(
        self,
        *,
        char_filter: Union[Sequence[str], DefaultType] = DEFAULT,
        tokenizer: Union[str, DefaultType] = DEFAULT,
        filter: Union[Sequence[str], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if char_filter is not DEFAULT:
            kwargs["char_filter"] = char_filter
        if tokenizer is not DEFAULT:
            kwargs["tokenizer"] = tokenizer
        if filter is not DEFAULT:
            kwargs["filter"] = filter
        super().__init__(kwargs)


class DenseVectorIndexOptions(AttrDict[Any]):
    """
    :arg type: (required) The type of kNN algorithm to use.
    :arg confidence_interval: The confidence interval to use when
        quantizing the vectors. Can be any value between and including
        `0.90` and `1.0` or exactly `0`. When the value is `0`, this
        indicates that dynamic quantiles should be calculated for
        optimized quantization. When between `0.90` and `1.0`, this value
        restricts the values used when calculating the quantization
        thresholds.  For example, a value of `0.95` will only use the
        middle `95%` of the values when calculating the quantization
        thresholds (e.g. the highest and lowest `2.5%` of values will be
        ignored).  Defaults to `1/(dims + 1)` for `int8` quantized vectors
        and `0` for `int4` for dynamic quantile calculation.  Only
        applicable to `int8_hnsw`, `int4_hnsw`, `int8_flat`, and
        `int4_flat` index types.
    :arg ef_construction: The number of candidates to track while
        assembling the list of nearest neighbors for each new node.  Only
        applicable to `hnsw`, `int8_hnsw`, `bbq_hnsw`, and `int4_hnsw`
        index types. Defaults to `100` if omitted.
    :arg m: The number of neighbors each node will be connected to in the
        HNSW graph.  Only applicable to `hnsw`, `int8_hnsw`, `bbq_hnsw`,
        and `int4_hnsw` index types. Defaults to `16` if omitted.
    :arg rescore_vector: The rescore vector options. This is only
        applicable to `bbq_hnsw`, `int4_hnsw`, `int8_hnsw`, `bbq_flat`,
        `int4_flat`, and `int8_flat` index types.
    """

    type: Union[
        Literal[
            "bbq_flat",
            "bbq_hnsw",
            "flat",
            "hnsw",
            "int4_flat",
            "int4_hnsw",
            "int8_flat",
            "int8_hnsw",
        ],
        DefaultType,
    ]
    confidence_interval: Union[float, DefaultType]
    ef_construction: Union[int, DefaultType]
    m: Union[int, DefaultType]
    rescore_vector: Union[
        "DenseVectorIndexOptionsRescoreVector", Dict[str, Any], DefaultType
    ]

    def __init__(
        self,
        *,
        type: Union[
            Literal[
                "bbq_flat",
                "bbq_hnsw",
                "flat",
                "hnsw",
                "int4_flat",
                "int4_hnsw",
                "int8_flat",
                "int8_hnsw",
            ],
            DefaultType,
        ] = DEFAULT,
        confidence_interval: Union[float, DefaultType] = DEFAULT,
        ef_construction: Union[int, DefaultType] = DEFAULT,
        m: Union[int, DefaultType] = DEFAULT,
        rescore_vector: Union[
            "DenseVectorIndexOptionsRescoreVector", Dict[str, Any], DefaultType
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if type is not DEFAULT:
            kwargs["type"] = type
        if confidence_interval is not DEFAULT:
            kwargs["confidence_interval"] = confidence_interval
        if ef_construction is not DEFAULT:
            kwargs["ef_construction"] = ef_construction
        if m is not DEFAULT:
            kwargs["m"] = m
        if rescore_vector is not DEFAULT:
            kwargs["rescore_vector"] = rescore_vector
        super().__init__(kwargs)


class DenseVectorIndexOptionsRescoreVector(AttrDict[Any]):
    """
    :arg oversample: (required) The oversampling factor to use when
        searching for the nearest neighbor. This is only applicable to the
        quantized formats: `bbq_*`, `int4_*`, and `int8_*`. When provided,
        `oversample * k` vectors will be gathered and then their scores
        will be re-computed with the original vectors.  valid values are
        between `1.0` and `10.0` (inclusive), or `0` exactly to disable
        oversampling.
    """

    oversample: Union[float, DefaultType]

    def __init__(
        self, *, oversample: Union[float, DefaultType] = DEFAULT, **kwargs: Any
    ):
        if oversample is not DEFAULT:
            kwargs["oversample"] = oversample
        super().__init__(kwargs)


class EmptyObject(AttrDict[Any]):
    """
    For empty Class assignments
    """

    def __init__(self, **kwargs: Any):
        super().__init__(kwargs)


class EwmaModelSettings(AttrDict[Any]):
    """
    :arg alpha:
    """

    alpha: Union[float, DefaultType]

    def __init__(self, *, alpha: Union[float, DefaultType] = DEFAULT, **kwargs: Any):
        if alpha is not DEFAULT:
            kwargs["alpha"] = alpha
        super().__init__(kwargs)


class ExtendedBounds(AttrDict[Any]):
    """
    :arg max: Maximum value for the bound.
    :arg min: Minimum value for the bound.
    """

    max: Any
    min: Any

    def __init__(self, *, max: Any = DEFAULT, min: Any = DEFAULT, **kwargs: Any):
        if max is not DEFAULT:
            kwargs["max"] = max
        if min is not DEFAULT:
            kwargs["min"] = min
        super().__init__(kwargs)


class FieldAndFormat(AttrDict[Any]):
    """
    A reference to a field with formatting instructions on how to return
    the value

    :arg field: (required) A wildcard pattern. The request returns values
        for field names matching this pattern.
    :arg format: The format in which the values are returned.
    :arg include_unmapped:
    """

    field: Union[str, InstrumentedField, DefaultType]
    format: Union[str, DefaultType]
    include_unmapped: Union[bool, DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        format: Union[str, DefaultType] = DEFAULT,
        include_unmapped: Union[bool, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        if format is not DEFAULT:
            kwargs["format"] = format
        if include_unmapped is not DEFAULT:
            kwargs["include_unmapped"] = include_unmapped
        super().__init__(kwargs)


class FieldCollapse(AttrDict[Any]):
    """
    :arg field: (required) The field to collapse the result set on
    :arg inner_hits: The number of inner hits and their sort order
    :arg max_concurrent_group_searches: The number of concurrent requests
        allowed to retrieve the inner_hits per group
    :arg collapse:
    """

    field: Union[str, InstrumentedField, DefaultType]
    inner_hits: Union[
        "InnerHits", Sequence["InnerHits"], Sequence[Dict[str, Any]], DefaultType
    ]
    max_concurrent_group_searches: Union[int, DefaultType]
    collapse: Union["FieldCollapse", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        inner_hits: Union[
            "InnerHits", Sequence["InnerHits"], Sequence[Dict[str, Any]], DefaultType
        ] = DEFAULT,
        max_concurrent_group_searches: Union[int, DefaultType] = DEFAULT,
        collapse: Union["FieldCollapse", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        if inner_hits is not DEFAULT:
            kwargs["inner_hits"] = inner_hits
        if max_concurrent_group_searches is not DEFAULT:
            kwargs["max_concurrent_group_searches"] = max_concurrent_group_searches
        if collapse is not DEFAULT:
            kwargs["collapse"] = collapse
        super().__init__(kwargs)


class FieldLookup(AttrDict[Any]):
    """
    :arg id: (required) `id` of the document.
    :arg index: Index from which to retrieve the document.
    :arg path: Name of the field.
    :arg routing: Custom routing value.
    """

    id: Union[str, DefaultType]
    index: Union[str, DefaultType]
    path: Union[str, InstrumentedField, DefaultType]
    routing: Union[str, DefaultType]

    def __init__(
        self,
        *,
        id: Union[str, DefaultType] = DEFAULT,
        index: Union[str, DefaultType] = DEFAULT,
        path: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        routing: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if id is not DEFAULT:
            kwargs["id"] = id
        if index is not DEFAULT:
            kwargs["index"] = index
        if path is not DEFAULT:
            kwargs["path"] = str(path)
        if routing is not DEFAULT:
            kwargs["routing"] = routing
        super().__init__(kwargs)


class FieldSort(AttrDict[Any]):
    """
    :arg missing:
    :arg mode:
    :arg nested:
    :arg order:
    :arg unmapped_type:
    :arg numeric_type:
    :arg format:
    """

    missing: Union[str, int, float, bool, DefaultType]
    mode: Union[Literal["min", "max", "sum", "avg", "median"], DefaultType]
    nested: Union["NestedSortValue", Dict[str, Any], DefaultType]
    order: Union[Literal["asc", "desc"], DefaultType]
    unmapped_type: Union[
        Literal[
            "none",
            "geo_point",
            "geo_shape",
            "ip",
            "binary",
            "keyword",
            "text",
            "search_as_you_type",
            "date",
            "date_nanos",
            "boolean",
            "completion",
            "nested",
            "object",
            "passthrough",
            "version",
            "murmur3",
            "token_count",
            "percolator",
            "integer",
            "long",
            "short",
            "byte",
            "float",
            "half_float",
            "scaled_float",
            "double",
            "integer_range",
            "float_range",
            "long_range",
            "double_range",
            "date_range",
            "ip_range",
            "alias",
            "join",
            "rank_feature",
            "rank_features",
            "flattened",
            "shape",
            "histogram",
            "constant_keyword",
            "counted_keyword",
            "aggregate_metric_double",
            "dense_vector",
            "semantic_text",
            "sparse_vector",
            "match_only_text",
            "icu_collation_keyword",
        ],
        DefaultType,
    ]
    numeric_type: Union[Literal["long", "double", "date", "date_nanos"], DefaultType]
    format: Union[str, DefaultType]

    def __init__(
        self,
        *,
        missing: Union[str, int, float, bool, DefaultType] = DEFAULT,
        mode: Union[
            Literal["min", "max", "sum", "avg", "median"], DefaultType
        ] = DEFAULT,
        nested: Union["NestedSortValue", Dict[str, Any], DefaultType] = DEFAULT,
        order: Union[Literal["asc", "desc"], DefaultType] = DEFAULT,
        unmapped_type: Union[
            Literal[
                "none",
                "geo_point",
                "geo_shape",
                "ip",
                "binary",
                "keyword",
                "text",
                "search_as_you_type",
                "date",
                "date_nanos",
                "boolean",
                "completion",
                "nested",
                "object",
                "passthrough",
                "version",
                "murmur3",
                "token_count",
                "percolator",
                "integer",
                "long",
                "short",
                "byte",
                "float",
                "half_float",
                "scaled_float",
                "double",
                "integer_range",
                "float_range",
                "long_range",
                "double_range",
                "date_range",
                "ip_range",
                "alias",
                "join",
                "rank_feature",
                "rank_features",
                "flattened",
                "shape",
                "histogram",
                "constant_keyword",
                "counted_keyword",
                "aggregate_metric_double",
                "dense_vector",
                "semantic_text",
                "sparse_vector",
                "match_only_text",
                "icu_collation_keyword",
            ],
            DefaultType,
        ] = DEFAULT,
        numeric_type: Union[
            Literal["long", "double", "date", "date_nanos"], DefaultType
        ] = DEFAULT,
        format: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if missing is not DEFAULT:
            kwargs["missing"] = missing
        if mode is not DEFAULT:
            kwargs["mode"] = mode
        if nested is not DEFAULT:
            kwargs["nested"] = nested
        if order is not DEFAULT:
            kwargs["order"] = order
        if unmapped_type is not DEFAULT:
            kwargs["unmapped_type"] = unmapped_type
        if numeric_type is not DEFAULT:
            kwargs["numeric_type"] = numeric_type
        if format is not DEFAULT:
            kwargs["format"] = format
        super().__init__(kwargs)


class FielddataFrequencyFilter(AttrDict[Any]):
    """
    :arg max: (required)
    :arg min: (required)
    :arg min_segment_size: (required)
    """

    max: Union[float, DefaultType]
    min: Union[float, DefaultType]
    min_segment_size: Union[int, DefaultType]

    def __init__(
        self,
        *,
        max: Union[float, DefaultType] = DEFAULT,
        min: Union[float, DefaultType] = DEFAULT,
        min_segment_size: Union[int, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if max is not DEFAULT:
            kwargs["max"] = max
        if min is not DEFAULT:
            kwargs["min"] = min
        if min_segment_size is not DEFAULT:
            kwargs["min_segment_size"] = min_segment_size
        super().__init__(kwargs)


class FrequentItemSetsField(AttrDict[Any]):
    """
    :arg field: (required)
    :arg exclude: Values to exclude. Can be regular expression strings or
        arrays of strings of exact terms.
    :arg include: Values to include. Can be regular expression strings or
        arrays of strings of exact terms.
    """

    field: Union[str, InstrumentedField, DefaultType]
    exclude: Union[str, Sequence[str], DefaultType]
    include: Union[str, Sequence[str], "TermsPartition", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        exclude: Union[str, Sequence[str], DefaultType] = DEFAULT,
        include: Union[
            str, Sequence[str], "TermsPartition", Dict[str, Any], DefaultType
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        if exclude is not DEFAULT:
            kwargs["exclude"] = exclude
        if include is not DEFAULT:
            kwargs["include"] = include
        super().__init__(kwargs)


class FuzzyQuery(AttrDict[Any]):
    """
    :arg value: (required) Term you wish to find in the provided field.
    :arg max_expansions: Maximum number of variations created. Defaults to
        `50` if omitted.
    :arg prefix_length: Number of beginning characters left unchanged when
        creating expansions.
    :arg rewrite: Number of beginning characters left unchanged when
        creating expansions. Defaults to `constant_score` if omitted.
    :arg transpositions: Indicates whether edits include transpositions of
        two adjacent characters (for example `ab` to `ba`). Defaults to
        `True` if omitted.
    :arg fuzziness: Maximum edit distance allowed for matching.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    value: Union[str, float, bool, DefaultType]
    max_expansions: Union[int, DefaultType]
    prefix_length: Union[int, DefaultType]
    rewrite: Union[str, DefaultType]
    transpositions: Union[bool, DefaultType]
    fuzziness: Union[str, int, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        value: Union[str, float, bool, DefaultType] = DEFAULT,
        max_expansions: Union[int, DefaultType] = DEFAULT,
        prefix_length: Union[int, DefaultType] = DEFAULT,
        rewrite: Union[str, DefaultType] = DEFAULT,
        transpositions: Union[bool, DefaultType] = DEFAULT,
        fuzziness: Union[str, int, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if value is not DEFAULT:
            kwargs["value"] = value
        if max_expansions is not DEFAULT:
            kwargs["max_expansions"] = max_expansions
        if prefix_length is not DEFAULT:
            kwargs["prefix_length"] = prefix_length
        if rewrite is not DEFAULT:
            kwargs["rewrite"] = rewrite
        if transpositions is not DEFAULT:
            kwargs["transpositions"] = transpositions
        if fuzziness is not DEFAULT:
            kwargs["fuzziness"] = fuzziness
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class GeoDistanceSort(AttrDict[Any]):
    """
    :arg _field: The field to use in this query.
    :arg _value: The query value for the field.
    :arg mode:
    :arg distance_type:
    :arg ignore_unmapped:
    :arg order:
    :arg unit:
    :arg nested:
    """

    _field: Union[str, "InstrumentedField", "DefaultType"]
    _value: Union[
        Union["LatLonGeoLocation", "GeoHashLocation", Sequence[float], str],
        Sequence[Union["LatLonGeoLocation", "GeoHashLocation", Sequence[float], str]],
        Dict[str, Any],
        "DefaultType",
    ]
    mode: Union[Literal["min", "max", "sum", "avg", "median"], DefaultType]
    distance_type: Union[Literal["arc", "plane"], DefaultType]
    ignore_unmapped: Union[bool, DefaultType]
    order: Union[Literal["asc", "desc"], DefaultType]
    unit: Union[
        Literal["in", "ft", "yd", "mi", "nmi", "km", "m", "cm", "mm"], DefaultType
    ]
    nested: Union["NestedSortValue", Dict[str, Any], DefaultType]

    def __init__(
        self,
        _field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        _value: Union[
            Union["LatLonGeoLocation", "GeoHashLocation", Sequence[float], str],
            Sequence[
                Union["LatLonGeoLocation", "GeoHashLocation", Sequence[float], str]
            ],
            Dict[str, Any],
            "DefaultType",
        ] = DEFAULT,
        *,
        mode: Union[
            Literal["min", "max", "sum", "avg", "median"], DefaultType
        ] = DEFAULT,
        distance_type: Union[Literal["arc", "plane"], DefaultType] = DEFAULT,
        ignore_unmapped: Union[bool, DefaultType] = DEFAULT,
        order: Union[Literal["asc", "desc"], DefaultType] = DEFAULT,
        unit: Union[
            Literal["in", "ft", "yd", "mi", "nmi", "km", "m", "cm", "mm"], DefaultType
        ] = DEFAULT,
        nested: Union["NestedSortValue", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if _field is not DEFAULT:
            kwargs[str(_field)] = _value
        if mode is not DEFAULT:
            kwargs["mode"] = mode
        if distance_type is not DEFAULT:
            kwargs["distance_type"] = distance_type
        if ignore_unmapped is not DEFAULT:
            kwargs["ignore_unmapped"] = ignore_unmapped
        if order is not DEFAULT:
            kwargs["order"] = order
        if unit is not DEFAULT:
            kwargs["unit"] = unit
        if nested is not DEFAULT:
            kwargs["nested"] = nested
        super().__init__(kwargs)


class GeoGridQuery(AttrDict[Any]):
    """
    :arg geotile:
    :arg geohash:
    :arg geohex:
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    geotile: Union[str, DefaultType]
    geohash: Union[str, DefaultType]
    geohex: Union[str, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        geotile: Union[str, DefaultType] = DEFAULT,
        geohash: Union[str, DefaultType] = DEFAULT,
        geohex: Union[str, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if geotile is not DEFAULT:
            kwargs["geotile"] = geotile
        if geohash is not DEFAULT:
            kwargs["geohash"] = geohash
        if geohex is not DEFAULT:
            kwargs["geohex"] = geohex
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class GeoHashLocation(AttrDict[Any]):
    """
    :arg geohash: (required)
    """

    geohash: Union[str, DefaultType]

    def __init__(self, *, geohash: Union[str, DefaultType] = DEFAULT, **kwargs: Any):
        if geohash is not DEFAULT:
            kwargs["geohash"] = geohash
        super().__init__(kwargs)


class GeoLinePoint(AttrDict[Any]):
    """
    :arg field: (required) The name of the geo_point field.
    """

    field: Union[str, InstrumentedField, DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        super().__init__(kwargs)


class GeoLineSort(AttrDict[Any]):
    """
    :arg field: (required) The name of the numeric field to use as the
        sort key for ordering the points.
    """

    field: Union[str, InstrumentedField, DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        super().__init__(kwargs)


class GeoPolygonPoints(AttrDict[Any]):
    """
    :arg points: (required)
    """

    points: Union[
        Sequence[Union["LatLonGeoLocation", "GeoHashLocation", Sequence[float], str]],
        Dict[str, Any],
        DefaultType,
    ]

    def __init__(
        self,
        *,
        points: Union[
            Sequence[
                Union["LatLonGeoLocation", "GeoHashLocation", Sequence[float], str]
            ],
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if points is not DEFAULT:
            kwargs["points"] = points
        super().__init__(kwargs)


class GeoShapeFieldQuery(AttrDict[Any]):
    """
    :arg shape:
    :arg indexed_shape: Query using an indexed shape retrieved from the
        the specified document and path.
    :arg relation: Spatial relation operator used to search a geo field.
        Defaults to `intersects` if omitted.
    """

    shape: Any
    indexed_shape: Union["FieldLookup", Dict[str, Any], DefaultType]
    relation: Union[
        Literal["intersects", "disjoint", "within", "contains"], DefaultType
    ]

