File: actions.py

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (875 lines) | stat: -rw-r--r-- 32,378 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
#  Licensed to Elasticsearch B.V. under one or more contributor
#  license agreements. See the NOTICE file distributed with
#  this work for additional information regarding copyright
#  ownership. Elasticsearch B.V. licenses this file to you under
#  the Apache License, Version 2.0 (the "License"); you may
#  not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
# 	http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing,
#  software distributed under the License is distributed on an
#  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#  KIND, either express or implied.  See the License for the
#  specific language governing permissions and limitations
#  under the License.

import logging
import time
from operator import methodcaller
from queue import Queue
from typing import (
    Any,
    Callable,
    Collection,
    Dict,
    Iterable,
    Iterator,
    List,
    Mapping,
    MutableMapping,
    Optional,
    Tuple,
    Union,
)

from elastic_transport import OpenTelemetrySpan

from .. import Elasticsearch
from ..compat import to_bytes
from ..exceptions import ApiError, NotFoundError, TransportError
from ..serializer import Serializer
from .errors import BulkIndexError, ScanError

logger = logging.getLogger("elasticsearch.helpers")

_TYPE_BULK_ACTION = Union[bytes, str, Dict[str, Any]]
_TYPE_BULK_ACTION_HEADER = Dict[str, Any]
_TYPE_BULK_ACTION_BODY = Union[None, bytes, Dict[str, Any]]
_TYPE_BULK_ACTION_HEADER_AND_BODY = Tuple[
    _TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY
]


def expand_action(data: _TYPE_BULK_ACTION) -> _TYPE_BULK_ACTION_HEADER_AND_BODY:
    """
    From one document or action definition passed in by the user extract the
    action/data lines needed for elasticsearch's
    :meth:`~elasticsearch.Elasticsearch.bulk` api.
    """
    # when given a string, assume user wants to index raw json
    if isinstance(data, (bytes, str)):
        return {"index": {}}, to_bytes(data, "utf-8")

    # make sure we don't alter the action
    data = data.copy()
    op_type: str = data.pop("_op_type", "index")
    action: Dict[str, Any] = {op_type: {}}

    # If '_source' is a dict use it for source
    # otherwise if op_type == 'update' then
    # '_source' should be in the metadata.
    if (
        op_type == "update"
        and "_source" in data
        and not isinstance(data["_source"], Mapping)
    ):
        action[op_type]["_source"] = data.pop("_source")

    for key in (
        "_id",
        "_index",
        "_if_seq_no",
        "_if_primary_term",
        "_parent",
        "_percolate",
        "_retry_on_conflict",
        "_routing",
        "_timestamp",
        "_type",
        "_version",
        "_version_type",
        "if_seq_no",
        "if_primary_term",
        "parent",
        "pipeline",
        "retry_on_conflict",
        "routing",
        "version",
        "version_type",
    ):
        if key in data:
            if key in {
                "_if_seq_no",
                "_if_primary_term",
                "_parent",
                "_retry_on_conflict",
                "_routing",
                "_version",
                "_version_type",
            }:
                action[op_type][key[1:]] = data.pop(key)
            else:
                action[op_type][key] = data.pop(key)

    # no data payload for delete
    if op_type == "delete":
        return action, None

    return action, data.get("_source", data)


class _ActionChunker:
    def __init__(
        self, chunk_size: int, max_chunk_bytes: int, serializer: Serializer
    ) -> None:
        self.chunk_size = chunk_size
        self.max_chunk_bytes = max_chunk_bytes
        self.serializer = serializer

        self.size = 0
        self.action_count = 0
        self.bulk_actions: List[bytes] = []
        self.bulk_data: List[
            Union[
                Tuple[_TYPE_BULK_ACTION_HEADER],
                Tuple[_TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY],
            ]
        ] = []

    def feed(
        self, action: _TYPE_BULK_ACTION_HEADER, data: _TYPE_BULK_ACTION_BODY
    ) -> Optional[
        Tuple[
            List[
                Union[
                    Tuple[_TYPE_BULK_ACTION_HEADER],
                    Tuple[_TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY],
                ]
            ],
            List[bytes],
        ]
    ]:
        ret = None
        raw_action = action
        raw_data = data
        action_bytes = to_bytes(self.serializer.dumps(action), "utf-8")
        # +1 to account for the trailing new line character
        cur_size = len(action_bytes) + 1

        data_bytes: Optional[bytes]
        if data is not None:
            data_bytes = to_bytes(self.serializer.dumps(data), "utf-8")
            cur_size += len(data_bytes) + 1
        else:
            data_bytes = None