    def __init__(
        self,
        *,
        shape: Any = DEFAULT,
        indexed_shape: Union["FieldLookup", Dict[str, Any], DefaultType] = DEFAULT,
        relation: Union[
            Literal["intersects", "disjoint", "within", "contains"], DefaultType
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if shape is not DEFAULT:
            kwargs["shape"] = shape
        if indexed_shape is not DEFAULT:
            kwargs["indexed_shape"] = indexed_shape
        if relation is not DEFAULT:
            kwargs["relation"] = relation
        super().__init__(kwargs)


class GoogleNormalizedDistanceHeuristic(AttrDict[Any]):
    """
    :arg background_is_superset: Set to `false` if you defined a custom
        background filter that represents a different set of documents
        that you want to compare to.
    """

    background_is_superset: Union[bool, DefaultType]

    def __init__(
        self,
        *,
        background_is_superset: Union[bool, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if background_is_superset is not DEFAULT:
            kwargs["background_is_superset"] = background_is_superset
        super().__init__(kwargs)


class HdrMethod(AttrDict[Any]):
    """
    :arg number_of_significant_value_digits: Specifies the resolution of
        values for the histogram in number of significant digits.
    """

    number_of_significant_value_digits: Union[int, DefaultType]

    def __init__(
        self,
        *,
        number_of_significant_value_digits: Union[int, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if number_of_significant_value_digits is not DEFAULT:
            kwargs["number_of_significant_value_digits"] = (
                number_of_significant_value_digits
            )
        super().__init__(kwargs)


class Highlight(AttrDict[Any]):
    """
    :arg fields: (required)
    :arg encoder:
    :arg type:
    :arg boundary_chars: A string that contains each boundary character.
        Defaults to `.,!? \t\n` if omitted.
    :arg boundary_max_scan: How far to scan for boundary characters.
        Defaults to `20` if omitted.
    :arg boundary_scanner: Specifies how to break the highlighted
        fragments: chars, sentence, or word. Only valid for the unified
        and fvh highlighters. Defaults to `sentence` for the `unified`
        highlighter. Defaults to `chars` for the `fvh` highlighter.
    :arg boundary_scanner_locale: Controls which locale is used to search
        for sentence and word boundaries. This parameter takes a form of a
        language tag, for example: `"en-US"`, `"fr-FR"`, `"ja-JP"`.
        Defaults to `Locale.ROOT` if omitted.
    :arg force_source:
    :arg fragmenter: Specifies how text should be broken up in highlight
        snippets: `simple` or `span`. Only valid for the `plain`
        highlighter. Defaults to `span` if omitted.
    :arg fragment_size: The size of the highlighted fragment in
        characters. Defaults to `100` if omitted.
    :arg highlight_filter:
    :arg highlight_query: Highlight matches for a query other than the
        search query. This is especially useful if you use a rescore query
        because those are not taken into account by highlighting by
        default.
    :arg max_fragment_length:
    :arg max_analyzed_offset: If set to a non-negative value, highlighting
        stops at this defined maximum limit. The rest of the text is not
        processed, thus not highlighted and no error is returned The
        `max_analyzed_offset` query setting does not override the
        `index.highlight.max_analyzed_offset` setting, which prevails when
        it’s set to lower value than the query setting.
    :arg no_match_size: The amount of text you want to return from the
        beginning of the field if there are no matching fragments to
        highlight.
    :arg number_of_fragments: The maximum number of fragments to return.
        If the number of fragments is set to `0`, no fragments are
        returned. Instead, the entire field contents are highlighted and
        returned. This can be handy when you need to highlight short texts
        such as a title or address, but fragmentation is not required. If
        `number_of_fragments` is `0`, `fragment_size` is ignored. Defaults
        to `5` if omitted.
    :arg options:
    :arg order: Sorts highlighted fragments by score when set to `score`.
        By default, fragments will be output in the order they appear in
        the field (order: `none`). Setting this option to `score` will
        output the most relevant fragments first. Each highlighter applies
        its own logic to compute relevancy scores. Defaults to `none` if
        omitted.
    :arg phrase_limit: Controls the number of matching phrases in a
        document that are considered. Prevents the `fvh` highlighter from
        analyzing too many phrases and consuming too much memory. When
        using `matched_fields`, `phrase_limit` phrases per matched field
        are considered. Raising the limit increases query time and
        consumes more memory. Only supported by the `fvh` highlighter.
        Defaults to `256` if omitted.
    :arg post_tags: Use in conjunction with `pre_tags` to define the HTML
        tags to use for the highlighted text. By default, highlighted text
        is wrapped in `<em>` and `</em>` tags.
    :arg pre_tags: Use in conjunction with `post_tags` to define the HTML
        tags to use for the highlighted text. By default, highlighted text
        is wrapped in `<em>` and `</em>` tags.
    :arg require_field_match: By default, only fields that contains a
        query match are highlighted. Set to `false` to highlight all
        fields. Defaults to `True` if omitted.
    :arg tags_schema: Set to `styled` to use the built-in tag schema.
    """

    fields: Union[
        Mapping[Union[str, InstrumentedField], "HighlightField"],
        Sequence[Mapping[Union[str, InstrumentedField], "HighlightField"]],
        Dict[str, Any],
        DefaultType,
    ]
    encoder: Union[Literal["default", "html"], DefaultType]
    type: Union[Literal["plain", "fvh", "unified"], DefaultType]
    boundary_chars: Union[str, DefaultType]
    boundary_max_scan: Union[int, DefaultType]
    boundary_scanner: Union[Literal["chars", "sentence", "word"], DefaultType]
    boundary_scanner_locale: Union[str, DefaultType]
    force_source: Union[bool, DefaultType]
    fragmenter: Union[Literal["simple", "span"], DefaultType]
    fragment_size: Union[int, DefaultType]
    highlight_filter: Union[bool, DefaultType]
    highlight_query: Union[Query, DefaultType]
    max_fragment_length: Union[int, DefaultType]
    max_analyzed_offset: Union[int, DefaultType]
    no_match_size: Union[int, DefaultType]
    number_of_fragments: Union[int, DefaultType]
    options: Union[Mapping[str, Any], DefaultType]
    order: Union[Literal["score"], DefaultType]
    phrase_limit: Union[int, DefaultType]
    post_tags: Union[Sequence[str], DefaultType]
    pre_tags: Union[Sequence[str], DefaultType]
    require_field_match: Union[bool, DefaultType]
    tags_schema: Union[Literal["styled"], DefaultType]

    def __init__(
        self,
        *,
        fields: Union[
            Mapping[Union[str, InstrumentedField], "HighlightField"],
            Sequence[Mapping[Union[str, InstrumentedField], "HighlightField"]],
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        encoder: Union[Literal["default", "html"], DefaultType] = DEFAULT,
        type: Union[Literal["plain", "fvh", "unified"], DefaultType] = DEFAULT,
        boundary_chars: Union[str, DefaultType] = DEFAULT,
        boundary_max_scan: Union[int, DefaultType] = DEFAULT,
        boundary_scanner: Union[
            Literal["chars", "sentence", "word"], DefaultType
        ] = DEFAULT,
        boundary_scanner_locale: Union[str, DefaultType] = DEFAULT,
        force_source: Union[bool, DefaultType] = DEFAULT,
        fragmenter: Union[Literal["simple", "span"], DefaultType] = DEFAULT,
        fragment_size: Union[int, DefaultType] = DEFAULT,
        highlight_filter: Union[bool, DefaultType] = DEFAULT,
        highlight_query: Union[Query, DefaultType] = DEFAULT,
        max_fragment_length: Union[int, DefaultType] = DEFAULT,
        max_analyzed_offset: Union[int, DefaultType] = DEFAULT,
        no_match_size: Union[int, DefaultType] = DEFAULT,
        number_of_fragments: Union[int, DefaultType] = DEFAULT,
        options: Union[Mapping[str, Any], DefaultType] = DEFAULT,
        order: Union[Literal["score"], DefaultType] = DEFAULT,
        phrase_limit: Union[int, DefaultType] = DEFAULT,
        post_tags: Union[Sequence[str], DefaultType] = DEFAULT,
        pre_tags: Union[Sequence[str], DefaultType] = DEFAULT,
        require_field_match: Union[bool, DefaultType] = DEFAULT,
        tags_schema: Union[Literal["styled"], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if fields is not DEFAULT:
            kwargs["fields"] = str(fields)
        if encoder is not DEFAULT:
            kwargs["encoder"] = encoder
        if type is not DEFAULT:
            kwargs["type"] = type
        if boundary_chars is not DEFAULT:
            kwargs["boundary_chars"] = boundary_chars
        if boundary_max_scan is not DEFAULT:
            kwargs["boundary_max_scan"] = boundary_max_scan
        if boundary_scanner is not DEFAULT:
            kwargs["boundary_scanner"] = boundary_scanner
        if boundary_scanner_locale is not DEFAULT:
            kwargs["boundary_scanner_locale"] = boundary_scanner_locale
        if force_source is not DEFAULT:
            kwargs["force_source"] = force_source
        if fragmenter is not DEFAULT:
            kwargs["fragmenter"] = fragmenter
        if fragment_size is not DEFAULT:
            kwargs["fragment_size"] = fragment_size
        if highlight_filter is not DEFAULT:
            kwargs["highlight_filter"] = highlight_filter
        if highlight_query is not DEFAULT:
            kwargs["highlight_query"] = highlight_query
        if max_fragment_length is not DEFAULT:
            kwargs["max_fragment_length"] = max_fragment_length
        if max_analyzed_offset is not DEFAULT:
            kwargs["max_analyzed_offset"] = max_analyzed_offset
        if no_match_size is not DEFAULT:
            kwargs["no_match_size"] = no_match_size
        if number_of_fragments is not DEFAULT:
            kwargs["number_of_fragments"] = number_of_fragments
        if options is not DEFAULT:
            kwargs["options"] = options
        if order is not DEFAULT:
            kwargs["order"] = order
        if phrase_limit is not DEFAULT:
            kwargs["phrase_limit"] = phrase_limit
        if post_tags is not DEFAULT:
            kwargs["post_tags"] = post_tags
        if pre_tags is not DEFAULT:
            kwargs["pre_tags"] = pre_tags
        if require_field_match is not DEFAULT:
            kwargs["require_field_match"] = require_field_match
        if tags_schema is not DEFAULT:
            kwargs["tags_schema"] = tags_schema
        super().__init__(kwargs)


class HighlightField(AttrDict[Any]):
    """
    :arg fragment_offset:
    :arg matched_fields:
    :arg type:
    :arg boundary_chars: A string that contains each boundary character.
        Defaults to `.,!? \t\n` if omitted.
    :arg boundary_max_scan: How far to scan for boundary characters.
        Defaults to `20` if omitted.
    :arg boundary_scanner: Specifies how to break the highlighted
        fragments: chars, sentence, or word. Only valid for the unified
        and fvh highlighters. Defaults to `sentence` for the `unified`
        highlighter. Defaults to `chars` for the `fvh` highlighter.
    :arg boundary_scanner_locale: Controls which locale is used to search
        for sentence and word boundaries. This parameter takes a form of a
        language tag, for example: `"en-US"`, `"fr-FR"`, `"ja-JP"`.
        Defaults to `Locale.ROOT` if omitted.
    :arg force_source:
    :arg fragmenter: Specifies how text should be broken up in highlight
        snippets: `simple` or `span`. Only valid for the `plain`
        highlighter. Defaults to `span` if omitted.
    :arg fragment_size: The size of the highlighted fragment in
        characters. Defaults to `100` if omitted.
    :arg highlight_filter:
    :arg highlight_query: Highlight matches for a query other than the
        search query. This is especially useful if you use a rescore query
        because those are not taken into account by highlighting by
        default.
    :arg max_fragment_length:
    :arg max_analyzed_offset: If set to a non-negative value, highlighting
        stops at this defined maximum limit. The rest of the text is not
        processed, thus not highlighted and no error is returned The
        `max_analyzed_offset` query setting does not override the
        `index.highlight.max_analyzed_offset` setting, which prevails when
        it’s set to lower value than the query setting.
    :arg no_match_size: The amount of text you want to return from the
        beginning of the field if there are no matching fragments to
        highlight.
    :arg number_of_fragments: The maximum number of fragments to return.
        If the number of fragments is set to `0`, no fragments are
        returned. Instead, the entire field contents are highlighted and
        returned. This can be handy when you need to highlight short texts
        such as a title or address, but fragmentation is not required. If
        `number_of_fragments` is `0`, `fragment_size` is ignored. Defaults
        to `5` if omitted.
    :arg options:
    :arg order: Sorts highlighted fragments by score when set to `score`.
        By default, fragments will be output in the order they appear in
        the field (order: `none`). Setting this option to `score` will
        output the most relevant fragments first. Each highlighter applies
        its own logic to compute relevancy scores. Defaults to `none` if
        omitted.
    :arg phrase_limit: Controls the number of matching phrases in a
        document that are considered. Prevents the `fvh` highlighter from
        analyzing too many phrases and consuming too much memory. When
        using `matched_fields`, `phrase_limit` phrases per matched field
        are considered. Raising the limit increases query time and
        consumes more memory. Only supported by the `fvh` highlighter.
        Defaults to `256` if omitted.
    :arg post_tags: Use in conjunction with `pre_tags` to define the HTML
        tags to use for the highlighted text. By default, highlighted text
        is wrapped in `<em>` and `</em>` tags.
    :arg pre_tags: Use in conjunction with `post_tags` to define the HTML
        tags to use for the highlighted text. By default, highlighted text
        is wrapped in `<em>` and `</em>` tags.
    :arg require_field_match: By default, only fields that contains a
        query match are highlighted. Set to `false` to highlight all
        fields. Defaults to `True` if omitted.
    :arg tags_schema: Set to `styled` to use the built-in tag schema.
    """

    fragment_offset: Union[int, DefaultType]
    matched_fields: Union[
        Union[str, InstrumentedField],
        Sequence[Union[str, InstrumentedField]],
        DefaultType,
    ]
    type: Union[Literal["plain", "fvh", "unified"], DefaultType]
    boundary_chars: Union[str, DefaultType]
    boundary_max_scan: Union[int, DefaultType]
    boundary_scanner: Union[Literal["chars", "sentence", "word"], DefaultType]
    boundary_scanner_locale: Union[str, DefaultType]
    force_source: Union[bool, DefaultType]
    fragmenter: Union[Literal["simple", "span"], DefaultType]
    fragment_size: Union[int, DefaultType]
    highlight_filter: Union[bool, DefaultType]
    highlight_query: Union[Query, DefaultType]
    max_fragment_length: Union[int, DefaultType]
    max_analyzed_offset: Union[int, DefaultType]
    no_match_size: Union[int, DefaultType]
    number_of_fragments: Union[int, DefaultType]
    options: Union[Mapping[str, Any], DefaultType]
    order: Union[Literal["score"], DefaultType]
    phrase_limit: Union[int, DefaultType]
    post_tags: Union[Sequence[str], DefaultType]
    pre_tags: Union[Sequence[str], DefaultType]
    require_field_match: Union[bool, DefaultType]
    tags_schema: Union[Literal["styled"], DefaultType]

    def __init__(
        self,
        *,
        fragment_offset: Union[int, DefaultType] = DEFAULT,
        matched_fields: Union[
            Union[str, InstrumentedField],
            Sequence[Union[str, InstrumentedField]],
            DefaultType,
        ] = DEFAULT,
        type: Union[Literal["plain", "fvh", "unified"], DefaultType] = DEFAULT,
        boundary_chars: Union[str, DefaultType] = DEFAULT,
        boundary_max_scan: Union[int, DefaultType] = DEFAULT,
        boundary_scanner: Union[
            Literal["chars", "sentence", "word"], DefaultType
        ] = DEFAULT,
        boundary_scanner_locale: Union[str, DefaultType] = DEFAULT,
        force_source: Union[bool, DefaultType] = DEFAULT,
        fragmenter: Union[Literal["simple", "span"], DefaultType] = DEFAULT,
        fragment_size: Union[int, DefaultType] = DEFAULT,
        highlight_filter: Union[bool, DefaultType] = DEFAULT,
        highlight_query: Union[Query, DefaultType] = DEFAULT,
        max_fragment_length: Union[int, DefaultType] = DEFAULT,
        max_analyzed_offset: Union[int, DefaultType] = DEFAULT,
        no_match_size: Union[int, DefaultType] = DEFAULT,
        number_of_fragments: Union[int, DefaultType] = DEFAULT,
        options: Union[Mapping[str, Any], DefaultType] = DEFAULT,
        order: Union[Literal["score"], DefaultType] = DEFAULT,
        phrase_limit: Union[int, DefaultType] = DEFAULT,
        post_tags: Union[Sequence[str], DefaultType] = DEFAULT,
        pre_tags: Union[Sequence[str], DefaultType] = DEFAULT,
        require_field_match: Union[bool, DefaultType] = DEFAULT,
        tags_schema: Union[Literal["styled"], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if fragment_offset is not DEFAULT:
            kwargs["fragment_offset"] = fragment_offset
        if matched_fields is not DEFAULT:
            kwargs["matched_fields"] = str(matched_fields)
        if type is not DEFAULT:
            kwargs["type"] = type
        if boundary_chars is not DEFAULT:
            kwargs["boundary_chars"] = boundary_chars
        if boundary_max_scan is not DEFAULT:
            kwargs["boundary_max_scan"] = boundary_max_scan
        if boundary_scanner is not DEFAULT:
            kwargs["boundary_scanner"] = boundary_scanner
        if boundary_scanner_locale is not DEFAULT:
            kwargs["boundary_scanner_locale"] = boundary_scanner_locale
        if force_source is not DEFAULT:
            kwargs["force_source"] = force_source
        if fragmenter is not DEFAULT:
            kwargs["fragmenter"] = fragmenter
        if fragment_size is not DEFAULT:
            kwargs["fragment_size"] = fragment_size
        if highlight_filter is not DEFAULT:
            kwargs["highlight_filter"] = highlight_filter
        if highlight_query is not DEFAULT:
            kwargs["highlight_query"] = highlight_query
        if max_fragment_length is not DEFAULT:
            kwargs["max_fragment_length"] = max_fragment_length
        if max_analyzed_offset is not DEFAULT:
            kwargs["max_analyzed_offset"] = max_analyzed_offset
        if no_match_size is not DEFAULT:
            kwargs["no_match_size"] = no_match_size
        if number_of_fragments is not DEFAULT:
            kwargs["number_of_fragments"] = number_of_fragments
        if options is not DEFAULT:
            kwargs["options"] = options
        if order is not DEFAULT:
            kwargs["order"] = order
        if phrase_limit is not DEFAULT:
            kwargs["phrase_limit"] = phrase_limit
        if post_tags is not DEFAULT:
            kwargs["post_tags"] = post_tags
        if pre_tags is not DEFAULT:
            kwargs["pre_tags"] = pre_tags
        if require_field_match is not DEFAULT:
            kwargs["require_field_match"] = require_field_match
        if tags_schema is not DEFAULT:
            kwargs["tags_schema"] = tags_schema
        super().__init__(kwargs)


class HoltLinearModelSettings(AttrDict[Any]):
    """
    :arg alpha:
    :arg beta:
    """

    alpha: Union[float, DefaultType]
    beta: Union[float, DefaultType]

    def __init__(
        self,
        *,
        alpha: Union[float, DefaultType] = DEFAULT,
        beta: Union[float, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if alpha is not DEFAULT:
            kwargs["alpha"] = alpha
        if beta is not DEFAULT:
            kwargs["beta"] = beta
        super().__init__(kwargs)


class HoltWintersModelSettings(AttrDict[Any]):
    """
    :arg alpha:
    :arg beta:
    :arg gamma:
    :arg pad:
    :arg period:
    :arg type:
    """

    alpha: Union[float, DefaultType]
    beta: Union[float, DefaultType]
    gamma: Union[float, DefaultType]
    pad: Union[bool, DefaultType]
    period: Union[int, DefaultType]
    type: Union[Literal["add", "mult"], DefaultType]

    def __init__(
        self,
        *,
        alpha: Union[float, DefaultType] = DEFAULT,
        beta: Union[float, DefaultType] = DEFAULT,
        gamma: Union[float, DefaultType] = DEFAULT,
        pad: Union[bool, DefaultType] = DEFAULT,
        period: Union[int, DefaultType] = DEFAULT,
        type: Union[Literal["add", "mult"], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if alpha is not DEFAULT:
            kwargs["alpha"] = alpha
        if beta is not DEFAULT:
            kwargs["beta"] = beta
        if gamma is not DEFAULT:
            kwargs["gamma"] = gamma
        if pad is not DEFAULT:
            kwargs["pad"] = pad
        if period is not DEFAULT:
            kwargs["period"] = period
        if type is not DEFAULT:
            kwargs["type"] = type
        super().__init__(kwargs)


class InferenceConfigContainer(AttrDict[Any]):
    """
    :arg regression: Regression configuration for inference.
    :arg classification: Classification configuration for inference.
    """

    regression: Union["RegressionInferenceOptions", Dict[str, Any], DefaultType]
    classification: Union["ClassificationInferenceOptions", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        regression: Union[
            "RegressionInferenceOptions", Dict[str, Any], DefaultType
        ] = DEFAULT,
        classification: Union[
            "ClassificationInferenceOptions", Dict[str, Any], DefaultType
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if regression is not DEFAULT:
            kwargs["regression"] = regression
        if classification is not DEFAULT:
            kwargs["classification"] = classification
        super().__init__(kwargs)


class InnerHits(AttrDict[Any]):
    """
    :arg name: The name for the particular inner hit definition in the
        response. Useful when a search request contains multiple inner
        hits.
    :arg size: The maximum number of hits to return per `inner_hits`.
        Defaults to `3` if omitted.
    :arg from: Inner hit starting document offset.
    :arg collapse:
    :arg docvalue_fields:
    :arg explain:
    :arg highlight:
    :arg ignore_unmapped:
    :arg script_fields:
    :arg seq_no_primary_term:
    :arg fields:
    :arg sort: How the inner hits should be sorted per `inner_hits`. By
        default, inner hits are sorted by score.
    :arg _source:
    :arg stored_fields:
    :arg track_scores:
    :arg version:
    """

    name: Union[str, DefaultType]
    size: Union[int, DefaultType]
    from_: Union[int, DefaultType]
    collapse: Union["FieldCollapse", Dict[str, Any], DefaultType]
    docvalue_fields: Union[
        Sequence["FieldAndFormat"], Sequence[Dict[str, Any]], DefaultType
    ]
    explain: Union[bool, DefaultType]
    highlight: Union["Highlight", Dict[str, Any], DefaultType]
    ignore_unmapped: Union[bool, DefaultType]
    script_fields: Union[
        Mapping[Union[str, InstrumentedField], "ScriptField"],
        Dict[str, Any],
        DefaultType,
    ]
    seq_no_primary_term: Union[bool, DefaultType]
    fields: Union[Sequence[Union[str, InstrumentedField]], DefaultType]
    sort: Union[
        Union[Union[str, InstrumentedField], "SortOptions"],
        Sequence[Union[Union[str, InstrumentedField], "SortOptions"]],
        Dict[str, Any],
        DefaultType,
    ]
    _source: Union[bool, "SourceFilter", Dict[str, Any], DefaultType]
    stored_fields: Union[
        Union[str, InstrumentedField],
        Sequence[Union[str, InstrumentedField]],
        DefaultType,
    ]
    track_scores: Union[bool, DefaultType]
    version: Union[bool, DefaultType]

    def __init__(
        self,
        *,
        name: Union[str, DefaultType] = DEFAULT,
        size: Union[int, DefaultType] = DEFAULT,
        from_: Union[int, DefaultType] = DEFAULT,
        collapse: Union["FieldCollapse", Dict[str, Any], DefaultType] = DEFAULT,
        docvalue_fields: Union[
            Sequence["FieldAndFormat"], Sequence[Dict[str, Any]], DefaultType
        ] = DEFAULT,
        explain: Union[bool, DefaultType] = DEFAULT,
        highlight: Union["Highlight", Dict[str, Any], DefaultType] = DEFAULT,
        ignore_unmapped: Union[bool, DefaultType] = DEFAULT,
        script_fields: Union[
            Mapping[Union[str, InstrumentedField], "ScriptField"],
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        seq_no_primary_term: Union[bool, DefaultType] = DEFAULT,
        fields: Union[Sequence[Union[str, InstrumentedField]], DefaultType] = DEFAULT,
        sort: Union[
            Union[Union[str, InstrumentedField], "SortOptions"],
            Sequence[Union[Union[str, InstrumentedField], "SortOptions"]],
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        _source: Union[bool, "SourceFilter", Dict[str, Any], DefaultType] = DEFAULT,
        stored_fields: Union[
            Union[str, InstrumentedField],
            Sequence[Union[str, InstrumentedField]],
            DefaultType,
        ] = DEFAULT,
        track_scores: Union[bool, DefaultType] = DEFAULT,
        version: Union[bool, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if name is not DEFAULT:
            kwargs["name"] = name
        if size is not DEFAULT:
            kwargs["size"] = size
        if from_ is not DEFAULT:
            kwargs["from_"] = from_
        if collapse is not DEFAULT:
            kwargs["collapse"] = collapse
        if docvalue_fields is not DEFAULT:
            kwargs["docvalue_fields"] = docvalue_fields
        if explain is not DEFAULT:
            kwargs["explain"] = explain
        if highlight is not DEFAULT:
            kwargs["highlight"] = highlight
        if ignore_unmapped is not DEFAULT:
            kwargs["ignore_unmapped"] = ignore_unmapped
        if script_fields is not DEFAULT:
            kwargs["script_fields"] = str(script_fields)
        if seq_no_primary_term is not DEFAULT:
            kwargs["seq_no_primary_term"] = seq_no_primary_term
        if fields is not DEFAULT:
            kwargs["fields"] = str(fields)
        if sort is not DEFAULT:
            kwargs["sort"] = str(sort)
        if _source is not DEFAULT:
            kwargs["_source"] = _source
        if stored_fields is not DEFAULT:
            kwargs["stored_fields"] = str(stored_fields)
        if track_scores is not DEFAULT:
            kwargs["track_scores"] = track_scores
        if version is not DEFAULT:
            kwargs["version"] = version
        super().__init__(kwargs)


class IntervalsAllOf(AttrDict[Any]):
    """
    :arg intervals: (required) An array of rules to combine. All rules
        must produce a match in a document for the overall source to
        match.
    :arg max_gaps: Maximum number of positions between the matching terms.
        Intervals produced by the rules further apart than this are not
        considered matches. Defaults to `-1` if omitted.
    :arg ordered: If `true`, intervals produced by the rules should appear
        in the order in which they are specified.
    :arg filter: Rule used to filter returned intervals.
    """

    intervals: Union[
        Sequence["IntervalsContainer"], Sequence[Dict[str, Any]], DefaultType
    ]
    max_gaps: Union[int, DefaultType]
    ordered: Union[bool, DefaultType]
    filter: Union["IntervalsFilter", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        intervals: Union[
            Sequence["IntervalsContainer"], Sequence[Dict[str, Any]], DefaultType
        ] = DEFAULT,
        max_gaps: Union[int, DefaultType] = DEFAULT,
        ordered: Union[bool, DefaultType] = DEFAULT,
        filter: Union["IntervalsFilter", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if intervals is not DEFAULT:
            kwargs["intervals"] = intervals
        if max_gaps is not DEFAULT:
            kwargs["max_gaps"] = max_gaps
        if ordered is not DEFAULT:
            kwargs["ordered"] = ordered
        if filter is not DEFAULT:
            kwargs["filter"] = filter
        super().__init__(kwargs)


class IntervalsAnyOf(AttrDict[Any]):
    """
    :arg intervals: (required) An array of rules to match.
    :arg filter: Rule used to filter returned intervals.
    """

    intervals: Union[
        Sequence["IntervalsContainer"], Sequence[Dict[str, Any]], DefaultType
    ]
    filter: Union["IntervalsFilter", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        intervals: Union[
            Sequence["IntervalsContainer"], Sequence[Dict[str, Any]], DefaultType
        ] = DEFAULT,
        filter: Union["IntervalsFilter", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if intervals is not DEFAULT:
            kwargs["intervals"] = intervals
        if filter is not DEFAULT:
            kwargs["filter"] = filter
        super().__init__(kwargs)


class IntervalsContainer(AttrDict[Any]):
    """
    :arg all_of: Returns matches that span a combination of other rules.
    :arg any_of: Returns intervals produced by any of its sub-rules.
    :arg fuzzy: Matches analyzed text.
    :arg match: Matches analyzed text.
    :arg prefix: Matches terms that start with a specified set of
        characters.
    :arg range:
    :arg regexp:
    :arg wildcard: Matches terms using a wildcard pattern.
    """

    all_of: Union["IntervalsAllOf", Dict[str, Any], DefaultType]
    any_of: Union["IntervalsAnyOf", Dict[str, Any], DefaultType]
    fuzzy: Union["IntervalsFuzzy", Dict[str, Any], DefaultType]
    match: Union["IntervalsMatch", Dict[str, Any], DefaultType]
    prefix: Union["IntervalsPrefix", Dict[str, Any], DefaultType]
    range: Union["IntervalsRange", Dict[str, Any], DefaultType]
    regexp: Union["IntervalsRegexp", Dict[str, Any], DefaultType]
    wildcard: Union["IntervalsWildcard", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        all_of: Union["IntervalsAllOf", Dict[str, Any], DefaultType] = DEFAULT,
        any_of: Union["IntervalsAnyOf", Dict[str, Any], DefaultType] = DEFAULT,
        fuzzy: Union["IntervalsFuzzy", Dict[str, Any], DefaultType] = DEFAULT,
        match: Union["IntervalsMatch", Dict[str, Any], DefaultType] = DEFAULT,
        prefix: Union["IntervalsPrefix", Dict[str, Any], DefaultType] = DEFAULT,
        range: Union["IntervalsRange", Dict[str, Any], DefaultType] = DEFAULT,
        regexp: Union["IntervalsRegexp", Dict[str, Any], DefaultType] = DEFAULT,
        wildcard: Union["IntervalsWildcard", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if all_of is not DEFAULT:
            kwargs["all_of"] = all_of
        if any_of is not DEFAULT:
            kwargs["any_of"] = any_of
        if fuzzy is not DEFAULT:
            kwargs["fuzzy"] = fuzzy
        if match is not DEFAULT:
            kwargs["match"] = match
        if prefix is not DEFAULT:
            kwargs["prefix"] = prefix
        if range is not DEFAULT:
            kwargs["range"] = range
        if regexp is not DEFAULT:
            kwargs["regexp"] = regexp
        if wildcard is not DEFAULT:
            kwargs["wildcard"] = wildcard
        super().__init__(kwargs)


class IntervalsFilter(AttrDict[Any]):
    """
    :arg after: Query used to return intervals that follow an interval
        from the `filter` rule.
    :arg before: Query used to return intervals that occur before an
        interval from the `filter` rule.
    :arg contained_by: Query used to return intervals contained by an
        interval from the `filter` rule.
    :arg containing: Query used to return intervals that contain an
        interval from the `filter` rule.
    :arg not_contained_by: Query used to return intervals that are **not**
        contained by an interval from the `filter` rule.
    :arg not_containing: Query used to return intervals that do **not**
        contain an interval from the `filter` rule.
    :arg not_overlapping: Query used to return intervals that do **not**
        overlap with an interval from the `filter` rule.
    :arg overlapping: Query used to return intervals that overlap with an
        interval from the `filter` rule.
    :arg script: Script used to return matching documents. This script
        must return a boolean value: `true` or `false`.
    """

    after: Union["IntervalsContainer", Dict[str, Any], DefaultType]
    before: Union["IntervalsContainer", Dict[str, Any], DefaultType]
    contained_by: Union["IntervalsContainer", Dict[str, Any], DefaultType]
    containing: Union["IntervalsContainer", Dict[str, Any], DefaultType]
    not_contained_by: Union["IntervalsContainer", Dict[str, Any], DefaultType]
    not_containing: Union["IntervalsContainer", Dict[str, Any], DefaultType]
    not_overlapping: Union["IntervalsContainer", Dict[str, Any], DefaultType]
    overlapping: Union["IntervalsContainer", Dict[str, Any], DefaultType]
    script: Union["Script", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        after: Union["IntervalsContainer", Dict[str, Any], DefaultType] = DEFAULT,
        before: Union["IntervalsContainer", Dict[str, Any], DefaultType] = DEFAULT,
        contained_by: Union[
            "IntervalsContainer", Dict[str, Any], DefaultType
        ] = DEFAULT,
        containing: Union["IntervalsContainer", Dict[str, Any], DefaultType] = DEFAULT,
        not_contained_by: Union[
            "IntervalsContainer", Dict[str, Any], DefaultType
        ] = DEFAULT,
        not_containing: Union[
            "IntervalsContainer", Dict[str, Any], DefaultType
        ] = DEFAULT,
        not_overlapping: Union[
            "IntervalsContainer", Dict[str, Any], DefaultType
        ] = DEFAULT,
        overlapping: Union["IntervalsContainer", Dict[str, Any], DefaultType] = DEFAULT,
        script: Union["Script", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if after is not DEFAULT:
            kwargs["after"] = after
        if before is not DEFAULT:
            kwargs["before"] = before
        if contained_by is not DEFAULT:
            kwargs["contained_by"] = contained_by
        if containing is not DEFAULT:
            kwargs["containing"] = containing
        if not_contained_by is not DEFAULT:
            kwargs["not_contained_by"] = not_contained_by
        if not_containing is not DEFAULT:
            kwargs["not_containing"] = not_containing
        if not_overlapping is not DEFAULT:
            kwargs["not_overlapping"] = not_overlapping
        if overlapping is not DEFAULT:
            kwargs["overlapping"] = overlapping
        if script is not DEFAULT:
            kwargs["script"] = script
        super().__init__(kwargs)


class IntervalsFuzzy(AttrDict[Any]):
    """
    :arg term: (required) The term to match.
    :arg analyzer: Analyzer used to normalize the term.
    :arg fuzziness: Maximum edit distance allowed for matching. Defaults
        to `auto` if omitted.
    :arg prefix_length: Number of beginning characters left unchanged when
        creating expansions.
    :arg transpositions: Indicates whether edits include transpositions of
        two adjacent characters (for example, `ab` to `ba`). Defaults to
        `True` if omitted.
    :arg use_field: If specified, match intervals from this field rather
        than the top-level field. The `term` is normalized using the
        search analyzer from this field, unless `analyzer` is specified
        separately.
    """

    term: Union[str, DefaultType]
    analyzer: Union[str, DefaultType]
    fuzziness: Union[str, int, DefaultType]
    prefix_length: Union[int, DefaultType]
    transpositions: Union[bool, DefaultType]
    use_field: Union[str, InstrumentedField, DefaultType]

    def __init__(
        self,
        *,
        term: Union[str, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        fuzziness: Union[str, int, DefaultType] = DEFAULT,
        prefix_length: Union[int, DefaultType] = DEFAULT,
        transpositions: Union[bool, DefaultType] = DEFAULT,
        use_field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if term is not DEFAULT:
            kwargs["term"] = term
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if fuzziness is not DEFAULT:
            kwargs["fuzziness"] = fuzziness
        if prefix_length is not DEFAULT:
            kwargs["prefix_length"] = prefix_length
        if transpositions is not DEFAULT:
            kwargs["transpositions"] = transpositions
        if use_field is not DEFAULT:
            kwargs["use_field"] = str(use_field)
        super().__init__(kwargs)


class IntervalsMatch(AttrDict[Any]):
    """
    :arg query: (required) Text you wish to find in the provided field.
    :arg analyzer: Analyzer used to analyze terms in the query.
    :arg max_gaps: Maximum number of positions between the matching terms.
        Terms further apart than this are not considered matches. Defaults
        to `-1` if omitted.
    :arg ordered: If `true`, matching terms must appear in their specified
        order.
    :arg use_field: If specified, match intervals from this field rather
        than the top-level field. The `term` is normalized using the
        search analyzer from this field, unless `analyzer` is specified
        separately.
    :arg filter: An optional interval filter.
    """

    query: Union[str, DefaultType]
    analyzer: Union[str, DefaultType]
    max_gaps: Union[int, DefaultType]
    ordered: Union[bool, DefaultType]
    use_field: Union[str, InstrumentedField, DefaultType]
    filter: Union["IntervalsFilter", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        query: Union[str, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        max_gaps: Union[int, DefaultType] = DEFAULT,
        ordered: Union[bool, DefaultType] = DEFAULT,
        use_field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        filter: Union["IntervalsFilter", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if query is not DEFAULT:
            kwargs["query"] = query
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if max_gaps is not DEFAULT:
            kwargs["max_gaps"] = max_gaps
        if ordered is not DEFAULT:
            kwargs["ordered"] = ordered
        if use_field is not DEFAULT:
            kwargs["use_field"] = str(use_field)
        if filter is not DEFAULT:
            kwargs["filter"] = filter
        super().__init__(kwargs)


class IntervalsPrefix(AttrDict[Any]):
    """
    :arg prefix: (required) Beginning characters of terms you wish to find
        in the top-level field.
    :arg analyzer: Analyzer used to analyze the `prefix`.
    :arg use_field: If specified, match intervals from this field rather
        than the top-level field. The `prefix` is normalized using the
        search analyzer from this field, unless `analyzer` is specified
        separately.
    """

    prefix: Union[str, DefaultType]
    analyzer: Union[str, DefaultType]
    use_field: Union[str, InstrumentedField, DefaultType]

    def __init__(
        self,
        *,
        prefix: Union[str, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        use_field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if prefix is not DEFAULT:
            kwargs["prefix"] = prefix
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if use_field is not DEFAULT:
            kwargs["use_field"] = str(use_field)
        super().__init__(kwargs)


class IntervalsQuery(AttrDict[Any]):
    """
    :arg all_of: Returns matches that span a combination of other rules.
    :arg any_of: Returns intervals produced by any of its sub-rules.
    :arg fuzzy: Matches terms that are similar to the provided term,
        within an edit distance defined by `fuzziness`.
    :arg match: Matches analyzed text.
    :arg prefix: Matches terms that start with a specified set of
        characters.
    :arg range:
    :arg regexp:
    :arg wildcard: Matches terms using a wildcard pattern.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    all_of: Union["IntervalsAllOf", Dict[str, Any], DefaultType]
    any_of: Union["IntervalsAnyOf", Dict[str, Any], DefaultType]
    fuzzy: Union["IntervalsFuzzy", Dict[str, Any], DefaultType]
    match: Union["IntervalsMatch", Dict[str, Any], DefaultType]
    prefix: Union["IntervalsPrefix", Dict[str, Any], DefaultType]
    range: Union["IntervalsRange", Dict[str, Any], DefaultType]
    regexp: Union["IntervalsRegexp", Dict[str, Any], DefaultType]
    wildcard: Union["IntervalsWildcard", Dict[str, Any], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        all_of: Union["IntervalsAllOf", Dict[str, Any], DefaultType] = DEFAULT,
        any_of: Union["IntervalsAnyOf", Dict[str, Any], DefaultType] = DEFAULT,
        fuzzy: Union["IntervalsFuzzy", Dict[str, Any], DefaultType] = DEFAULT,
        match: Union["IntervalsMatch", Dict[str, Any], DefaultType] = DEFAULT,
        prefix: Union["IntervalsPrefix", Dict[str, Any], DefaultType] = DEFAULT,
        range: Union["IntervalsRange", Dict[str, Any], DefaultType] = DEFAULT,
        regexp: Union["IntervalsRegexp", Dict[str, Any], DefaultType] = DEFAULT,
        wildcard: Union["IntervalsWildcard", Dict[str, Any], DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if all_of is not DEFAULT:
            kwargs["all_of"] = all_of
        if any_of is not DEFAULT:
            kwargs["any_of"] = any_of
        if fuzzy is not DEFAULT:
            kwargs["fuzzy"] = fuzzy
        if match is not DEFAULT:
            kwargs["match"] = match
        if prefix is not DEFAULT:
            kwargs["prefix"] = prefix
        if range is not DEFAULT:
            kwargs["range"] = range
        if regexp is not DEFAULT:
            kwargs["regexp"] = regexp
        if wildcard is not DEFAULT:
            kwargs["wildcard"] = wildcard
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class IntervalsRange(AttrDict[Any]):
    """
    :arg analyzer: Analyzer used to analyze the `prefix`.
    :arg gte: Lower term, either gte or gt must be provided.
    :arg gt: Lower term, either gte or gt must be provided.
    :arg lte: Upper term, either lte or lt must be provided.
    :arg lt: Upper term, either lte or lt must be provided.
    :arg use_field: If specified, match intervals from this field rather
        than the top-level field. The `prefix` is normalized using the
        search analyzer from this field, unless `analyzer` is specified
        separately.
    """