        # full chunk, send it and start a new one
        if self.bulk_actions and (
            self.size + cur_size > self.max_chunk_bytes
            or self.action_count == self.chunk_size
        ):
            ret = (self.bulk_data, self.bulk_actions)
            self.bulk_actions = []
            self.bulk_data = []
            self.size = 0
            self.action_count = 0

        self.bulk_actions.append(action_bytes)
        if data_bytes is not None:
            self.bulk_actions.append(data_bytes)
            self.bulk_data.append((raw_action, raw_data))
        else:
            self.bulk_data.append((raw_action,))

        self.size += cur_size
        self.action_count += 1
        return ret

    def flush(
        self,
    ) -> Optional[
        Tuple[
            List[
                Union[
                    Tuple[_TYPE_BULK_ACTION_HEADER],
                    Tuple[_TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY],
                ]
            ],
            List[bytes],
        ]
    ]:
        ret = None
        if self.bulk_actions:
            ret = (self.bulk_data, self.bulk_actions)
            self.bulk_actions = []
            self.bulk_data = []
        return ret


def _chunk_actions(
    actions: Iterable[_TYPE_BULK_ACTION_HEADER_AND_BODY],
    chunk_size: int,
    max_chunk_bytes: int,
    serializer: Serializer,
) -> Iterable[
    Tuple[
        List[
            Union[
                Tuple[_TYPE_BULK_ACTION_HEADER],
                Tuple[_TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY],
            ]
        ],
        List[bytes],
    ]
]:
    """
    Split actions into chunks by number or size, serialize them into strings in
    the process.
    """
    chunker = _ActionChunker(
        chunk_size=chunk_size, max_chunk_bytes=max_chunk_bytes, serializer=serializer
    )
    for action, data in actions:
        ret = chunker.feed(action, data)
        if ret:
            yield ret
    ret = chunker.flush()
    if ret:
        yield ret


def _process_bulk_chunk_success(
    resp: Dict[str, Any],
    bulk_data: List[
        Union[
            Tuple[_TYPE_BULK_ACTION_HEADER],
            Tuple[_TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY],
        ]
    ],
    ignore_status: Collection[int],
    raise_on_error: bool = True,
) -> Iterator[Tuple[bool, Dict[str, Any]]]:
    # if raise on error is set, we need to collect errors per chunk before raising them
    errors = []

    # go through request-response pairs and detect failures
    for data, (op_type, item) in zip(
        bulk_data, map(methodcaller("popitem"), resp["items"])
    ):
        status_code = item.get("status", 500)

        ok = 200 <= status_code < 300
        if not ok and raise_on_error and status_code not in ignore_status:
            # include original document source
            if len(data) > 1:
                item["data"] = data[1]
            errors.append({op_type: item})

        if ok or not errors:
            # if we are not just recording all errors to be able to raise
            # them all at once, yield items individually
            yield ok, {op_type: item}

    if errors:
        raise BulkIndexError(f"{len(errors)} document(s) failed to index.", errors)


def _process_bulk_chunk_error(
    error: ApiError,
    bulk_data: List[
        Union[
            Tuple[_TYPE_BULK_ACTION_HEADER],
            Tuple[_TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY],
        ]
    ],
    ignore_status: Collection[int],
    raise_on_exception: bool = True,
    raise_on_error: bool = True,
) -> Iterable[Tuple[bool, Dict[str, Any]]]:
    # default behavior - just propagate exception
    if raise_on_exception and error.status_code not in ignore_status:
        raise error

    # if we are not propagating, mark all actions in current chunk as failed
    err_message = str(error)
    exc_errors = []

    for data in bulk_data:
        # collect all the information about failed actions
        op_type, action = data[0].copy().popitem()
        info = {"error": err_message, "status": error.status_code, "exception": error}
        if op_type != "delete" and len(data) > 1:
            info["data"] = data[1]
        info.update(action)
        exc_errors.append({op_type: info})