    analyzer: Union[str, DefaultType]
    gte: Union[str, DefaultType]
    gt: Union[str, DefaultType]
    lte: Union[str, DefaultType]
    lt: Union[str, DefaultType]
    use_field: Union[str, InstrumentedField, DefaultType]

    def __init__(
        self,
        *,
        analyzer: Union[str, DefaultType] = DEFAULT,
        gte: Union[str, DefaultType] = DEFAULT,
        gt: Union[str, DefaultType] = DEFAULT,
        lte: Union[str, DefaultType] = DEFAULT,
        lt: Union[str, DefaultType] = DEFAULT,
        use_field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if gte is not DEFAULT:
            kwargs["gte"] = gte
        if gt is not DEFAULT:
            kwargs["gt"] = gt
        if lte is not DEFAULT:
            kwargs["lte"] = lte
        if lt is not DEFAULT:
            kwargs["lt"] = lt
        if use_field is not DEFAULT:
            kwargs["use_field"] = str(use_field)
        super().__init__(kwargs)


class IntervalsRegexp(AttrDict[Any]):
    """
    :arg pattern: (required) Regex pattern.
    :arg analyzer: Analyzer used to analyze the `prefix`.
    :arg use_field: If specified, match intervals from this field rather
        than the top-level field. The `prefix` is normalized using the
        search analyzer from this field, unless `analyzer` is specified
        separately.
    """

    pattern: Union[str, DefaultType]
    analyzer: Union[str, DefaultType]
    use_field: Union[str, InstrumentedField, DefaultType]

    def __init__(
        self,
        *,
        pattern: Union[str, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        use_field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if pattern is not DEFAULT:
            kwargs["pattern"] = pattern
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if use_field is not DEFAULT:
            kwargs["use_field"] = str(use_field)
        super().__init__(kwargs)


class IntervalsWildcard(AttrDict[Any]):
    """
    :arg pattern: (required) Wildcard pattern used to find matching terms.
    :arg analyzer: Analyzer used to analyze the `pattern`. Defaults to the
        top-level field's analyzer.
    :arg use_field: If specified, match intervals from this field rather
        than the top-level field. The `pattern` is normalized using the
        search analyzer from this field, unless `analyzer` is specified
        separately.
    """

    pattern: Union[str, DefaultType]
    analyzer: Union[str, DefaultType]
    use_field: Union[str, InstrumentedField, DefaultType]

    def __init__(
        self,
        *,
        pattern: Union[str, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        use_field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if pattern is not DEFAULT:
            kwargs["pattern"] = pattern
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if use_field is not DEFAULT:
            kwargs["use_field"] = str(use_field)
        super().__init__(kwargs)


class IpRangeAggregationRange(AttrDict[Any]):
    """
    :arg from: Start of the range.
    :arg mask: IP range defined as a CIDR mask.
    :arg to: End of the range.
    """

    from_: Union[str, None, DefaultType]
    mask: Union[str, DefaultType]
    to: Union[str, None, DefaultType]

    def __init__(
        self,
        *,
        from_: Union[str, None, DefaultType] = DEFAULT,
        mask: Union[str, DefaultType] = DEFAULT,
        to: Union[str, None, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if from_ is not DEFAULT:
            kwargs["from_"] = from_
        if mask is not DEFAULT:
            kwargs["mask"] = mask
        if to is not DEFAULT:
            kwargs["to"] = to
        super().__init__(kwargs)


class LatLonGeoLocation(AttrDict[Any]):
    """
    :arg lat: (required) Latitude
    :arg lon: (required) Longitude
    """

    lat: Union[float, DefaultType]
    lon: Union[float, DefaultType]

    def __init__(
        self,
        *,
        lat: Union[float, DefaultType] = DEFAULT,
        lon: Union[float, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if lat is not DEFAULT:
            kwargs["lat"] = lat
        if lon is not DEFAULT:
            kwargs["lon"] = lon
        super().__init__(kwargs)


class LikeDocument(AttrDict[Any]):
    """
    :arg doc: A document not present in the index.
    :arg fields:
    :arg _id: ID of a document.
    :arg _index: Index of a document.
    :arg per_field_analyzer: Overrides the default analyzer.
    :arg routing:
    :arg version:
    :arg version_type:  Defaults to `'internal'` if omitted.
    """

    doc: Any
    fields: Union[Sequence[Union[str, InstrumentedField]], DefaultType]
    _id: Union[str, DefaultType]
    _index: Union[str, DefaultType]
    per_field_analyzer: Union[Mapping[Union[str, InstrumentedField], str], DefaultType]
    routing: Union[str, DefaultType]
    version: Union[int, DefaultType]
    version_type: Union[
        Literal["internal", "external", "external_gte", "force"], DefaultType
    ]

    def __init__(
        self,
        *,
        doc: Any = DEFAULT,
        fields: Union[Sequence[Union[str, InstrumentedField]], DefaultType] = DEFAULT,
        _id: Union[str, DefaultType] = DEFAULT,
        _index: Union[str, DefaultType] = DEFAULT,
        per_field_analyzer: Union[
            Mapping[Union[str, InstrumentedField], str], DefaultType
        ] = DEFAULT,
        routing: Union[str, DefaultType] = DEFAULT,
        version: Union[int, DefaultType] = DEFAULT,
        version_type: Union[
            Literal["internal", "external", "external_gte", "force"], DefaultType
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if doc is not DEFAULT:
            kwargs["doc"] = doc
        if fields is not DEFAULT:
            kwargs["fields"] = str(fields)
        if _id is not DEFAULT:
            kwargs["_id"] = _id
        if _index is not DEFAULT:
            kwargs["_index"] = _index
        if per_field_analyzer is not DEFAULT:
            kwargs["per_field_analyzer"] = str(per_field_analyzer)
        if routing is not DEFAULT:
            kwargs["routing"] = routing
        if version is not DEFAULT:
            kwargs["version"] = version
        if version_type is not DEFAULT:
            kwargs["version_type"] = version_type
        super().__init__(kwargs)


class MatchBoolPrefixQuery(AttrDict[Any]):
    """
    :arg query: (required) Terms you wish to find in the provided field.
        The last term is used in a prefix query.
    :arg analyzer: Analyzer used to convert the text in the query value
        into tokens.
    :arg fuzziness: Maximum edit distance allowed for matching. Can be
        applied to the term subqueries constructed for all terms but the
        final term.
    :arg fuzzy_rewrite: Method used to rewrite the query. Can be applied
        to the term subqueries constructed for all terms but the final
        term.
    :arg fuzzy_transpositions: If `true`, edits for fuzzy matching include
        transpositions of two adjacent characters (for example, `ab` to
        `ba`). Can be applied to the term subqueries constructed for all
        terms but the final term. Defaults to `True` if omitted.
    :arg max_expansions: Maximum number of terms to which the query will
        expand. Can be applied to the term subqueries constructed for all
        terms but the final term. Defaults to `50` if omitted.
    :arg minimum_should_match: Minimum number of clauses that must match
        for a document to be returned. Applied to the constructed bool
        query.
    :arg operator: Boolean logic used to interpret text in the query
        value. Applied to the constructed bool query. Defaults to `'or'`
        if omitted.
    :arg prefix_length: Number of beginning characters left unchanged for
        fuzzy matching. Can be applied to the term subqueries constructed
        for all terms but the final term.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    query: Union[str, DefaultType]
    analyzer: Union[str, DefaultType]
    fuzziness: Union[str, int, DefaultType]
    fuzzy_rewrite: Union[str, DefaultType]
    fuzzy_transpositions: Union[bool, DefaultType]
    max_expansions: Union[int, DefaultType]
    minimum_should_match: Union[int, str, DefaultType]
    operator: Union[Literal["and", "or"], DefaultType]
    prefix_length: Union[int, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        query: Union[str, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        fuzziness: Union[str, int, DefaultType] = DEFAULT,
        fuzzy_rewrite: Union[str, DefaultType] = DEFAULT,
        fuzzy_transpositions: Union[bool, DefaultType] = DEFAULT,
        max_expansions: Union[int, DefaultType] = DEFAULT,
        minimum_should_match: Union[int, str, DefaultType] = DEFAULT,
        operator: Union[Literal["and", "or"], DefaultType] = DEFAULT,
        prefix_length: Union[int, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if query is not DEFAULT:
            kwargs["query"] = query
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if fuzziness is not DEFAULT:
            kwargs["fuzziness"] = fuzziness
        if fuzzy_rewrite is not DEFAULT:
            kwargs["fuzzy_rewrite"] = fuzzy_rewrite
        if fuzzy_transpositions is not DEFAULT:
            kwargs["fuzzy_transpositions"] = fuzzy_transpositions
        if max_expansions is not DEFAULT:
            kwargs["max_expansions"] = max_expansions
        if minimum_should_match is not DEFAULT:
            kwargs["minimum_should_match"] = minimum_should_match
        if operator is not DEFAULT:
            kwargs["operator"] = operator
        if prefix_length is not DEFAULT:
            kwargs["prefix_length"] = prefix_length
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class MatchPhrasePrefixQuery(AttrDict[Any]):
    """
    :arg query: (required) Text you wish to find in the provided field.
    :arg analyzer: Analyzer used to convert text in the query value into
        tokens.
    :arg max_expansions: Maximum number of terms to which the last
        provided term of the query value will expand. Defaults to `50` if
        omitted.
    :arg slop: Maximum number of positions allowed between matching
        tokens.
    :arg zero_terms_query: Indicates whether no documents are returned if
        the analyzer removes all tokens, such as when using a `stop`
        filter. Defaults to `none` if omitted.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    query: Union[str, DefaultType]
    analyzer: Union[str, DefaultType]
    max_expansions: Union[int, DefaultType]
    slop: Union[int, DefaultType]
    zero_terms_query: Union[Literal["all", "none"], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        query: Union[str, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        max_expansions: Union[int, DefaultType] = DEFAULT,
        slop: Union[int, DefaultType] = DEFAULT,
        zero_terms_query: Union[Literal["all", "none"], DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if query is not DEFAULT:
            kwargs["query"] = query
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if max_expansions is not DEFAULT:
            kwargs["max_expansions"] = max_expansions
        if slop is not DEFAULT:
            kwargs["slop"] = slop
        if zero_terms_query is not DEFAULT:
            kwargs["zero_terms_query"] = zero_terms_query
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class MatchPhraseQuery(AttrDict[Any]):
    """
    :arg query: (required) Query terms that are analyzed and turned into a
        phrase query.
    :arg analyzer: Analyzer used to convert the text in the query value
        into tokens.
    :arg slop: Maximum number of positions allowed between matching
        tokens.
    :arg zero_terms_query: Indicates whether no documents are returned if
        the `analyzer` removes all tokens, such as when using a `stop`
        filter. Defaults to `'none'` if omitted.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    query: Union[str, DefaultType]
    analyzer: Union[str, DefaultType]
    slop: Union[int, DefaultType]
    zero_terms_query: Union[Literal["all", "none"], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        query: Union[str, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        slop: Union[int, DefaultType] = DEFAULT,
        zero_terms_query: Union[Literal["all", "none"], DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if query is not DEFAULT:
            kwargs["query"] = query
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if slop is not DEFAULT:
            kwargs["slop"] = slop
        if zero_terms_query is not DEFAULT:
            kwargs["zero_terms_query"] = zero_terms_query
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class MatchQuery(AttrDict[Any]):
    """
    :arg query: (required) Text, number, boolean value or date you wish to
        find in the provided field.
    :arg analyzer: Analyzer used to convert the text in the query value
        into tokens.
    :arg auto_generate_synonyms_phrase_query: If `true`, match phrase
        queries are automatically created for multi-term synonyms.
        Defaults to `True` if omitted.
    :arg cutoff_frequency:
    :arg fuzziness: Maximum edit distance allowed for matching.
    :arg fuzzy_rewrite: Method used to rewrite the query.
    :arg fuzzy_transpositions: If `true`, edits for fuzzy matching include
        transpositions of two adjacent characters (for example, `ab` to
        `ba`). Defaults to `True` if omitted.
    :arg lenient: If `true`, format-based errors, such as providing a text
        query value for a numeric field, are ignored.
    :arg max_expansions: Maximum number of terms to which the query will
        expand. Defaults to `50` if omitted.
    :arg minimum_should_match: Minimum number of clauses that must match
        for a document to be returned.
    :arg operator: Boolean logic used to interpret text in the query
        value. Defaults to `'or'` if omitted.
    :arg prefix_length: Number of beginning characters left unchanged for
        fuzzy matching.
    :arg zero_terms_query: Indicates whether no documents are returned if
        the `analyzer` removes all tokens, such as when using a `stop`
        filter. Defaults to `'none'` if omitted.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    query: Union[str, float, bool, DefaultType]
    analyzer: Union[str, DefaultType]
    auto_generate_synonyms_phrase_query: Union[bool, DefaultType]
    cutoff_frequency: Union[float, DefaultType]
    fuzziness: Union[str, int, DefaultType]
    fuzzy_rewrite: Union[str, DefaultType]
    fuzzy_transpositions: Union[bool, DefaultType]
    lenient: Union[bool, DefaultType]
    max_expansions: Union[int, DefaultType]
    minimum_should_match: Union[int, str, DefaultType]
    operator: Union[Literal["and", "or"], DefaultType]
    prefix_length: Union[int, DefaultType]
    zero_terms_query: Union[Literal["all", "none"], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        query: Union[str, float, bool, DefaultType] = DEFAULT,
        analyzer: Union[str, DefaultType] = DEFAULT,
        auto_generate_synonyms_phrase_query: Union[bool, DefaultType] = DEFAULT,
        cutoff_frequency: Union[float, DefaultType] = DEFAULT,
        fuzziness: Union[str, int, DefaultType] = DEFAULT,
        fuzzy_rewrite: Union[str, DefaultType] = DEFAULT,
        fuzzy_transpositions: Union[bool, DefaultType] = DEFAULT,
        lenient: Union[bool, DefaultType] = DEFAULT,
        max_expansions: Union[int, DefaultType] = DEFAULT,
        minimum_should_match: Union[int, str, DefaultType] = DEFAULT,
        operator: Union[Literal["and", "or"], DefaultType] = DEFAULT,
        prefix_length: Union[int, DefaultType] = DEFAULT,
        zero_terms_query: Union[Literal["all", "none"], DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if query is not DEFAULT:
            kwargs["query"] = query
        if analyzer is not DEFAULT:
            kwargs["analyzer"] = analyzer
        if auto_generate_synonyms_phrase_query is not DEFAULT:
            kwargs["auto_generate_synonyms_phrase_query"] = (
                auto_generate_synonyms_phrase_query
            )
        if cutoff_frequency is not DEFAULT:
            kwargs["cutoff_frequency"] = cutoff_frequency
        if fuzziness is not DEFAULT:
            kwargs["fuzziness"] = fuzziness
        if fuzzy_rewrite is not DEFAULT:
            kwargs["fuzzy_rewrite"] = fuzzy_rewrite
        if fuzzy_transpositions is not DEFAULT:
            kwargs["fuzzy_transpositions"] = fuzzy_transpositions
        if lenient is not DEFAULT:
            kwargs["lenient"] = lenient
        if max_expansions is not DEFAULT:
            kwargs["max_expansions"] = max_expansions
        if minimum_should_match is not DEFAULT:
            kwargs["minimum_should_match"] = minimum_should_match
        if operator is not DEFAULT:
            kwargs["operator"] = operator
        if prefix_length is not DEFAULT:
            kwargs["prefix_length"] = prefix_length
        if zero_terms_query is not DEFAULT:
            kwargs["zero_terms_query"] = zero_terms_query
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class MultiTermLookup(AttrDict[Any]):
    """
    :arg field: (required) A fields from which to retrieve terms.
    :arg missing: The value to apply to documents that do not have a
        value. By default, documents without a value are ignored.
    """

    field: Union[str, InstrumentedField, DefaultType]
    missing: Union[str, int, float, bool, DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        missing: Union[str, int, float, bool, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        if missing is not DEFAULT:
            kwargs["missing"] = missing
        super().__init__(kwargs)


class MutualInformationHeuristic(AttrDict[Any]):
    """
    :arg background_is_superset: Set to `false` if you defined a custom
        background filter that represents a different set of documents
        that you want to compare to.
    :arg include_negatives: Set to `false` to filter out the terms that
        appear less often in the subset than in documents outside the
        subset.
    """

    background_is_superset: Union[bool, DefaultType]
    include_negatives: Union[bool, DefaultType]

    def __init__(
        self,
        *,
        background_is_superset: Union[bool, DefaultType] = DEFAULT,
        include_negatives: Union[bool, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if background_is_superset is not DEFAULT:
            kwargs["background_is_superset"] = background_is_superset
        if include_negatives is not DEFAULT:
            kwargs["include_negatives"] = include_negatives
        super().__init__(kwargs)


class NestedSortValue(AttrDict[Any]):
    """
    :arg path: (required)
    :arg filter:
    :arg max_children:
    :arg nested:
    """

    path: Union[str, InstrumentedField, DefaultType]
    filter: Union[Query, DefaultType]
    max_children: Union[int, DefaultType]
    nested: Union["NestedSortValue", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        path: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        filter: Union[Query, DefaultType] = DEFAULT,
        max_children: Union[int, DefaultType] = DEFAULT,
        nested: Union["NestedSortValue", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if path is not DEFAULT:
            kwargs["path"] = str(path)
        if filter is not DEFAULT:
            kwargs["filter"] = filter
        if max_children is not DEFAULT:
            kwargs["max_children"] = max_children
        if nested is not DEFAULT:
            kwargs["nested"] = nested
        super().__init__(kwargs)


class NumericFielddata(AttrDict[Any]):
    """
    :arg format: (required)
    """

    format: Union[Literal["array", "disabled"], DefaultType]

    def __init__(
        self,
        *,
        format: Union[Literal["array", "disabled"], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if format is not DEFAULT:
            kwargs["format"] = format
        super().__init__(kwargs)


class PercentageScoreHeuristic(AttrDict[Any]):
    pass


class PinnedDoc(AttrDict[Any]):
    """
    :arg _id: (required) The unique document ID.
    :arg _index: The index that contains the document.
    """