    # emulate standard behavior for failed actions
    if raise_on_error and error.status_code not in ignore_status:
        raise BulkIndexError(
            f"{len(exc_errors)} document(s) failed to index.", exc_errors
        )
    else:
        for err in exc_errors:
            yield False, err


def _process_bulk_chunk(
    client: Elasticsearch,
    bulk_actions: List[bytes],
    bulk_data: List[
        Union[
            Tuple[_TYPE_BULK_ACTION_HEADER],
            Tuple[_TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY],
        ]
    ],
    otel_span: OpenTelemetrySpan,
    raise_on_exception: bool = True,
    raise_on_error: bool = True,
    ignore_status: Union[int, Collection[int]] = (),
    *args: Any,
    **kwargs: Any,
) -> Iterable[Tuple[bool, Dict[str, Any]]]:
    """
    Send a bulk request to elasticsearch and process the output.
    """
    with client._otel.use_span(otel_span):
        if isinstance(ignore_status, int):
            ignore_status = (ignore_status,)

        try:
            # send the actual request
            resp = client.bulk(*args, operations=bulk_actions, **kwargs)  # type: ignore[arg-type]
        except ApiError as e:
            gen = _process_bulk_chunk_error(
                error=e,
                bulk_data=bulk_data,
                ignore_status=ignore_status,
                raise_on_exception=raise_on_exception,
                raise_on_error=raise_on_error,
            )
        else:
            gen = _process_bulk_chunk_success(
                resp=resp.body,
                bulk_data=bulk_data,
                ignore_status=ignore_status,
                raise_on_error=raise_on_error,
            )
        yield from gen


def streaming_bulk(
    client: Elasticsearch,
    actions: Iterable[_TYPE_BULK_ACTION],
    chunk_size: int = 500,
    max_chunk_bytes: int = 100 * 1024 * 1024,
    raise_on_error: bool = True,
    expand_action_callback: Callable[
        [_TYPE_BULK_ACTION], _TYPE_BULK_ACTION_HEADER_AND_BODY
    ] = expand_action,
    raise_on_exception: bool = True,
    max_retries: int = 0,
    initial_backoff: float = 2,
    max_backoff: float = 600,
    yield_ok: bool = True,
    ignore_status: Union[int, Collection[int]] = (),
    retry_on_status: Union[int, Collection[int]] = (429,),
    span_name: str = "helpers.streaming_bulk",
    *args: Any,
    **kwargs: Any,
) -> Iterable[Tuple[bool, Dict[str, Any]]]:
    """
    Streaming bulk consumes actions from the iterable passed in and yields
    results per action. For non-streaming usecases use
    :func:`~elasticsearch.helpers.bulk` which is a wrapper around streaming
    bulk that returns summary information about the bulk operation once the
    entire input is consumed and sent.

    If you specify ``max_retries`` it will also retry any documents that were
    rejected with a ``429`` status code. Use ``retry_on_status`` to
    configure which status codes will be retried. To do this it will wait
    (**by calling time.sleep which will block**) for ``initial_backoff`` seconds
    and then, every subsequent rejection for the same chunk, for double the time
    every time up to ``max_backoff`` seconds.

    :arg client: instance of :class:`~elasticsearch.Elasticsearch` to use
    :arg actions: iterable containing the actions to be executed
    :arg chunk_size: number of docs in one chunk sent to es (default: 500)
    :arg max_chunk_bytes: the maximum size of the request in bytes (default: 100MB)
    :arg raise_on_error: raise ``BulkIndexError`` containing errors (as `.errors`)
        from the execution of the last chunk when some occur. By default we raise.
    :arg raise_on_exception: if ``False`` then don't propagate exceptions from
        call to ``bulk`` and just report the items that failed as failed.
    :arg expand_action_callback: callback executed on each action passed in,
        should return a tuple containing the action line and the data line
        (`None` if data line should be omitted).
    :arg retry_on_status: HTTP status code that will trigger a retry.
        (if `None` is specified only status 429 will retry).
    :arg max_retries: maximum number of times a document will be retried when
        retry_on_status (defaulting to ``429``) is received,
        set to 0 (default) for no retries
    :arg initial_backoff: number of seconds we should wait before the first
        retry. Any subsequent retries will be powers of ``initial_backoff *
        2**retry_number``
    :arg max_backoff: maximum number of seconds a retry will wait
    :arg yield_ok: if set to False will skip successful documents in the output
    :arg ignore_status: list of HTTP status code that you want to ignore
    """
    with client._otel.helpers_span(span_name) as otel_span:
        client = client.options()
        client._client_meta = (("h", "bp"),)