    _id: Union[str, DefaultType]
    _index: Union[str, DefaultType]

    def __init__(
        self,
        *,
        _id: Union[str, DefaultType] = DEFAULT,
        _index: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if _id is not DEFAULT:
            kwargs["_id"] = _id
        if _index is not DEFAULT:
            kwargs["_index"] = _index
        super().__init__(kwargs)


class PrefixQuery(AttrDict[Any]):
    """
    :arg value: (required) Beginning characters of terms you wish to find
        in the provided field.
    :arg rewrite: Method used to rewrite the query.
    :arg case_insensitive: Allows ASCII case insensitive matching of the
        value with the indexed field values when set to `true`. Default is
        `false` which means the case sensitivity of matching depends on
        the underlying field’s mapping.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    value: Union[str, DefaultType]
    rewrite: Union[str, DefaultType]
    case_insensitive: Union[bool, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        value: Union[str, DefaultType] = DEFAULT,
        rewrite: Union[str, DefaultType] = DEFAULT,
        case_insensitive: Union[bool, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if value is not DEFAULT:
            kwargs["value"] = value
        if rewrite is not DEFAULT:
            kwargs["rewrite"] = rewrite
        if case_insensitive is not DEFAULT:
            kwargs["case_insensitive"] = case_insensitive
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class QueryVectorBuilder(AttrDict[Any]):
    """
    :arg text_embedding:
    """

    text_embedding: Union["TextEmbedding", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        text_embedding: Union["TextEmbedding", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if text_embedding is not DEFAULT:
            kwargs["text_embedding"] = text_embedding
        super().__init__(kwargs)


class RankFeatureFunctionLinear(AttrDict[Any]):
    pass


class RankFeatureFunctionLogarithm(AttrDict[Any]):
    """
    :arg scaling_factor: (required) Configurable scaling factor.
    """

    scaling_factor: Union[float, DefaultType]

    def __init__(
        self, *, scaling_factor: Union[float, DefaultType] = DEFAULT, **kwargs: Any
    ):
        if scaling_factor is not DEFAULT:
            kwargs["scaling_factor"] = scaling_factor
        super().__init__(kwargs)


class RankFeatureFunctionSaturation(AttrDict[Any]):
    """
    :arg pivot: Configurable pivot value so that the result will be less
        than 0.5.
    """

    pivot: Union[float, DefaultType]

    def __init__(self, *, pivot: Union[float, DefaultType] = DEFAULT, **kwargs: Any):
        if pivot is not DEFAULT:
            kwargs["pivot"] = pivot
        super().__init__(kwargs)


class RankFeatureFunctionSigmoid(AttrDict[Any]):
    """
    :arg pivot: (required) Configurable pivot value so that the result
        will be less than 0.5.
    :arg exponent: (required) Configurable Exponent.
    """

    pivot: Union[float, DefaultType]
    exponent: Union[float, DefaultType]

    def __init__(
        self,
        *,
        pivot: Union[float, DefaultType] = DEFAULT,
        exponent: Union[float, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if pivot is not DEFAULT:
            kwargs["pivot"] = pivot
        if exponent is not DEFAULT:
            kwargs["exponent"] = exponent
        super().__init__(kwargs)


class RegexpQuery(AttrDict[Any]):
    """
    :arg value: (required) Regular expression for terms you wish to find
        in the provided field.
    :arg case_insensitive: Allows case insensitive matching of the regular
        expression value with the indexed field values when set to `true`.
        When `false`, case sensitivity of matching depends on the
        underlying field’s mapping.
    :arg flags: Enables optional operators for the regular expression.
    :arg max_determinized_states: Maximum number of automaton states
        required for the query. Defaults to `10000` if omitted.
    :arg rewrite: Method used to rewrite the query.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    value: Union[str, DefaultType]
    case_insensitive: Union[bool, DefaultType]
    flags: Union[str, DefaultType]
    max_determinized_states: Union[int, DefaultType]
    rewrite: Union[str, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        value: Union[str, DefaultType] = DEFAULT,
        case_insensitive: Union[bool, DefaultType] = DEFAULT,
        flags: Union[str, DefaultType] = DEFAULT,
        max_determinized_states: Union[int, DefaultType] = DEFAULT,
        rewrite: Union[str, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if value is not DEFAULT:
            kwargs["value"] = value
        if case_insensitive is not DEFAULT:
            kwargs["case_insensitive"] = case_insensitive
        if flags is not DEFAULT:
            kwargs["flags"] = flags
        if max_determinized_states is not DEFAULT:
            kwargs["max_determinized_states"] = max_determinized_states
        if rewrite is not DEFAULT:
            kwargs["rewrite"] = rewrite
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class RegressionInferenceOptions(AttrDict[Any]):
    """
    :arg results_field: The field that is added to incoming documents to
        contain the inference prediction. Defaults to predicted_value.
    :arg num_top_feature_importance_values: Specifies the maximum number
        of feature importance values per document.
    """

    results_field: Union[str, InstrumentedField, DefaultType]
    num_top_feature_importance_values: Union[int, DefaultType]

    def __init__(
        self,
        *,
        results_field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        num_top_feature_importance_values: Union[int, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if results_field is not DEFAULT:
            kwargs["results_field"] = str(results_field)
        if num_top_feature_importance_values is not DEFAULT:
            kwargs["num_top_feature_importance_values"] = (
                num_top_feature_importance_values
            )
        super().__init__(kwargs)


class RescoreVector(AttrDict[Any]):
    """
    :arg oversample: (required) Applies the specified oversample factor to
        k on the approximate kNN search
    """

    oversample: Union[float, DefaultType]

    def __init__(
        self, *, oversample: Union[float, DefaultType] = DEFAULT, **kwargs: Any
    ):
        if oversample is not DEFAULT:
            kwargs["oversample"] = oversample
        super().__init__(kwargs)


class ScoreSort(AttrDict[Any]):
    """
    :arg order:
    """

    order: Union[Literal["asc", "desc"], DefaultType]

    def __init__(
        self,
        *,
        order: Union[Literal["asc", "desc"], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if order is not DEFAULT:
            kwargs["order"] = order
        super().__init__(kwargs)


class Script(AttrDict[Any]):
    """
    :arg source: The script source.
    :arg id: The `id` for a stored script.
    :arg params: Specifies any named parameters that are passed into the
        script as variables. Use parameters instead of hard-coded values
        to decrease compile time.
    :arg lang: Specifies the language the script is written in. Defaults
        to `painless` if omitted.
    :arg options:
    """

    source: Union[str, Dict[str, Any], DefaultType]
    id: Union[str, DefaultType]
    params: Union[Mapping[str, Any], DefaultType]
    lang: Union[Literal["painless", "expression", "mustache", "java"], DefaultType]
    options: Union[Mapping[str, str], DefaultType]

    def __init__(
        self,
        *,
        source: Union[str, Dict[str, Any], DefaultType] = DEFAULT,
        id: Union[str, DefaultType] = DEFAULT,
        params: Union[Mapping[str, Any], DefaultType] = DEFAULT,
        lang: Union[
            Literal["painless", "expression", "mustache", "java"], DefaultType
        ] = DEFAULT,
        options: Union[Mapping[str, str], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if source is not DEFAULT:
            kwargs["source"] = source
        if id is not DEFAULT:
            kwargs["id"] = id
        if params is not DEFAULT:
            kwargs["params"] = params
        if lang is not DEFAULT:
            kwargs["lang"] = lang
        if options is not DEFAULT:
            kwargs["options"] = options
        super().__init__(kwargs)


class ScriptField(AttrDict[Any]):
    """
    :arg script: (required)
    :arg ignore_failure:
    """

    script: Union["Script", Dict[str, Any], DefaultType]
    ignore_failure: Union[bool, DefaultType]

    def __init__(
        self,
        *,
        script: Union["Script", Dict[str, Any], DefaultType] = DEFAULT,
        ignore_failure: Union[bool, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if script is not DEFAULT:
            kwargs["script"] = script
        if ignore_failure is not DEFAULT:
            kwargs["ignore_failure"] = ignore_failure
        super().__init__(kwargs)


class ScriptSort(AttrDict[Any]):
    """
    :arg script: (required)
    :arg order:
    :arg type:
    :arg mode:
    :arg nested:
    """

    script: Union["Script", Dict[str, Any], DefaultType]
    order: Union[Literal["asc", "desc"], DefaultType]
    type: Union[Literal["string", "number", "version"], DefaultType]
    mode: Union[Literal["min", "max", "sum", "avg", "median"], DefaultType]
    nested: Union["NestedSortValue", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        script: Union["Script", Dict[str, Any], DefaultType] = DEFAULT,
        order: Union[Literal["asc", "desc"], DefaultType] = DEFAULT,
        type: Union[Literal["string", "number", "version"], DefaultType] = DEFAULT,
        mode: Union[
            Literal["min", "max", "sum", "avg", "median"], DefaultType
        ] = DEFAULT,
        nested: Union["NestedSortValue", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if script is not DEFAULT:
            kwargs["script"] = script
        if order is not DEFAULT:
            kwargs["order"] = order
        if type is not DEFAULT:
            kwargs["type"] = type
        if mode is not DEFAULT:
            kwargs["mode"] = mode
        if nested is not DEFAULT:
            kwargs["nested"] = nested
        super().__init__(kwargs)


class ScriptedHeuristic(AttrDict[Any]):
    """
    :arg script: (required)
    """

    script: Union["Script", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        script: Union["Script", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if script is not DEFAULT:
            kwargs["script"] = script
        super().__init__(kwargs)


class ShapeFieldQuery(AttrDict[Any]):
    """
    :arg indexed_shape: Queries using a pre-indexed shape.
    :arg relation: Spatial relation between the query shape and the
        document shape.
    :arg shape: Queries using an inline shape definition in GeoJSON or
        Well Known Text (WKT) format.
    """

    indexed_shape: Union["FieldLookup", Dict[str, Any], DefaultType]
    relation: Union[
        Literal["intersects", "disjoint", "within", "contains"], DefaultType
    ]
    shape: Any

    def __init__(
        self,
        *,
        indexed_shape: Union["FieldLookup", Dict[str, Any], DefaultType] = DEFAULT,
        relation: Union[
            Literal["intersects", "disjoint", "within", "contains"], DefaultType
        ] = DEFAULT,
        shape: Any = DEFAULT,
        **kwargs: Any,
    ):
        if indexed_shape is not DEFAULT:
            kwargs["indexed_shape"] = indexed_shape
        if relation is not DEFAULT:
            kwargs["relation"] = relation
        if shape is not DEFAULT:
            kwargs["shape"] = shape
        super().__init__(kwargs)


class SortOptions(AttrDict[Any]):
    """
    :arg _field: The field to use in this query.
    :arg _value: The query value for the field.
    :arg _score:
    :arg _doc:
    :arg _geo_distance:
    :arg _script:
    """

    _field: Union[str, "InstrumentedField", "DefaultType"]
    _value: Union["FieldSort", Dict[str, Any], "DefaultType"]
    _score: Union["ScoreSort", Dict[str, Any], DefaultType]
    _doc: Union["ScoreSort", Dict[str, Any], DefaultType]
    _geo_distance: Union["GeoDistanceSort", Dict[str, Any], DefaultType]
    _script: Union["ScriptSort", Dict[str, Any], DefaultType]

    def __init__(
        self,
        _field: Union[str, "InstrumentedField", "DefaultType"] = DEFAULT,
        _value: Union["FieldSort", Dict[str, Any], "DefaultType"] = DEFAULT,
        *,
        _score: Union["ScoreSort", Dict[str, Any], DefaultType] = DEFAULT,
        _doc: Union["ScoreSort", Dict[str, Any], DefaultType] = DEFAULT,
        _geo_distance: Union["GeoDistanceSort", Dict[str, Any], DefaultType] = DEFAULT,
        _script: Union["ScriptSort", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if _field is not DEFAULT:
            kwargs[str(_field)] = _value
        if _score is not DEFAULT:
            kwargs["_score"] = _score
        if _doc is not DEFAULT:
            kwargs["_doc"] = _doc
        if _geo_distance is not DEFAULT:
            kwargs["_geo_distance"] = _geo_distance
        if _script is not DEFAULT:
            kwargs["_script"] = _script
        super().__init__(kwargs)


class SourceFilter(AttrDict[Any]):
    """
    :arg exclude_vectors: If `true`, vector fields are excluded from the
        returned source.  This option takes precedence over `includes`:
        any vector field will remain excluded even if it matches an
        `includes` rule.
    :arg excludes: A list of fields to exclude from the returned source.
    :arg includes: A list of fields to include in the returned source.
    """

    exclude_vectors: Union[bool, DefaultType]
    excludes: Union[
        Union[str, InstrumentedField],
        Sequence[Union[str, InstrumentedField]],
        DefaultType,
    ]
    includes: Union[
        Union[str, InstrumentedField],
        Sequence[Union[str, InstrumentedField]],
        DefaultType,
    ]

    def __init__(
        self,
        *,
        exclude_vectors: Union[bool, DefaultType] = DEFAULT,
        excludes: Union[
            Union[str, InstrumentedField],
            Sequence[Union[str, InstrumentedField]],
            DefaultType,
        ] = DEFAULT,
        includes: Union[
            Union[str, InstrumentedField],
            Sequence[Union[str, InstrumentedField]],
            DefaultType,
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if exclude_vectors is not DEFAULT:
            kwargs["exclude_vectors"] = exclude_vectors
        if excludes is not DEFAULT:
            kwargs["excludes"] = str(excludes)
        if includes is not DEFAULT:
            kwargs["includes"] = str(includes)
        super().__init__(kwargs)


class SpanContainingQuery(AttrDict[Any]):
    """
    :arg big: (required) Can be any span query. Matching spans from `big`
        that contain matches from `little` are returned.
    :arg little: (required) Can be any span query. Matching spans from
        `big` that contain matches from `little` are returned.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    big: Union["SpanQuery", Dict[str, Any], DefaultType]
    little: Union["SpanQuery", Dict[str, Any], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        big: Union["SpanQuery", Dict[str, Any], DefaultType] = DEFAULT,
        little: Union["SpanQuery", Dict[str, Any], DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if big is not DEFAULT:
            kwargs["big"] = big
        if little is not DEFAULT:
            kwargs["little"] = little
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class SpanFieldMaskingQuery(AttrDict[Any]):
    """
    :arg field: (required)
    :arg query: (required)
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    field: Union[str, InstrumentedField, DefaultType]
    query: Union["SpanQuery", Dict[str, Any], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        query: Union["SpanQuery", Dict[str, Any], DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        if query is not DEFAULT:
            kwargs["query"] = query
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class SpanFirstQuery(AttrDict[Any]):
    """
    :arg end: (required) Controls the maximum end position permitted in a
        match.
    :arg match: (required) Can be any other span type query.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    end: Union[int, DefaultType]
    match: Union["SpanQuery", Dict[str, Any], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        end: Union[int, DefaultType] = DEFAULT,
        match: Union["SpanQuery", Dict[str, Any], DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if end is not DEFAULT:
            kwargs["end"] = end
        if match is not DEFAULT:
            kwargs["match"] = match
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class SpanMultiTermQuery(AttrDict[Any]):
    """
    :arg match: (required) Should be a multi term query (one of
        `wildcard`, `fuzzy`, `prefix`, `range`, or `regexp` query).
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    match: Union[Query, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        match: Union[Query, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if match is not DEFAULT:
            kwargs["match"] = match
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class SpanNearQuery(AttrDict[Any]):
    """
    :arg clauses: (required) Array of one or more other span type queries.
    :arg in_order: Controls whether matches are required to be in-order.
    :arg slop: Controls the maximum number of intervening unmatched
        positions permitted.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    clauses: Union[Sequence["SpanQuery"], Sequence[Dict[str, Any]], DefaultType]
    in_order: Union[bool, DefaultType]
    slop: Union[int, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        clauses: Union[
            Sequence["SpanQuery"], Sequence[Dict[str, Any]], DefaultType
        ] = DEFAULT,
        in_order: Union[bool, DefaultType] = DEFAULT,
        slop: Union[int, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if clauses is not DEFAULT:
            kwargs["clauses"] = clauses
        if in_order is not DEFAULT:
            kwargs["in_order"] = in_order
        if slop is not DEFAULT:
            kwargs["slop"] = slop
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class SpanNotQuery(AttrDict[Any]):
    """
    :arg exclude: (required) Span query whose matches must not overlap
        those returned.
    :arg include: (required) Span query whose matches are filtered.
    :arg dist: The number of tokens from within the include span that
        can’t have overlap with the exclude span. Equivalent to setting
        both `pre` and `post`.
    :arg post: The number of tokens after the include span that can’t have
        overlap with the exclude span.
    :arg pre: The number of tokens before the include span that can’t have
        overlap with the exclude span.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    exclude: Union["SpanQuery", Dict[str, Any], DefaultType]
    include: Union["SpanQuery", Dict[str, Any], DefaultType]
    dist: Union[int, DefaultType]
    post: Union[int, DefaultType]
    pre: Union[int, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        exclude: Union["SpanQuery", Dict[str, Any], DefaultType] = DEFAULT,
        include: Union["SpanQuery", Dict[str, Any], DefaultType] = DEFAULT,
        dist: Union[int, DefaultType] = DEFAULT,
        post: Union[int, DefaultType] = DEFAULT,
        pre: Union[int, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if exclude is not DEFAULT:
            kwargs["exclude"] = exclude
        if include is not DEFAULT:
            kwargs["include"] = include
        if dist is not DEFAULT:
            kwargs["dist"] = dist
        if post is not DEFAULT:
            kwargs["post"] = post
        if pre is not DEFAULT:
            kwargs["pre"] = pre
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class SpanOrQuery(AttrDict[Any]):
    """
    :arg clauses: (required) Array of one or more other span type queries.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    clauses: Union[Sequence["SpanQuery"], Sequence[Dict[str, Any]], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        clauses: Union[
            Sequence["SpanQuery"], Sequence[Dict[str, Any]], DefaultType
        ] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if clauses is not DEFAULT:
            kwargs["clauses"] = clauses
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class SpanQuery(AttrDict[Any]):
    """
    :arg span_containing: Accepts a list of span queries, but only returns
        those spans which also match a second span query.
    :arg span_field_masking: Allows queries like `span_near` or `span_or`
        across different fields.
    :arg span_first: Accepts another span query whose matches must appear
        within the first N positions of the field.
    :arg span_gap:
    :arg span_multi: Wraps a `term`, `range`, `prefix`, `wildcard`,
        `regexp`, or `fuzzy` query.
    :arg span_near: Accepts multiple span queries whose matches must be
        within the specified distance of each other, and possibly in the
        same order.
    :arg span_not: Wraps another span query, and excludes any documents
        which match that query.
    :arg span_or: Combines multiple span queries and returns documents
        which match any of the specified queries.
    :arg span_term: The equivalent of the `term` query but for use with
        other span queries.
    :arg span_within: The result from a single span query is returned as
        long is its span falls within the spans returned by a list of
        other span queries.
    """

    span_containing: Union["SpanContainingQuery", Dict[str, Any], DefaultType]
    span_field_masking: Union["SpanFieldMaskingQuery", Dict[str, Any], DefaultType]
    span_first: Union["SpanFirstQuery", Dict[str, Any], DefaultType]
    span_gap: Union[Mapping[Union[str, InstrumentedField], int], DefaultType]
    span_multi: Union["SpanMultiTermQuery", Dict[str, Any], DefaultType]
    span_near: Union["SpanNearQuery", Dict[str, Any], DefaultType]
    span_not: Union["SpanNotQuery", Dict[str, Any], DefaultType]
    span_or: Union["SpanOrQuery", Dict[str, Any], DefaultType]
    span_term: Union[
        Mapping[Union[str, InstrumentedField], "SpanTermQuery"],
        Dict[str, Any],
        DefaultType,
    ]
    span_within: Union["SpanWithinQuery", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        span_containing: Union[
            "SpanContainingQuery", Dict[str, Any], DefaultType
        ] = DEFAULT,
        span_field_masking: Union[
            "SpanFieldMaskingQuery", Dict[str, Any], DefaultType
        ] = DEFAULT,
        span_first: Union["SpanFirstQuery", Dict[str, Any], DefaultType] = DEFAULT,
        span_gap: Union[
            Mapping[Union[str, InstrumentedField], int], DefaultType
        ] = DEFAULT,
        span_multi: Union["SpanMultiTermQuery", Dict[str, Any], DefaultType] = DEFAULT,
        span_near: Union["SpanNearQuery", Dict[str, Any], DefaultType] = DEFAULT,
        span_not: Union["SpanNotQuery", Dict[str, Any], DefaultType] = DEFAULT,
        span_or: Union["SpanOrQuery", Dict[str, Any], DefaultType] = DEFAULT,
        span_term: Union[
            Mapping[Union[str, InstrumentedField], "SpanTermQuery"],
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        span_within: Union["SpanWithinQuery", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if span_containing is not DEFAULT:
            kwargs["span_containing"] = span_containing
        if span_field_masking is not DEFAULT:
            kwargs["span_field_masking"] = span_field_masking
        if span_first is not DEFAULT:
            kwargs["span_first"] = span_first
        if span_gap is not DEFAULT:
            kwargs["span_gap"] = str(span_gap)
        if span_multi is not DEFAULT:
            kwargs["span_multi"] = span_multi
        if span_near is not DEFAULT:
            kwargs["span_near"] = span_near
        if span_not is not DEFAULT:
            kwargs["span_not"] = span_not
        if span_or is not DEFAULT:
            kwargs["span_or"] = span_or
        if span_term is not DEFAULT:
            kwargs["span_term"] = str(span_term)
        if span_within is not DEFAULT:
            kwargs["span_within"] = span_within
        super().__init__(kwargs)


class SpanTermQuery(AttrDict[Any]):
    """
    :arg value: (required)
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    value: Union[int, float, str, bool, None, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        value: Union[int, float, str, bool, None, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if value is not DEFAULT:
            kwargs["value"] = value
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class SpanWithinQuery(AttrDict[Any]):
    """
    :arg big: (required) Can be any span query. Matching spans from
        `little` that are enclosed within `big` are returned.
    :arg little: (required) Can be any span query. Matching spans from
        `little` that are enclosed within `big` are returned.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    big: Union["SpanQuery", Dict[str, Any], DefaultType]
    little: Union["SpanQuery", Dict[str, Any], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        big: Union["SpanQuery", Dict[str, Any], DefaultType] = DEFAULT,
        little: Union["SpanQuery", Dict[str, Any], DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if big is not DEFAULT:
            kwargs["big"] = big
        if little is not DEFAULT:
            kwargs["little"] = little
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class SparseVectorIndexOptions(AttrDict[Any]):
    """
    :arg prune: Whether to perform pruning, omitting the non-significant
        tokens from the query to improve query performance. If prune is
        true but the pruning_config is not specified, pruning will occur
        but default values will be used. Default: false
    :arg pruning_config: Optional pruning configuration. If enabled, this
        will omit non-significant tokens from the query in order to
        improve query performance. This is only used if prune is set to
        true. If prune is set to true but pruning_config is not specified,
        default values will be used.
    """

    prune: Union[bool, DefaultType]
    pruning_config: Union["TokenPruningConfig", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        prune: Union[bool, DefaultType] = DEFAULT,
        pruning_config: Union[
            "TokenPruningConfig", Dict[str, Any], DefaultType
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if prune is not DEFAULT:
            kwargs["prune"] = prune
        if pruning_config is not DEFAULT:
            kwargs["pruning_config"] = pruning_config
        super().__init__(kwargs)


class SuggestContext(AttrDict[Any]):
    """
    :arg name: (required)
    :arg type: (required)
    :arg path:
    :arg precision:
    """

    name: Union[str, DefaultType]
    type: Union[str, DefaultType]
    path: Union[str, InstrumentedField, DefaultType]
    precision: Union[int, str, DefaultType]

    def __init__(
        self,
        *,
        name: Union[str, DefaultType] = DEFAULT,
        type: Union[str, DefaultType] = DEFAULT,
        path: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        precision: Union[int, str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if name is not DEFAULT:
            kwargs["name"] = name
        if type is not DEFAULT:
            kwargs["type"] = type
        if path is not DEFAULT:
            kwargs["path"] = str(path)
        if precision is not DEFAULT:
            kwargs["precision"] = precision
        super().__init__(kwargs)


class TDigest(AttrDict[Any]):
    """
    :arg compression: Limits the maximum number of nodes used by the
        underlying TDigest algorithm to `20 * compression`, enabling
        control of memory usage and approximation error.
    :arg execution_hint: The default implementation of TDigest is
        optimized for performance, scaling to millions or even billions of
        sample values while maintaining acceptable accuracy levels (close
        to 1% relative error for millions of samples in some cases). To
        use an implementation optimized for accuracy, set this parameter
        to high_accuracy instead. Defaults to `default` if omitted.
    """

    compression: Union[int, DefaultType]
    execution_hint: Union[Literal["default", "high_accuracy"], DefaultType]

    def __init__(
        self,
        *,
        compression: Union[int, DefaultType] = DEFAULT,
        execution_hint: Union[
            Literal["default", "high_accuracy"], DefaultType
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if compression is not DEFAULT:
            kwargs["compression"] = compression
        if execution_hint is not DEFAULT:
            kwargs["execution_hint"] = execution_hint
        super().__init__(kwargs)


class TermQuery(AttrDict[Any]):
    """
    :arg value: (required) Term you wish to find in the provided field.
    :arg case_insensitive: Allows ASCII case insensitive matching of the
        value with the indexed field values when set to `true`. When
        `false`, the case sensitivity of matching depends on the
        underlying field’s mapping.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    value: Union[int, float, str, bool, None, DefaultType]
    case_insensitive: Union[bool, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        value: Union[int, float, str, bool, None, DefaultType] = DEFAULT,
        case_insensitive: Union[bool, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if value is not DEFAULT:
            kwargs["value"] = value
        if case_insensitive is not DEFAULT:
            kwargs["case_insensitive"] = case_insensitive
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class TermsLookup(AttrDict[Any]):
    """
    :arg index: (required)
    :arg id: (required)
    :arg path: (required)
    :arg routing:
    """

    index: Union[str, DefaultType]
    id: Union[str, DefaultType]
    path: Union[str, InstrumentedField, DefaultType]
    routing: Union[str, DefaultType]

    def __init__(
        self,
        *,
        index: Union[str, DefaultType] = DEFAULT,
        id: Union[str, DefaultType] = DEFAULT,
        path: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        routing: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if index is not DEFAULT:
            kwargs["index"] = index
        if id is not DEFAULT:
            kwargs["id"] = id
        if path is not DEFAULT:
            kwargs["path"] = str(path)
        if routing is not DEFAULT:
            kwargs["routing"] = routing
        super().__init__(kwargs)


class TermsPartition(AttrDict[Any]):
    """
    :arg num_partitions: (required) The number of partitions.
    :arg partition: (required) The partition number for this request.
    """

    num_partitions: Union[int, DefaultType]
    partition: Union[int, DefaultType]

    def __init__(
        self,
        *,
        num_partitions: Union[int, DefaultType] = DEFAULT,
        partition: Union[int, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if num_partitions is not DEFAULT:
            kwargs["num_partitions"] = num_partitions
        if partition is not DEFAULT:
            kwargs["partition"] = partition
        super().__init__(kwargs)


class TermsSetQuery(AttrDict[Any]):
    """
    :arg terms: (required) Array of terms you wish to find in the provided
        field.
    :arg minimum_should_match: Specification describing number of matching
        terms required to return a document.
    :arg minimum_should_match_field: Numeric field containing the number
        of matching terms required to return a document.
    :arg minimum_should_match_script: Custom script containing the number
        of matching terms required to return a document.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    terms: Union[Sequence[Union[int, float, str, bool, None]], DefaultType]
    minimum_should_match: Union[int, str, DefaultType]
    minimum_should_match_field: Union[str, InstrumentedField, DefaultType]
    minimum_should_match_script: Union["Script", Dict[str, Any], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        terms: Union[
            Sequence[Union[int, float, str, bool, None]], DefaultType
        ] = DEFAULT,
        minimum_should_match: Union[int, str, DefaultType] = DEFAULT,
        minimum_should_match_field: Union[
            str, InstrumentedField, DefaultType
        ] = DEFAULT,
        minimum_should_match_script: Union[
            "Script", Dict[str, Any], DefaultType
        ] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if terms is not DEFAULT:
            kwargs["terms"] = terms
        if minimum_should_match is not DEFAULT:
            kwargs["minimum_should_match"] = minimum_should_match
        if minimum_should_match_field is not DEFAULT:
            kwargs["minimum_should_match_field"] = str(minimum_should_match_field)
        if minimum_should_match_script is not DEFAULT:
            kwargs["minimum_should_match_script"] = minimum_should_match_script
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class TestPopulation(AttrDict[Any]):
    """
    :arg field: (required) The field to aggregate.
    :arg script:
    :arg filter: A filter used to define a set of records to run unpaired
        t-test on.
    """

    field: Union[str, InstrumentedField, DefaultType]
    script: Union["Script", Dict[str, Any], DefaultType]
    filter: Union[Query, DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        script: Union["Script", Dict[str, Any], DefaultType] = DEFAULT,
        filter: Union[Query, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        if script is not DEFAULT:
            kwargs["script"] = script
        if filter is not DEFAULT:
            kwargs["filter"] = filter
        super().__init__(kwargs)


class TextEmbedding(AttrDict[Any]):
    """
    :arg model_id: (required)
    :arg model_text: (required)
    """

    model_id: Union[str, DefaultType]
    model_text: Union[str, DefaultType]

    def __init__(
        self,
        *,
        model_id: Union[str, DefaultType] = DEFAULT,
        model_text: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if model_id is not DEFAULT:
            kwargs["model_id"] = model_id
        if model_text is not DEFAULT:
            kwargs["model_text"] = model_text
        super().__init__(kwargs)


class TextExpansionQuery(AttrDict[Any]):
    """
    :arg model_id: (required) The text expansion NLP model to use
    :arg model_text: (required) The query text
    :arg pruning_config: Token pruning configurations
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    model_id: Union[str, DefaultType]
    model_text: Union[str, DefaultType]
    pruning_config: Union["TokenPruningConfig", Dict[str, Any], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        model_id: Union[str, DefaultType] = DEFAULT,
        model_text: Union[str, DefaultType] = DEFAULT,
        pruning_config: Union[
            "TokenPruningConfig", Dict[str, Any], DefaultType
        ] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if model_id is not DEFAULT:
            kwargs["model_id"] = model_id
        if model_text is not DEFAULT:
            kwargs["model_text"] = model_text
        if pruning_config is not DEFAULT:
            kwargs["pruning_config"] = pruning_config
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class TextIndexPrefixes(AttrDict[Any]):
    """
    :arg max_chars: (required)
    :arg min_chars: (required)
    """

    max_chars: Union[int, DefaultType]
    min_chars: Union[int, DefaultType]

    def __init__(
        self,
        *,
        max_chars: Union[int, DefaultType] = DEFAULT,
        min_chars: Union[int, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if max_chars is not DEFAULT:
            kwargs["max_chars"] = max_chars
        if min_chars is not DEFAULT:
            kwargs["min_chars"] = min_chars
        super().__init__(kwargs)


class TokenPruningConfig(AttrDict[Any]):
    """
    :arg tokens_freq_ratio_threshold: Tokens whose frequency is more than
        this threshold times the average frequency of all tokens in the
        specified field are considered outliers and pruned. Defaults to
        `5` if omitted.
    :arg tokens_weight_threshold: Tokens whose weight is less than this
        threshold are considered nonsignificant and pruned. Defaults to
        `0.4` if omitted.
    :arg only_score_pruned_tokens: Whether to only score pruned tokens, vs
        only scoring kept tokens.
    """

    tokens_freq_ratio_threshold: Union[int, DefaultType]
    tokens_weight_threshold: Union[float, DefaultType]
    only_score_pruned_tokens: Union[bool, DefaultType]

    def __init__(
        self,
        *,
        tokens_freq_ratio_threshold: Union[int, DefaultType] = DEFAULT,
        tokens_weight_threshold: Union[float, DefaultType] = DEFAULT,
        only_score_pruned_tokens: Union[bool, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if tokens_freq_ratio_threshold is not DEFAULT:
            kwargs["tokens_freq_ratio_threshold"] = tokens_freq_ratio_threshold
        if tokens_weight_threshold is not DEFAULT:
            kwargs["tokens_weight_threshold"] = tokens_weight_threshold
        if only_score_pruned_tokens is not DEFAULT:
            kwargs["only_score_pruned_tokens"] = only_score_pruned_tokens
        super().__init__(kwargs)


class TopLeftBottomRightGeoBounds(AttrDict[Any]):
    """
    :arg top_left: (required)
    :arg bottom_right: (required)
    """

    top_left: Union[
        "LatLonGeoLocation",
        "GeoHashLocation",
        Sequence[float],
        str,
        Dict[str, Any],
        DefaultType,
    ]
    bottom_right: Union[
        "LatLonGeoLocation",
        "GeoHashLocation",
        Sequence[float],
        str,
        Dict[str, Any],
        DefaultType,
    ]

    def __init__(
        self,
        *,
        top_left: Union[
            "LatLonGeoLocation",
            "GeoHashLocation",
            Sequence[float],
            str,
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        bottom_right: Union[
            "LatLonGeoLocation",
            "GeoHashLocation",
            Sequence[float],
            str,
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if top_left is not DEFAULT:
            kwargs["top_left"] = top_left
        if bottom_right is not DEFAULT:
            kwargs["bottom_right"] = bottom_right
        super().__init__(kwargs)


class TopMetricsValue(AttrDict[Any]):
    """
    :arg field: (required) A field to return as a metric.
    """

    field: Union[str, InstrumentedField, DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        super().__init__(kwargs)


class TopRightBottomLeftGeoBounds(AttrDict[Any]):
    """
    :arg top_right: (required)
    :arg bottom_left: (required)
    """

    top_right: Union[
        "LatLonGeoLocation",
        "GeoHashLocation",
        Sequence[float],
        str,
        Dict[str, Any],
        DefaultType,
    ]
    bottom_left: Union[
        "LatLonGeoLocation",
        "GeoHashLocation",
        Sequence[float],
        str,
        Dict[str, Any],
        DefaultType,
    ]

    def __init__(
        self,
        *,
        top_right: Union[
            "LatLonGeoLocation",
            "GeoHashLocation",
            Sequence[float],
            str,
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        bottom_left: Union[
            "LatLonGeoLocation",
            "GeoHashLocation",
            Sequence[float],
            str,
            Dict[str, Any],
            DefaultType,
        ] = DEFAULT,
        **kwargs: Any,
    ):
        if top_right is not DEFAULT:
            kwargs["top_right"] = top_right
        if bottom_left is not DEFAULT:
            kwargs["bottom_left"] = bottom_left
        super().__init__(kwargs)


class WeightedAverageValue(AttrDict[Any]):
    """
    :arg field: The field from which to extract the values or weights.
    :arg missing: A value or weight to use if the field is missing.
    :arg script:
    """

    field: Union[str, InstrumentedField, DefaultType]
    missing: Union[float, DefaultType]
    script: Union["Script", Dict[str, Any], DefaultType]

    def __init__(
        self,
        *,
        field: Union[str, InstrumentedField, DefaultType] = DEFAULT,
        missing: Union[float, DefaultType] = DEFAULT,
        script: Union["Script", Dict[str, Any], DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if field is not DEFAULT:
            kwargs["field"] = str(field)
        if missing is not DEFAULT:
            kwargs["missing"] = missing
        if script is not DEFAULT:
            kwargs["script"] = script
        super().__init__(kwargs)


class WeightedTokensQuery(AttrDict[Any]):
    """
    :arg tokens: (required) The tokens representing this query
    :arg pruning_config: Token pruning configurations
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    tokens: Union[Mapping[str, float], Sequence[Mapping[str, float]], DefaultType]
    pruning_config: Union["TokenPruningConfig", Dict[str, Any], DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        tokens: Union[
            Mapping[str, float], Sequence[Mapping[str, float]], DefaultType
        ] = DEFAULT,
        pruning_config: Union[
            "TokenPruningConfig", Dict[str, Any], DefaultType
        ] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if tokens is not DEFAULT:
            kwargs["tokens"] = tokens
        if pruning_config is not DEFAULT:
            kwargs["pruning_config"] = pruning_config
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class WildcardQuery(AttrDict[Any]):
    """
    :arg case_insensitive: Allows case insensitive matching of the pattern
        with the indexed field values when set to true. Default is false
        which means the case sensitivity of matching depends on the
        underlying field’s mapping.
    :arg rewrite: Method used to rewrite the query.
    :arg value: Wildcard pattern for terms you wish to find in the
        provided field. Required, when wildcard is not set.
    :arg wildcard: Wildcard pattern for terms you wish to find in the
        provided field. Required, when value is not set.
    :arg boost: Floating point number used to decrease or increase the
        relevance scores of the query. Boost values are relative to the
        default value of 1.0. A boost value between 0 and 1.0 decreases
        the relevance score. A value greater than 1.0 increases the
        relevance score. Defaults to `1` if omitted.
    :arg _name:
    """

    case_insensitive: Union[bool, DefaultType]
    rewrite: Union[str, DefaultType]
    value: Union[str, DefaultType]
    wildcard: Union[str, DefaultType]
    boost: Union[float, DefaultType]
    _name: Union[str, DefaultType]

    def __init__(
        self,
        *,
        case_insensitive: Union[bool, DefaultType] = DEFAULT,
        rewrite: Union[str, DefaultType] = DEFAULT,
        value: Union[str, DefaultType] = DEFAULT,
        wildcard: Union[str, DefaultType] = DEFAULT,
        boost: Union[float, DefaultType] = DEFAULT,
        _name: Union[str, DefaultType] = DEFAULT,
        **kwargs: Any,
    ):
        if case_insensitive is not DEFAULT:
            kwargs["case_insensitive"] = case_insensitive
        if rewrite is not DEFAULT:
            kwargs["rewrite"] = rewrite
        if value is not DEFAULT:
            kwargs["value"] = value
        if wildcard is not DEFAULT:
            kwargs["wildcard"] = wildcard
        if boost is not DEFAULT:
            kwargs["boost"] = boost
        if _name is not DEFAULT:
            kwargs["_name"] = _name
        super().__init__(kwargs)


class WktGeoBounds(AttrDict[Any]):
    """
    :arg wkt: (required)
    """

    wkt: Union[str, DefaultType]

    def __init__(self, *, wkt: Union[str, DefaultType] = DEFAULT, **kwargs: Any):
        if wkt is not DEFAULT:
            kwargs["wkt"] = wkt
        super().__init__(kwargs)


class AdjacencyMatrixAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["AdjacencyMatrixBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "AdjacencyMatrixBucket"]:
        return self.buckets  # type: ignore[return-value]


class AdjacencyMatrixBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    """

    key: str
    doc_count: int


class AggregationBreakdown(AttrDict[Any]):
    """
    :arg build_aggregation: (required)
    :arg build_aggregation_count: (required)
    :arg build_leaf_collector: (required)
    :arg build_leaf_collector_count: (required)
    :arg collect: (required)
    :arg collect_count: (required)
    :arg initialize: (required)
    :arg initialize_count: (required)
    :arg reduce: (required)
    :arg reduce_count: (required)
    :arg post_collection:
    :arg post_collection_count:
    """

    build_aggregation: int
    build_aggregation_count: int
    build_leaf_collector: int
    build_leaf_collector_count: int
    collect: int
    collect_count: int
    initialize: int
    initialize_count: int
    reduce: int
    reduce_count: int
    post_collection: int
    post_collection_count: int


class AggregationProfile(AttrDict[Any]):
    """
    :arg breakdown: (required)
    :arg description: (required)
    :arg time_in_nanos: (required)
    :arg type: (required)
    :arg debug:
    :arg children:
    """

    breakdown: "AggregationBreakdown"
    description: str
    time_in_nanos: Any
    type: str
    debug: "AggregationProfileDebug"
    children: Sequence["AggregationProfile"]


class AggregationProfileDebug(AttrDict[Any]):
    """
    :arg segments_with_multi_valued_ords:
    :arg collection_strategy:
    :arg segments_with_single_valued_ords:
    :arg total_buckets:
    :arg built_buckets:
    :arg result_strategy:
    :arg has_filter:
    :arg delegate:
    :arg delegate_debug:
    :arg chars_fetched:
    :arg extract_count:
    :arg extract_ns:
    :arg values_fetched:
    :arg collect_analyzed_ns:
    :arg collect_analyzed_count:
    :arg surviving_buckets:
    :arg ordinals_collectors_used:
    :arg ordinals_collectors_overhead_too_high:
    :arg string_hashing_collectors_used:
    :arg numeric_collectors_used:
    :arg empty_collectors_used:
    :arg deferred_aggregators:
    :arg segments_with_doc_count_field:
    :arg segments_with_deleted_docs:
    :arg filters:
    :arg segments_counted:
    :arg segments_collected:
    :arg map_reducer:
    :arg brute_force_used:
    :arg dynamic_pruning_attempted:
    :arg dynamic_pruning_used:
    :arg skipped_due_to_no_data:
    """