        if isinstance(retry_on_status, int):
            retry_on_status = (retry_on_status,)

        serializer = client.transport.serializers.get_serializer("application/json")

        bulk_data: List[
            Union[
                Tuple[_TYPE_BULK_ACTION_HEADER],
                Tuple[_TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY],
            ]
        ]
        bulk_actions: List[bytes]
        for bulk_data, bulk_actions in _chunk_actions(
            map(expand_action_callback, actions),
            chunk_size,
            max_chunk_bytes,
            serializer,
        ):
            for attempt in range(max_retries + 1):
                to_retry: List[bytes] = []
                to_retry_data: List[
                    Union[
                        Tuple[_TYPE_BULK_ACTION_HEADER],
                        Tuple[_TYPE_BULK_ACTION_HEADER, _TYPE_BULK_ACTION_BODY],
                    ]
                ] = []
                if attempt:
                    time.sleep(min(max_backoff, initial_backoff * 2 ** (attempt - 1)))

                try:
                    for data, (ok, info) in zip(
                        bulk_data,
                        _process_bulk_chunk(
                            client,
                            bulk_actions,
                            bulk_data,
                            otel_span,
                            raise_on_exception,
                            raise_on_error,
                            ignore_status,
                            *args,
                            **kwargs,
                        ),
                    ):
                        if not ok:
                            action, info = info.popitem()
                            # retry if retries enabled, we are not in the last attempt,
                            # and status in retry_on_status (defaulting to 429)
                            if (
                                max_retries
                                and info["status"] in retry_on_status
                                and (attempt + 1) <= max_retries
                            ):
                                # _process_bulk_chunk expects bytes so we need to
                                # re-serialize the data
                                to_retry.extend(map(serializer.dumps, data))
                                to_retry_data.append(data)
                            else:
                                yield ok, {action: info}
                        elif yield_ok:
                            yield ok, info

                except ApiError as e:
                    # suppress any status in retry_on_status (429 by default)
                    # since we will retry them
                    if attempt == max_retries or e.status_code not in retry_on_status:
                        raise
                else:
                    if not to_retry:
                        break
                    # retry only subset of documents that didn't succeed
                    bulk_actions, bulk_data = to_retry, to_retry_data


def bulk(
    client: Elasticsearch,
    actions: Iterable[_TYPE_BULK_ACTION],
    stats_only: bool = False,
    ignore_status: Union[int, Collection[int]] = (),
    *args: Any,
    **kwargs: Any,
) -> Tuple[int, Union[int, List[Dict[str, Any]]]]:
    """
    Helper for the :meth:`~elasticsearch.Elasticsearch.bulk` api that provides
    a more human friendly interface - it consumes an iterator of actions and
    sends them to elasticsearch in chunks. It returns a tuple with summary
    information - number of successfully executed actions and either list of
    errors or number of errors if ``stats_only`` is set to ``True``. Note that
    by default we raise a ``BulkIndexError`` when we encounter an error so
    options like ``stats_only`` only apply when ``raise_on_error`` is set to
    ``False``.

    When errors are being collected original document data is included in the
    error dictionary which can lead to an extra high memory usage. If you need
    to process a lot of data and want to ignore/collect errors please consider
    using the :func:`~elasticsearch.helpers.streaming_bulk` helper which will
    just return the errors and not store them in memory.