    segments_with_multi_valued_ords: int
    collection_strategy: str
    segments_with_single_valued_ords: int
    total_buckets: int
    built_buckets: int
    result_strategy: str
    has_filter: bool
    delegate: str
    delegate_debug: "AggregationProfileDebug"
    chars_fetched: int
    extract_count: int
    extract_ns: int
    values_fetched: int
    collect_analyzed_ns: int
    collect_analyzed_count: int
    surviving_buckets: int
    ordinals_collectors_used: int
    ordinals_collectors_overhead_too_high: int
    string_hashing_collectors_used: int
    numeric_collectors_used: int
    empty_collectors_used: int
    deferred_aggregators: Sequence[str]
    segments_with_doc_count_field: int
    segments_with_deleted_docs: int
    filters: Sequence["AggregationProfileDelegateDebugFilter"]
    segments_counted: int
    segments_collected: int
    map_reducer: str
    brute_force_used: int
    dynamic_pruning_attempted: int
    dynamic_pruning_used: int
    skipped_due_to_no_data: int


class AggregationProfileDelegateDebugFilter(AttrDict[Any]):
    """
    :arg results_from_metadata:
    :arg query:
    :arg specialized_for:
    :arg segments_counted_in_constant_time:
    """

    results_from_metadata: int
    query: str
    specialized_for: str
    segments_counted_in_constant_time: int


class ArrayPercentilesItem(AttrDict[Any]):
    """
    :arg key: (required)
    :arg value: (required)
    :arg value_as_string:
    """

    key: str
    value: Union[float, None]
    value_as_string: str


class AutoDateHistogramAggregate(AttrDict[Any]):
    """
    :arg interval: (required)
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    interval: str
    buckets: Sequence["DateHistogramBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "DateHistogramBucket"]:
        return self.buckets  # type: ignore[return-value]


class AvgAggregate(AttrDict[Any]):
    """
    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]


class BoxPlotAggregate(AttrDict[Any]):
    """
    :arg min: (required)
    :arg max: (required)
    :arg q1: (required)
    :arg q2: (required)
    :arg q3: (required)
    :arg lower: (required)
    :arg upper: (required)
    :arg min_as_string:
    :arg max_as_string:
    :arg q1_as_string:
    :arg q2_as_string:
    :arg q3_as_string:
    :arg lower_as_string:
    :arg upper_as_string:
    :arg meta:
    """

    min: float
    max: float
    q1: float
    q2: float
    q3: float
    lower: float
    upper: float
    min_as_string: str
    max_as_string: str
    q1_as_string: str
    q2_as_string: str
    q3_as_string: str
    lower_as_string: str
    upper_as_string: str
    meta: Mapping[str, Any]


class BucketMetricValueAggregate(AttrDict[Any]):
    """
    :arg keys: (required)
    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg value_as_string:
    :arg meta:
    """

    keys: Sequence[str]  # type: ignore[assignment]
    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]


class BulkIndexByScrollFailure(AttrDict[Any]):
    """
    :arg cause: (required)
    :arg id: (required)
    :arg index: (required)
    :arg status: (required)
    """

    cause: "ErrorCause"
    id: str
    index: str
    status: int


class CardinalityAggregate(AttrDict[Any]):
    """
    :arg value: (required)
    :arg meta:
    """

    value: int
    meta: Mapping[str, Any]


class ChildrenAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg meta:
    """

    doc_count: int
    meta: Mapping[str, Any]


class ClusterDetails(AttrDict[Any]):
    """
    :arg status: (required)
    :arg indices: (required)
    :arg timed_out: (required)
    :arg took:
    :arg _shards:
    :arg failures:
    """

    status: Literal["running", "successful", "partial", "skipped", "failed"]
    indices: str
    timed_out: bool
    took: Any
    _shards: "ShardStatistics"
    failures: Sequence["ShardFailure"]


class ClusterStatistics(AttrDict[Any]):
    """
    :arg skipped: (required)
    :arg successful: (required)
    :arg total: (required)
    :arg running: (required)
    :arg partial: (required)
    :arg failed: (required)
    :arg details:
    """

    skipped: int
    successful: int
    total: int
    running: int
    partial: int
    failed: int
    details: Mapping[str, "ClusterDetails"]


class Collector(AttrDict[Any]):
    """
    :arg name: (required)
    :arg reason: (required)
    :arg time_in_nanos: (required)
    :arg children:
    """

    name: str
    reason: str
    time_in_nanos: Any
    children: Sequence["Collector"]


class CompletionSuggest(AttrDict[Any]):
    """
    :arg options: (required)
    :arg length: (required)
    :arg offset: (required)
    :arg text: (required)
    """

    options: Sequence["CompletionSuggestOption"]
    length: int
    offset: int
    text: str


class CompletionSuggestOption(AttrDict[Any]):
    """
    :arg text: (required)
    :arg collate_match:
    :arg contexts:
    :arg fields:
    :arg _id:
    :arg _index:
    :arg _routing:
    :arg _score:
    :arg _source:
    :arg score:
    """

    text: str
    collate_match: bool
    contexts: Mapping[
        str,
        Sequence[
            Union[
                str, Union["LatLonGeoLocation", "GeoHashLocation", Sequence[float], str]
            ]
        ],
    ]
    fields: Mapping[str, Any]
    _id: str
    _index: str
    _routing: str
    _score: float
    _source: Any
    score: float


class CompositeAggregate(AttrDict[Any]):
    """
    :arg after_key:
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    after_key: Mapping[str, Union[int, float, str, bool, None]]
    buckets: Sequence["CompositeBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "CompositeBucket"]:
        return self.buckets  # type: ignore[return-value]


class CompositeBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    """

    key: Mapping[str, Union[int, float, str, bool, None]]
    doc_count: int


class CumulativeCardinalityAggregate(AttrDict[Any]):
    """
    Result of the `cumulative_cardinality` aggregation

    :arg value: (required)
    :arg value_as_string:
    :arg meta:
    """

    value: int
    value_as_string: str
    meta: Mapping[str, Any]


class DateHistogramAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["DateHistogramBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "DateHistogramBucket"]:
        return self.buckets  # type: ignore[return-value]


class DateHistogramBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    :arg key_as_string:
    """

    key: Any
    doc_count: int
    key_as_string: str


class DateRangeAggregate(AttrDict[Any]):
    """
    Result of a `date_range` aggregation. Same format as a for a `range`
    aggregation: `from` and `to` in `buckets` are milliseconds since the
    Epoch, represented as a floating point number.

    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["RangeBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "RangeBucket"]:
        return self.buckets  # type: ignore[return-value]


class DerivativeAggregate(AttrDict[Any]):
    """
    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg normalized_value:
    :arg normalized_value_as_string:
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    normalized_value: float
    normalized_value_as_string: str
    value_as_string: str
    meta: Mapping[str, Any]


class DfsKnnProfile(AttrDict[Any]):
    """
    :arg query: (required)
    :arg rewrite_time: (required)
    :arg collector: (required)
    :arg vector_operations_count:
    """

    query: Sequence["KnnQueryProfileResult"]
    rewrite_time: int
    collector: Sequence["KnnCollectorResult"]
    vector_operations_count: int


class DfsProfile(AttrDict[Any]):
    """
    :arg statistics:
    :arg knn:
    """

    statistics: "DfsStatisticsProfile"
    knn: Sequence["DfsKnnProfile"]


class DfsStatisticsBreakdown(AttrDict[Any]):
    """
    :arg collection_statistics: (required)
    :arg collection_statistics_count: (required)
    :arg create_weight: (required)
    :arg create_weight_count: (required)
    :arg rewrite: (required)
    :arg rewrite_count: (required)
    :arg term_statistics: (required)
    :arg term_statistics_count: (required)
    """

    collection_statistics: int
    collection_statistics_count: int
    create_weight: int
    create_weight_count: int
    rewrite: int
    rewrite_count: int
    term_statistics: int
    term_statistics_count: int


class DfsStatisticsProfile(AttrDict[Any]):
    """
    :arg type: (required)
    :arg description: (required)
    :arg time_in_nanos: (required)
    :arg breakdown: (required)
    :arg time:
    :arg debug:
    :arg children:
    """

    type: str
    description: str
    time_in_nanos: Any
    breakdown: "DfsStatisticsBreakdown"
    time: Any
    debug: Mapping[str, Any]
    children: Sequence["DfsStatisticsProfile"]


class DoubleTermsAggregate(AttrDict[Any]):
    """
    Result of a `terms` aggregation when the field is some kind of decimal
    number like a float, double, or distance.

    :arg doc_count_error_upper_bound:
    :arg sum_other_doc_count:
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    doc_count_error_upper_bound: int
    sum_other_doc_count: int
    buckets: Sequence["DoubleTermsBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "DoubleTermsBucket"]:
        return self.buckets  # type: ignore[return-value]


class DoubleTermsBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    :arg key_as_string:
    :arg doc_count_error_upper_bound:
    """

    key: float
    doc_count: int
    key_as_string: str
    doc_count_error_upper_bound: int


class ErrorCause(AttrDict[Any]):
    """
    Cause and details about a request failure. This class defines the
    properties common to all error types. Additional details are also
    provided, that depend on the error type.

    :arg type: (required) The type of error
    :arg reason: A human-readable explanation of the error, in English.
    :arg stack_trace: The server stack trace. Present only if the
        `error_trace=true` parameter was sent with the request.
    :arg caused_by:
    :arg root_cause:
    :arg suppressed:
    """

    type: str
    reason: Union[str, None]
    stack_trace: str
    caused_by: "ErrorCause"
    root_cause: Sequence["ErrorCause"]
    suppressed: Sequence["ErrorCause"]


class Explanation(AttrDict[Any]):
    """
    :arg description: (required)
    :arg details: (required)
    :arg value: (required)
    """

    description: str
    details: Sequence["ExplanationDetail"]
    value: float


class ExplanationDetail(AttrDict[Any]):
    """
    :arg description: (required)
    :arg value: (required)
    :arg details:
    """

    description: str
    value: float
    details: Sequence["ExplanationDetail"]


class ExtendedStatsAggregate(AttrDict[Any]):
    """
    :arg sum_of_squares: (required)
    :arg variance: (required)
    :arg variance_population: (required)
    :arg variance_sampling: (required)
    :arg std_deviation: (required)
    :arg std_deviation_population: (required)
    :arg std_deviation_sampling: (required)
    :arg count: (required)
    :arg min: (required)
    :arg max: (required)
    :arg avg: (required)
    :arg sum: (required)
    :arg std_deviation_bounds:
    :arg sum_of_squares_as_string:
    :arg variance_as_string:
    :arg variance_population_as_string:
    :arg variance_sampling_as_string:
    :arg std_deviation_as_string:
    :arg std_deviation_bounds_as_string:
    :arg min_as_string:
    :arg max_as_string:
    :arg avg_as_string:
    :arg sum_as_string:
    :arg meta:
    """

    sum_of_squares: Union[float, None]
    variance: Union[float, None]
    variance_population: Union[float, None]
    variance_sampling: Union[float, None]
    std_deviation: Union[float, None]
    std_deviation_population: Union[float, None]
    std_deviation_sampling: Union[float, None]
    count: int
    min: Union[float, None]
    max: Union[float, None]
    avg: Union[float, None]
    sum: float
    std_deviation_bounds: "StandardDeviationBounds"
    sum_of_squares_as_string: str
    variance_as_string: str
    variance_population_as_string: str
    variance_sampling_as_string: str
    std_deviation_as_string: str
    std_deviation_bounds_as_string: "StandardDeviationBoundsAsString"
    min_as_string: str
    max_as_string: str
    avg_as_string: str
    sum_as_string: str
    meta: Mapping[str, Any]


class ExtendedStatsBucketAggregate(AttrDict[Any]):
    """
    :arg sum_of_squares: (required)
    :arg variance: (required)
    :arg variance_population: (required)
    :arg variance_sampling: (required)
    :arg std_deviation: (required)
    :arg std_deviation_population: (required)
    :arg std_deviation_sampling: (required)
    :arg count: (required)
    :arg min: (required)
    :arg max: (required)
    :arg avg: (required)
    :arg sum: (required)
    :arg std_deviation_bounds:
    :arg sum_of_squares_as_string:
    :arg variance_as_string:
    :arg variance_population_as_string:
    :arg variance_sampling_as_string:
    :arg std_deviation_as_string:
    :arg std_deviation_bounds_as_string:
    :arg min_as_string:
    :arg max_as_string:
    :arg avg_as_string:
    :arg sum_as_string:
    :arg meta:
    """

    sum_of_squares: Union[float, None]
    variance: Union[float, None]
    variance_population: Union[float, None]
    variance_sampling: Union[float, None]
    std_deviation: Union[float, None]
    std_deviation_population: Union[float, None]
    std_deviation_sampling: Union[float, None]
    count: int
    min: Union[float, None]
    max: Union[float, None]
    avg: Union[float, None]
    sum: float
    std_deviation_bounds: "StandardDeviationBounds"
    sum_of_squares_as_string: str
    variance_as_string: str
    variance_population_as_string: str
    variance_sampling_as_string: str
    std_deviation_as_string: str
    std_deviation_bounds_as_string: "StandardDeviationBoundsAsString"
    min_as_string: str
    max_as_string: str
    avg_as_string: str
    sum_as_string: str
    meta: Mapping[str, Any]


class FetchProfile(AttrDict[Any]):
    """
    :arg type: (required)
    :arg description: (required)
    :arg time_in_nanos: (required)
    :arg breakdown: (required)
    :arg debug:
    :arg children:
    """

    type: str
    description: str
    time_in_nanos: Any
    breakdown: "FetchProfileBreakdown"
    debug: "FetchProfileDebug"
    children: Sequence["FetchProfile"]


class FetchProfileBreakdown(AttrDict[Any]):
    """
    :arg load_source:
    :arg load_source_count:
    :arg load_stored_fields:
    :arg load_stored_fields_count:
    :arg next_reader:
    :arg next_reader_count:
    :arg process_count:
    :arg process:
    """

    load_source: int
    load_source_count: int
    load_stored_fields: int
    load_stored_fields_count: int
    next_reader: int
    next_reader_count: int
    process_count: int
    process: int


class FetchProfileDebug(AttrDict[Any]):
    """
    :arg stored_fields:
    :arg fast_path:
    """

    stored_fields: Sequence[str]
    fast_path: int


class FilterAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg meta:
    """

    doc_count: int
    meta: Mapping[str, Any]


class FiltersAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["FiltersBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "FiltersBucket"]:
        return self.buckets  # type: ignore[return-value]


class FiltersBucket(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg key:
    """

    doc_count: int
    key: str


class FrequentItemSetsAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["FrequentItemSetsBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "FrequentItemSetsBucket"]:
        return self.buckets  # type: ignore[return-value]


class FrequentItemSetsBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg support: (required)
    :arg doc_count: (required)
    """

    key: Mapping[str, Sequence[str]]
    support: float
    doc_count: int


class GeoBoundsAggregate(AttrDict[Any]):
    """
    :arg bounds:
    :arg meta:
    """

    bounds: Union[
        "CoordsGeoBounds",
        "TopLeftBottomRightGeoBounds",
        "TopRightBottomLeftGeoBounds",
        "WktGeoBounds",
    ]
    meta: Mapping[str, Any]


class GeoCentroidAggregate(AttrDict[Any]):
    """
    :arg count: (required)
    :arg location:
    :arg meta:
    """

    count: int
    location: Union["LatLonGeoLocation", "GeoHashLocation", Sequence[float], str]
    meta: Mapping[str, Any]


class GeoDistanceAggregate(AttrDict[Any]):
    """
    Result of a `geo_distance` aggregation. The unit for `from` and `to`
    is meters by default.

    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["RangeBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "RangeBucket"]:
        return self.buckets  # type: ignore[return-value]


class GeoHashGridAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["GeoHashGridBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "GeoHashGridBucket"]:
        return self.buckets  # type: ignore[return-value]


class GeoHashGridBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    """

    key: str
    doc_count: int


class GeoHexGridAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["GeoHexGridBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "GeoHexGridBucket"]:
        return self.buckets  # type: ignore[return-value]


class GeoHexGridBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    """

    key: str
    doc_count: int


class GeoLine(AttrDict[Any]):
    """
    A GeoJson GeoLine.

    :arg type: (required) Always `"LineString"`
    :arg coordinates: (required) Array of `[lon, lat]` coordinates
    """

    type: str
    coordinates: Sequence[Sequence[float]]


class GeoLineAggregate(AttrDict[Any]):
    """
    :arg type: (required)
    :arg geometry: (required)
    :arg properties: (required)
    :arg meta:
    """

    type: str
    geometry: "GeoLine"
    properties: Any
    meta: Mapping[str, Any]


class GeoTileGridAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["GeoTileGridBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "GeoTileGridBucket"]:
        return self.buckets  # type: ignore[return-value]


class GeoTileGridBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    """

    key: str
    doc_count: int


class GlobalAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg meta:
    """

    doc_count: int
    meta: Mapping[str, Any]


class HdrPercentileRanksAggregate(AttrDict[Any]):
    """
    :arg values: (required)
    :arg meta:
    """

    values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]]
    meta: Mapping[str, Any]


class HdrPercentilesAggregate(AttrDict[Any]):
    """
    :arg values: (required)
    :arg meta:
    """

    values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]]
    meta: Mapping[str, Any]


class HistogramAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["HistogramBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "HistogramBucket"]:
        return self.buckets  # type: ignore[return-value]


class HistogramBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    :arg key_as_string:
    """

    key: float
    doc_count: int
    key_as_string: str


class Hit(AttrDict[Any]):
    """
    :arg index: (required)
    :arg id:
    :arg score:
    :arg explanation:
    :arg fields:
    :arg highlight:
    :arg inner_hits:
    :arg matched_queries:
    :arg nested:
    :arg ignored:
    :arg ignored_field_values:
    :arg shard:
    :arg node:
    :arg routing:
    :arg source:
    :arg rank:
    :arg seq_no:
    :arg primary_term:
    :arg version:
    :arg sort:
    """

    index: str
    id: str
    score: Union[float, None]
    explanation: "Explanation"
    fields: Mapping[str, Any]
    highlight: Mapping[str, Sequence[str]]
    inner_hits: Mapping[str, "InnerHitsResult"]
    matched_queries: Union[Sequence[str], Mapping[str, float]]
    nested: "NestedIdentity"
    ignored: Sequence[str]
    ignored_field_values: Mapping[str, Sequence[Any]]
    shard: str
    node: str
    routing: str
    source: Any
    rank: int
    seq_no: int
    primary_term: int
    version: int
    sort: Sequence[Union[int, float, str, bool, None]]


class HitsMetadata(AttrDict[Any]):
    """
    :arg hits: (required)
    :arg total: Total hit count information, present only if
        `track_total_hits` wasn't `false` in the search request.
    :arg max_score:
    """

    hits: Sequence["Hit"]
    total: Union["TotalHits", int]
    max_score: Union[float, None]


class InferenceAggregate(AttrDict[Any]):
    """
    :arg value:
    :arg feature_importance:
    :arg top_classes:
    :arg warning:
    :arg meta:
    """

    value: Union[int, float, str, bool, None]
    feature_importance: Sequence["InferenceFeatureImportance"]
    top_classes: Sequence["InferenceTopClassEntry"]
    warning: str
    meta: Mapping[str, Any]


class InferenceClassImportance(AttrDict[Any]):
    """
    :arg class_name: (required)
    :arg importance: (required)
    """

    class_name: str
    importance: float


class InferenceFeatureImportance(AttrDict[Any]):
    """
    :arg feature_name: (required)
    :arg importance:
    :arg classes:
    """

    feature_name: str
    importance: float
    classes: Sequence["InferenceClassImportance"]


class InferenceTopClassEntry(AttrDict[Any]):
    """
    :arg class_name: (required)
    :arg class_probability: (required)
    :arg class_score: (required)
    """

    class_name: Union[int, float, str, bool, None]
    class_probability: float
    class_score: float


class InnerHitsResult(AttrDict[Any]):
    """
    :arg hits: (required)
    """

    hits: "HitsMetadata"


class IpPrefixAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["IpPrefixBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "IpPrefixBucket"]:
        return self.buckets  # type: ignore[return-value]


class IpPrefixBucket(AttrDict[Any]):
    """
    :arg is_ipv6: (required)
    :arg key: (required)
    :arg prefix_length: (required)
    :arg doc_count: (required)
    :arg netmask:
    """

    is_ipv6: bool
    key: str
    prefix_length: int
    doc_count: int
    netmask: str


class IpRangeAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["IpRangeBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "IpRangeBucket"]:
        return self.buckets  # type: ignore[return-value]


class IpRangeBucket(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg key:
    :arg from:
    :arg to:
    """

    doc_count: int
    key: str
    from_: str
    to: str


class KnnCollectorResult(AttrDict[Any]):
    """
    :arg name: (required)
    :arg reason: (required)
    :arg time_in_nanos: (required)
    :arg time:
    :arg children:
    """

    name: str
    reason: str
    time_in_nanos: Any
    time: Any
    children: Sequence["KnnCollectorResult"]


class KnnQueryProfileBreakdown(AttrDict[Any]):
    """
    :arg advance: (required)
    :arg advance_count: (required)
    :arg build_scorer: (required)
    :arg build_scorer_count: (required)
    :arg compute_max_score: (required)
    :arg compute_max_score_count: (required)
    :arg count_weight: (required)
    :arg count_weight_count: (required)
    :arg create_weight: (required)
    :arg create_weight_count: (required)
    :arg match: (required)
    :arg match_count: (required)
    :arg next_doc: (required)
    :arg next_doc_count: (required)
    :arg score: (required)
    :arg score_count: (required)
    :arg set_min_competitive_score: (required)
    :arg set_min_competitive_score_count: (required)
    :arg shallow_advance: (required)
    :arg shallow_advance_count: (required)
    """

    advance: int
    advance_count: int
    build_scorer: int
    build_scorer_count: int
    compute_max_score: int
    compute_max_score_count: int
    count_weight: int
    count_weight_count: int
    create_weight: int
    create_weight_count: int
    match: int
    match_count: int
    next_doc: int
    next_doc_count: int
    score: int
    score_count: int
    set_min_competitive_score: int
    set_min_competitive_score_count: int
    shallow_advance: int
    shallow_advance_count: int


class KnnQueryProfileResult(AttrDict[Any]):
    """
    :arg type: (required)
    :arg description: (required)
    :arg time_in_nanos: (required)
    :arg breakdown: (required)
    :arg time:
    :arg debug:
    :arg children:
    """

    type: str
    description: str
    time_in_nanos: Any
    breakdown: "KnnQueryProfileBreakdown"
    time: Any
    debug: Mapping[str, Any]
    children: Sequence["KnnQueryProfileResult"]


class LongRareTermsAggregate(AttrDict[Any]):
    """
    Result of the `rare_terms` aggregation when the field is some kind of
    whole number like a integer, long, or a date.

    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["LongRareTermsBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "LongRareTermsBucket"]:
        return self.buckets  # type: ignore[return-value]


class LongRareTermsBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    :arg key_as_string:
    """

    key: int
    doc_count: int
    key_as_string: str


class LongTermsAggregate(AttrDict[Any]):
    """
    Result of a `terms` aggregation when the field is some kind of whole
    number like a integer, long, or a date.

    :arg doc_count_error_upper_bound:
    :arg sum_other_doc_count:
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    doc_count_error_upper_bound: int
    sum_other_doc_count: int
    buckets: Sequence["LongTermsBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "LongTermsBucket"]:
        return self.buckets  # type: ignore[return-value]


class LongTermsBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    :arg key_as_string:
    :arg doc_count_error_upper_bound:
    """

    key: int
    doc_count: int
    key_as_string: str
    doc_count_error_upper_bound: int


class MatrixStatsAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg fields:
    :arg meta:
    """

    doc_count: int
    fields: Sequence["MatrixStatsFields"]
    meta: Mapping[str, Any]


class MatrixStatsFields(AttrDict[Any]):
    """
    :arg name: (required)
    :arg count: (required)
    :arg mean: (required)
    :arg variance: (required)
    :arg skewness: (required)
    :arg kurtosis: (required)
    :arg covariance: (required)
    :arg correlation: (required)
    """

    name: str
    count: int
    mean: float
    variance: float
    skewness: float
    kurtosis: float
    covariance: Mapping[str, float]
    correlation: Mapping[str, float]


class MaxAggregate(AttrDict[Any]):
    """
    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]


class MedianAbsoluteDeviationAggregate(AttrDict[Any]):
    """
    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]


class MinAggregate(AttrDict[Any]):
    """
    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]


class MissingAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg meta:
    """

    doc_count: int
    meta: Mapping[str, Any]


class MultiTermsAggregate(AttrDict[Any]):
    """
    :arg doc_count_error_upper_bound:
    :arg sum_other_doc_count:
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    doc_count_error_upper_bound: int
    sum_other_doc_count: int
    buckets: Sequence["MultiTermsBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "MultiTermsBucket"]:
        return self.buckets  # type: ignore[return-value]


class MultiTermsBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    :arg key_as_string:
    :arg doc_count_error_upper_bound:
    """

    key: Sequence[Union[int, float, str, bool, None]]
    doc_count: int
    key_as_string: str
    doc_count_error_upper_bound: int


class NestedAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg meta:
    """

    doc_count: int
    meta: Mapping[str, Any]


class NestedIdentity(AttrDict[Any]):
    """
    :arg field: (required)
    :arg offset: (required)
    :arg _nested:
    """

    field: str
    offset: int
    _nested: "NestedIdentity"


class ParentAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg meta:
    """

    doc_count: int
    meta: Mapping[str, Any]


class PercentilesBucketAggregate(AttrDict[Any]):
    """
    :arg values: (required)
    :arg meta:
    """

    values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]]
    meta: Mapping[str, Any]


class PhraseSuggest(AttrDict[Any]):
    """
    :arg options: (required)
    :arg length: (required)
    :arg offset: (required)
    :arg text: (required)
    """

    options: Sequence["PhraseSuggestOption"]
    length: int
    offset: int
    text: str


class PhraseSuggestOption(AttrDict[Any]):
    """
    :arg text: (required)
    :arg score: (required)
    :arg highlighted:
    :arg collate_match:
    """

    text: str
    score: float
    highlighted: str
    collate_match: bool


class Profile(AttrDict[Any]):
    """
    :arg shards: (required)
    """

    shards: Sequence["ShardProfile"]


class QueryBreakdown(AttrDict[Any]):
    """
    :arg advance: (required)
    :arg advance_count: (required)
    :arg build_scorer: (required)
    :arg build_scorer_count: (required)
    :arg create_weight: (required)
    :arg create_weight_count: (required)
    :arg match: (required)
    :arg match_count: (required)
    :arg shallow_advance: (required)
    :arg shallow_advance_count: (required)
    :arg next_doc: (required)
    :arg next_doc_count: (required)
    :arg score: (required)
    :arg score_count: (required)
    :arg compute_max_score: (required)
    :arg compute_max_score_count: (required)
    :arg count_weight: (required)
    :arg count_weight_count: (required)
    :arg set_min_competitive_score: (required)
    :arg set_min_competitive_score_count: (required)
    """

    advance: int
    advance_count: int
    build_scorer: int
    build_scorer_count: int
    create_weight: int
    create_weight_count: int
    match: int
    match_count: int
    shallow_advance: int
    shallow_advance_count: int
    next_doc: int
    next_doc_count: int
    score: int
    score_count: int
    compute_max_score: int
    compute_max_score_count: int
    count_weight: int
    count_weight_count: int
    set_min_competitive_score: int
    set_min_competitive_score_count: int


class QueryProfile(AttrDict[Any]):
    """
    :arg breakdown: (required)
    :arg description: (required)
    :arg time_in_nanos: (required)
    :arg type: (required)
    :arg children:
    """

    breakdown: "QueryBreakdown"
    description: str
    time_in_nanos: Any
    type: str
    children: Sequence["QueryProfile"]


class RangeAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["RangeBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "RangeBucket"]:
        return self.buckets  # type: ignore[return-value]


class RangeBucket(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg from:
    :arg to:
    :arg from_as_string:
    :arg to_as_string:
    :arg key: The bucket key. Present if the aggregation is _not_ keyed
    """

    doc_count: int
    from_: float
    to: float
    from_as_string: str
    to_as_string: str
    key: str


class RateAggregate(AttrDict[Any]):
    """
    :arg value: (required)
    :arg value_as_string:
    :arg meta:
    """

    value: float
    value_as_string: str
    meta: Mapping[str, Any]


class Retries(AttrDict[Any]):
    """
    :arg bulk: (required) The number of bulk actions retried.
    :arg search: (required) The number of search actions retried.
    """

    bulk: int
    search: int


class ReverseNestedAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg meta:
    """

    doc_count: int
    meta: Mapping[str, Any]


class SamplerAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg meta:
    """

    doc_count: int
    meta: Mapping[str, Any]


class ScriptedMetricAggregate(AttrDict[Any]):
    """
    :arg value: (required)
    :arg meta:
    """

    value: Any
    meta: Mapping[str, Any]


class SearchProfile(AttrDict[Any]):
    """
    :arg collector: (required)
    :arg query: (required)
    :arg rewrite_time: (required)
    """

    collector: Sequence["Collector"]
    query: Sequence["QueryProfile"]
    rewrite_time: int


class ShardFailure(AttrDict[Any]):
    """
    :arg reason: (required)
    :arg shard: (required)
    :arg index:
    :arg node:
    :arg status:
    """

    reason: "ErrorCause"
    shard: int
    index: str
    node: str
    status: str


class ShardProfile(AttrDict[Any]):
    """
    :arg aggregations: (required)
    :arg cluster: (required)
    :arg id: (required)
    :arg index: (required)
    :arg node_id: (required)
    :arg searches: (required)
    :arg shard_id: (required)
    :arg dfs:
    :arg fetch:
    """

    aggregations: Sequence["AggregationProfile"]
    cluster: str
    id: str
    index: str
    node_id: str
    searches: Sequence["SearchProfile"]
    shard_id: int
    dfs: "DfsProfile"
    fetch: "FetchProfile"


class ShardStatistics(AttrDict[Any]):
    """
    :arg failed: (required) The number of shards the operation or search
        attempted to run on but failed.
    :arg successful: (required) The number of shards the operation or
        search succeeded on.
    :arg total: (required) The number of shards the operation or search
        will run on overall.
    :arg failures:
    :arg skipped:
    """

    failed: int
    successful: int
    total: int
    failures: Sequence["ShardFailure"]
    skipped: int


class SignificantLongTermsAggregate(AttrDict[Any]):
    """
    :arg bg_count:
    :arg doc_count:
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    bg_count: int
    doc_count: int
    buckets: Sequence["SignificantLongTermsBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "SignificantLongTermsBucket"]:
        return self.buckets  # type: ignore[return-value]


class SignificantLongTermsBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg score: (required)
    :arg bg_count: (required)
    :arg doc_count: (required)
    :arg key_as_string:
    """

    key: int
    score: float
    bg_count: int
    doc_count: int
    key_as_string: str


class SignificantStringTermsAggregate(AttrDict[Any]):
    """
    :arg bg_count:
    :arg doc_count:
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    bg_count: int
    doc_count: int
    buckets: Sequence["SignificantStringTermsBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "SignificantStringTermsBucket"]:
        return self.buckets  # type: ignore[return-value]


class SignificantStringTermsBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg score: (required)
    :arg bg_count: (required)
    :arg doc_count: (required)
    """

    key: str
    score: float
    bg_count: int
    doc_count: int


class SimpleValueAggregate(AttrDict[Any]):
    """
    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]


class StandardDeviationBounds(AttrDict[Any]):
    """
    :arg upper: (required)
    :arg lower: (required)
    :arg upper_population: (required)
    :arg lower_population: (required)
    :arg upper_sampling: (required)
    :arg lower_sampling: (required)
    """

    upper: Union[float, None]
    lower: Union[float, None]
    upper_population: Union[float, None]
    lower_population: Union[float, None]
    upper_sampling: Union[float, None]
    lower_sampling: Union[float, None]


class StandardDeviationBoundsAsString(AttrDict[Any]):
    """
    :arg upper: (required)
    :arg lower: (required)
    :arg upper_population: (required)
    :arg lower_population: (required)
    :arg upper_sampling: (required)
    :arg lower_sampling: (required)
    """

    upper: str
    lower: str
    upper_population: str
    lower_population: str
    upper_sampling: str
    lower_sampling: str


class StatsAggregate(AttrDict[Any]):
    """
    Statistics aggregation result. `min`, `max` and `avg` are missing if
    there were no values to process (`count` is zero).

    :arg count: (required)
    :arg min: (required)
    :arg max: (required)
    :arg avg: (required)
    :arg sum: (required)
    :arg min_as_string:
    :arg max_as_string:
    :arg avg_as_string:
    :arg sum_as_string:
    :arg meta:
    """

    count: int
    min: Union[float, None]
    max: Union[float, None]
    avg: Union[float, None]
    sum: float
    min_as_string: str
    max_as_string: str
    avg_as_string: str
    sum_as_string: str
    meta: Mapping[str, Any]


class StatsBucketAggregate(AttrDict[Any]):
    """
    :arg count: (required)
    :arg min: (required)
    :arg max: (required)
    :arg avg: (required)
    :arg sum: (required)
    :arg min_as_string:
    :arg max_as_string:
    :arg avg_as_string:
    :arg sum_as_string:
    :arg meta:
    """

    count: int
    min: Union[float, None]
    max: Union[float, None]
    avg: Union[float, None]
    sum: float
    min_as_string: str
    max_as_string: str
    avg_as_string: str
    sum_as_string: str
    meta: Mapping[str, Any]


class StringRareTermsAggregate(AttrDict[Any]):
    """
    Result of the `rare_terms` aggregation when the field is a string.

    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["StringRareTermsBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "StringRareTermsBucket"]:
        return self.buckets  # type: ignore[return-value]


class StringRareTermsBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    """

    key: str
    doc_count: int


class StringStatsAggregate(AttrDict[Any]):
    """
    :arg count: (required)
    :arg min_length: (required)
    :arg max_length: (required)
    :arg avg_length: (required)
    :arg entropy: (required)
    :arg distribution:
    :arg min_length_as_string:
    :arg max_length_as_string:
    :arg avg_length_as_string:
    :arg meta:
    """

    count: int
    min_length: Union[int, None]
    max_length: Union[int, None]
    avg_length: Union[float, None]
    entropy: Union[float, None]
    distribution: Union[Mapping[str, float], None]
    min_length_as_string: str
    max_length_as_string: str
    avg_length_as_string: str
    meta: Mapping[str, Any]


class StringTermsAggregate(AttrDict[Any]):
    """
    Result of a `terms` aggregation when the field is a string.

    :arg doc_count_error_upper_bound:
    :arg sum_other_doc_count:
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    doc_count_error_upper_bound: int
    sum_other_doc_count: int
    buckets: Sequence["StringTermsBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "StringTermsBucket"]:
        return self.buckets  # type: ignore[return-value]


class StringTermsBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    :arg doc_count_error_upper_bound:
    """

    key: Union[int, float, str, bool, None]
    doc_count: int
    doc_count_error_upper_bound: int


class SumAggregate(AttrDict[Any]):
    """
    Sum aggregation result. `value` is always present and is zero if there
    were no values to process.

    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]


class TDigestPercentileRanksAggregate(AttrDict[Any]):
    """
    :arg values: (required)
    :arg meta:
    """

    values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]]
    meta: Mapping[str, Any]


class TDigestPercentilesAggregate(AttrDict[Any]):
    """
    :arg values: (required)
    :arg meta:
    """

    values: Union[Mapping[str, Union[str, int, None]], Sequence["ArrayPercentilesItem"]]
    meta: Mapping[str, Any]


class TTestAggregate(AttrDict[Any]):
    """
    :arg value: (required)
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]


class TermSuggest(AttrDict[Any]):
    """
    :arg options: (required)
    :arg length: (required)
    :arg offset: (required)
    :arg text: (required)
    """

    options: Sequence["TermSuggestOption"]
    length: int
    offset: int
    text: str


class TermSuggestOption(AttrDict[Any]):
    """
    :arg text: (required)
    :arg score: (required)
    :arg freq: (required)
    :arg highlighted:
    :arg collate_match:
    """

    text: str
    score: float
    freq: int
    highlighted: str
    collate_match: bool


class TimeSeriesAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["TimeSeriesBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "TimeSeriesBucket"]:
        return self.buckets  # type: ignore[return-value]


class TimeSeriesBucket(AttrDict[Any]):
    """
    :arg key: (required)
    :arg doc_count: (required)
    """

    key: Mapping[str, Union[int, float, str, bool, None]]
    doc_count: int


class TopHitsAggregate(AttrDict[Any]):
    """
    :arg hits: (required)
    :arg meta:
    """

    hits: "HitsMetadata"
    meta: Mapping[str, Any]


class TopMetrics(AttrDict[Any]):
    """
    :arg sort: (required)
    :arg metrics: (required)
    """

    sort: Sequence[Union[Union[int, float, str, bool, None], None]]
    metrics: Mapping[str, Union[Union[int, float, str, bool, None], None]]


class TopMetricsAggregate(AttrDict[Any]):
    """
    :arg top: (required)
    :arg meta:
    """

    top: Sequence["TopMetrics"]
    meta: Mapping[str, Any]


class TotalHits(AttrDict[Any]):
    """
    :arg relation: (required)
    :arg value: (required)
    """

    relation: Literal["eq", "gte"]
    value: int


class UnmappedRareTermsAggregate(AttrDict[Any]):
    """
    Result of a `rare_terms` aggregation when the field is unmapped.
    `buckets` is always empty.

    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence[Any]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, Any]:
        return self.buckets  # type: ignore[return-value]


class UnmappedSamplerAggregate(AttrDict[Any]):
    """
    :arg doc_count: (required)
    :arg meta:
    """

    doc_count: int
    meta: Mapping[str, Any]


class UnmappedSignificantTermsAggregate(AttrDict[Any]):
    """
    Result of the `significant_terms` aggregation on an unmapped field.
    `buckets` is always empty.

    :arg bg_count:
    :arg doc_count:
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    bg_count: int
    doc_count: int
    buckets: Sequence[Any]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, Any]:
        return self.buckets  # type: ignore[return-value]


class UnmappedTermsAggregate(AttrDict[Any]):
    """
    Result of a `terms` aggregation when the field is unmapped. `buckets`
    is always empty.

    :arg doc_count_error_upper_bound:
    :arg sum_other_doc_count:
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    doc_count_error_upper_bound: int
    sum_other_doc_count: int
    buckets: Sequence[Any]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, Any]:
        return self.buckets  # type: ignore[return-value]


class ValueCountAggregate(AttrDict[Any]):
    """
    Value count aggregation result. `value` is always present.

    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]


class VariableWidthHistogramAggregate(AttrDict[Any]):
    """
    :arg buckets: (required) the aggregation buckets as a list
    :arg meta:
    """

    buckets: Sequence["VariableWidthHistogramBucket"]
    meta: Mapping[str, Any]

    @property
    def buckets_as_dict(self) -> Mapping[str, "VariableWidthHistogramBucket"]:
        return self.buckets  # type: ignore[return-value]


class VariableWidthHistogramBucket(AttrDict[Any]):
    """
    :arg min: (required)
    :arg key: (required)
    :arg max: (required)
    :arg doc_count: (required)
    :arg min_as_string:
    :arg key_as_string:
    :arg max_as_string:
    """

    min: float
    key: float
    max: float
    doc_count: int
    min_as_string: str
    key_as_string: str
    max_as_string: str


class WeightedAvgAggregate(AttrDict[Any]):
    """
    Weighted average aggregation result. `value` is missing if the weight
    was set to zero.

    :arg value: (required) The metric value. A missing value generally
        means that there was no data to aggregate, unless specified
        otherwise.
    :arg value_as_string:
    :arg meta:
    """

    value: Union[float, None]
    value_as_string: str
    meta: Mapping[str, Any]