    :arg client: instance of :class:`~elasticsearch.Elasticsearch` to use
    :arg actions: iterator containing the actions
    :arg stats_only: if `True` only report number of successful/failed
        operations instead of just number of successful and a list of error responses
    :arg ignore_status: list of HTTP status code that you want to ignore

    Any additional keyword arguments will be passed to
    :func:`~elasticsearch.helpers.streaming_bulk` which is used to execute
    the operation, see :func:`~elasticsearch.helpers.streaming_bulk` for more
    accepted parameters.
    """
    success, failed = 0, 0

    # list of errors to be collected is not stats_only
    errors = []

    # make streaming_bulk yield successful results so we can count them
    kwargs["yield_ok"] = True
    for ok, item in streaming_bulk(
        client, actions, ignore_status=ignore_status, span_name="helpers.bulk", *args, **kwargs  # type: ignore[misc]
    ):
        # go through request-response pairs and detect failures
        if not ok:
            if not stats_only:
                errors.append(item)
            failed += 1
        else:
            success += 1

    return success, failed if stats_only else errors


def parallel_bulk(
    client: Elasticsearch,
    actions: Iterable[_TYPE_BULK_ACTION],
    thread_count: int = 4,
    chunk_size: int = 500,
    max_chunk_bytes: int = 100 * 1024 * 1024,
    queue_size: int = 4,
    expand_action_callback: Callable[
        [_TYPE_BULK_ACTION], _TYPE_BULK_ACTION_HEADER_AND_BODY
    ] = expand_action,
    ignore_status: Union[int, Collection[int]] = (),
    *args: Any,
    **kwargs: Any,
) -> Iterable[Tuple[bool, Any]]:
    """
    Parallel version of the bulk helper run in multiple threads at once.

    :arg client: instance of :class:`~elasticsearch.Elasticsearch` to use
    :arg actions: iterator containing the actions
    :arg thread_count: size of the threadpool to use for the bulk requests
    :arg chunk_size: number of docs in one chunk sent to es (default: 500)
    :arg max_chunk_bytes: the maximum size of the request in bytes (default: 100MB)
    :arg raise_on_error: raise ``BulkIndexError`` containing errors (as `.errors`)
        from the execution of the last chunk when some occur. By default we raise.
    :arg raise_on_exception: if ``False`` then don't propagate exceptions from
        call to ``bulk`` and just report the items that failed as failed.
    :arg expand_action_callback: callback executed on each action passed in,
        should return a tuple containing the action line and the data line
        (`None` if data line should be omitted).
    :arg queue_size: size of the task queue between the main thread (producing
        chunks to send) and the processing threads.
    :arg ignore_status: list of HTTP status code that you want to ignore
    """
    # Avoid importing multiprocessing unless parallel_bulk is used
    # to avoid exceptions on restricted environments like App Engine
    from multiprocessing.pool import ThreadPool

    expanded_actions = map(expand_action_callback, actions)
    serializer = client.transport.serializers.get_serializer("application/json")

    class BlockingPool(ThreadPool):
        def _setup_queues(self) -> None:
            super()._setup_queues()  # type: ignore[misc]
            # The queue must be at least the size of the number of threads to
            # prevent hanging when inserting sentinel values during teardown.
            self._inqueue: Queue[
                Tuple[
                    List[
                        Union[
                            Tuple[Dict[str, Any]], Tuple[Dict[str, Any], Dict[str, Any]]
                        ]
                    ],
                    List[bytes],
                ]
            ] = Queue(max(queue_size, thread_count))
            self._quick_put = self._inqueue.put

    with client._otel.helpers_span("helpers.parallel_bulk") as otel_span:
        pool = BlockingPool(thread_count)

        try:
            for result in pool.imap(
                lambda bulk_chunk: list(
                    _process_bulk_chunk(
                        client,
                        bulk_chunk[1],
                        bulk_chunk[0],
                        otel_span=otel_span,
                        ignore_status=ignore_status,  # type: ignore[misc]
                        *args,
                        **kwargs,
                    )
                ),
                _chunk_actions(
                    expanded_actions, chunk_size, max_chunk_bytes, serializer
                ),
            ):
                yield from result

        finally:
            pool.close()
            pool.join()


def scan(
    client: Elasticsearch,
    query: Optional[Any] = None,
    scroll: str = "5m",
    raise_on_error: bool = True,
    preserve_order: bool = False,
    size: int = 1000,
    request_timeout: Optional[float] = None,
    clear_scroll: bool = True,
    scroll_kwargs: Optional[MutableMapping[str, Any]] = None,
    **kwargs: Any,
) -> Iterable[Dict[str, Any]]:
    """
    Simple abstraction on top of the
    :meth:`~elasticsearch.Elasticsearch.scroll` api - a simple iterator that
    yields all hits as returned by underlining scroll requests.

    By default scan does not return results in any pre-determined order. To
    have a standard order in the returned documents (either by score or
    explicit sort definition) when scrolling, use ``preserve_order=True``. This
    may be an expensive operation and will negate the performance benefits of
    using ``scan``.

    :arg client: instance of :class:`~elasticsearch.Elasticsearch` to use
    :arg query: body for the :meth:`~elasticsearch.Elasticsearch.search` api
    :arg scroll: Specify how long a consistent view of the index should be
        maintained for scrolled search
    :arg raise_on_error: raises an exception (``ScanError``) if an error is
        encountered (some shards fail to execute). By default we raise.
    :arg preserve_order: don't set the ``search_type`` to ``scan`` - this will
        cause the scroll to paginate with preserving the order. Note that this
        can be an extremely expensive operation and can easily lead to
        unpredictable results, use with caution.
    :arg size: size (per shard) of the batch send at each iteration.
    :arg request_timeout: explicit timeout for each call to ``scan``
    :arg clear_scroll: explicitly calls delete on the scroll id via the clear
        scroll API at the end of the method on completion or error, defaults
        to true.
    :arg scroll_kwargs: additional kwargs to be passed to
        :meth:`~elasticsearch.Elasticsearch.scroll`

    Any additional keyword arguments will be passed to the initial
    :meth:`~elasticsearch.Elasticsearch.search` call::

        scan(client,
            query={"query": {"match": {"title": "python"}}},
            index="orders-*",
            doc_type="books"
        )

    """
    scroll_kwargs = scroll_kwargs or {}
    if not preserve_order:
        query = query.copy() if query else {}
        query["sort"] = "_doc"

    def pop_transport_kwargs(kw: MutableMapping[str, Any]) -> Dict[str, Any]:
        # Grab options that should be propagated to every
        # API call within this helper instead of just 'search()'
        transport_kwargs = {}
        for key in (
            "headers",
            "api_key",
            "http_auth",
            "basic_auth",
            "bearer_auth",
            "opaque_id",
        ):
            try:
                value = kw.pop(key)
                if key == "http_auth":
                    key = "basic_auth"
                transport_kwargs[key] = value
            except KeyError:
                pass
        return transport_kwargs

    client = client.options(
        request_timeout=request_timeout, **pop_transport_kwargs(kwargs)
    )
    client._client_meta = (("h", "s"),)

    # Setting query={"from": ...} would make 'from' be used
    # as a keyword argument instead of 'from_'. We handle that here.
    def normalize_from_keyword(kw: MutableMapping[str, Any]) -> None:
        if "from" in kw:
            kw["from_"] = kw.pop("from")

    normalize_from_keyword(kwargs)
    try:
        search_kwargs = query.copy() if query else {}
        normalize_from_keyword(search_kwargs)
        search_kwargs.update(kwargs)
        search_kwargs["scroll"] = scroll
        search_kwargs["size"] = size
        resp = client.search(**search_kwargs)

    # Try the old deprecated way if we fail immediately on parameters.
    except TypeError:
        search_kwargs = kwargs.copy()
        search_kwargs["scroll"] = scroll
        search_kwargs["size"] = size
        resp = client.search(body=query, **search_kwargs)

    scroll_id = resp.get("_scroll_id")
    scroll_transport_kwargs = pop_transport_kwargs(scroll_kwargs)
    if scroll_transport_kwargs:
        scroll_client = client.options(**scroll_transport_kwargs)
    else:
        scroll_client = client

    try:
        while scroll_id and resp["hits"]["hits"]:
            yield from resp["hits"]["hits"]

            # Default to 0 if the value isn't included in the response
            shards_info: Dict[str, int] = resp["_shards"]
            shards_successful = shards_info.get("successful", 0)
            shards_skipped = shards_info.get("skipped", 0)
            shards_total = shards_info.get("total", 0)

            # check if we have any errors
            if (shards_successful + shards_skipped) < shards_total:
                shards_message = "Scroll request has only succeeded on %d (+%d skipped) shards out of %d."
                logger.warning(
                    shards_message,
                    shards_successful,
                    shards_skipped,
                    shards_total,
                )
                if raise_on_error:
                    raise ScanError(
                        scroll_id,
                        shards_message
                        % (
                            shards_successful,
                            shards_skipped,
                            shards_total,
                        ),
                    )
            resp = scroll_client.scroll(
                scroll_id=scroll_id, scroll=scroll, **scroll_kwargs
            )
            scroll_id = resp.get("_scroll_id")

    finally:
        if scroll_id and clear_scroll:
            client.options(ignore_status=404).clear_scroll(scroll_id=scroll_id)


def reindex(
    client: Elasticsearch,
    source_index: Union[str, Collection[str]],
    target_index: str,
    query: Optional[Any] = None,
    target_client: Optional[Elasticsearch] = None,
    chunk_size: int = 500,
    scroll: str = "5m",
    op_type: Optional[str] = None,
    scan_kwargs: MutableMapping[str, Any] = {},
    bulk_kwargs: MutableMapping[str, Any] = {},
) -> Tuple[int, Union[int, List[Dict[str, Any]]]]:
    """
    Reindex all documents from one index that satisfy a given query
    to another, potentially (if `target_client` is specified) on a different cluster.
    If you don't specify the query you will reindex all the documents.

    Since ``2.3`` a :meth:`~elasticsearch.Elasticsearch.reindex` api is
    available as part of elasticsearch itself. It is recommended to use the api
    instead of this helper wherever possible. The helper is here mostly for
    backwards compatibility and for situations where more flexibility is
    needed.

    .. note::

        This helper doesn't transfer mappings, just the data.

    :arg client: instance of :class:`~elasticsearch.Elasticsearch` to use (for
        read if `target_client` is specified as well)
    :arg source_index: index (or list of indices) to read documents from
    :arg target_index: name of the index in the target cluster to populate
    :arg query: body for the :meth:`~elasticsearch.Elasticsearch.search` api
    :arg target_client: optional, is specified will be used for writing (thus
        enabling reindex between clusters)
    :arg chunk_size: number of docs in one chunk sent to es (default: 500)
    :arg scroll: Specify how long a consistent view of the index should be
        maintained for scrolled search
    :arg op_type: Explicit operation type. Defaults to '_index'. Data streams must
        be set to 'create'. If not specified, will auto-detect if target_index is a
        data stream.
    :arg scan_kwargs: additional kwargs to be passed to
        :func:`~elasticsearch.helpers.scan`
    :arg bulk_kwargs: additional kwargs to be passed to
        :func:`~elasticsearch.helpers.bulk`
    """
    target_client = client if target_client is None else target_client
    docs = scan(client, query=query, index=source_index, scroll=scroll, **scan_kwargs)

    def _change_doc_index(
        hits: Iterable[Dict[str, Any]], index: str, op_type: Optional[str]
    ) -> Iterable[Dict[str, Any]]:
        for h in hits:
            h["_index"] = index
            if op_type is not None:
                h["_op_type"] = op_type
            if "fields" in h:
                h.update(h.pop("fields"))
            yield h

    kwargs = {"stats_only": True}
    kwargs.update(bulk_kwargs)

    is_data_stream = False
    try:
        # Verify if the target_index is data stream or index
        data_streams = target_client.indices.get_data_stream(
            name=target_index, expand_wildcards="all"
        )
        is_data_stream = any(
            data_stream["name"] == target_index
            for data_stream in data_streams["data_streams"]
        )
    except (TransportError, KeyError, NotFoundError):
        # If its not data stream, might be index
        pass

    if is_data_stream:
        if op_type not in (None, "create"):
            raise ValueError("Data streams must have 'op_type' set to 'create'")
        else:
            op_type = "create"

    return bulk(
        target_client,
        _change_doc_index(docs, target_index, op_type),
        chunk_size=chunk_size,
        **kwargs,
    )