1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Tuple, Union, cast
from elasticsearch import Elasticsearch
from elasticsearch.helpers.vectorstore._sync._utils import model_must_be_deployed
from elasticsearch.helpers.vectorstore._utils import DistanceMetric
class RetrievalStrategy(ABC):
@abstractmethod
def es_query(
self,
*,
query: Optional[str],
query_vector: Optional[List[float]],
text_field: str,
vector_field: str,
k: int,
num_candidates: int,
filter: List[Dict[str, Any]] = [],
) -> Dict[str, Any]:
"""
Returns the Elasticsearch query body for the given parameters.
The store will execute the query.
:param query: The text query. Can be None if query_vector is given.
:param k: The total number of results to retrieve.
:param num_candidates: The number of results to fetch initially in knn search.
:param filter: List of filter clauses to apply to the query.
:param query_vector: The query vector. Can be None if a query string is given.
:return: The Elasticsearch query body.
"""
@abstractmethod
def es_mappings_settings(
self,
*,
text_field: str,
vector_field: str,
num_dimensions: Optional[int],
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
Create the required index and do necessary preliminary work, like
creating inference pipelines or checking if a required model was deployed.
:param client: Elasticsearch client connection.
:param text_field: The field containing the text data in the index.
:param vector_field: The field containing the vector representations in the index.
:param num_dimensions: If vectors are indexed, how many dimensions do they have.
:return: Dictionary with field and field type pairs that describe the schema.
"""
def before_index_creation(
self, *, client: Elasticsearch, text_field: str, vector_field: str
) -> None:
"""
Executes before the index is created. Used for setting up
any required Elasticsearch resources like a pipeline.
Defaults to a no-op.
:param client: The Elasticsearch client.
:param text_field: The field containing the text data in the index.
:param vector_field: The field containing the vector representations in the index.
"""
pass
def needs_inference(self) -> bool:
"""
Some retrieval strategies index embedding vectors and allow search by embedding
vector, for example the `DenseVectorStrategy` strategy. Mapping a user input query
string to an embedding vector is called inference. Inference can be applied
in Elasticsearch (using a `model_id`) or outside of Elasticsearch (using an
`EmbeddingService` defined on the `VectorStore`). In the latter case,
this method has to return True.
"""
return False
class SparseVectorStrategy(RetrievalStrategy):
"""Sparse retrieval strategy using the `sparse_vector` processor."""
def __init__(self, model_id: str = ".elser_model_2"):
self.model_id = model_id
self._tokens_field = "tokens"
self._pipeline_name = f"{self.model_id}_sparse_embedding"
def es_query(
self,
*,
query: Optional[str],
query_vector: Optional[List[float]],
text_field: str,
vector_field: str,
k: int,
num_candidates: int,
filter: List[Dict[str, Any]] = [],
) -> Dict[str, Any]:
if query_vector:
raise ValueError(
"Cannot do sparse retrieval with a query_vector. "
"Inference is currently always applied in Elasticsearch."
)
if query is None:
raise ValueError("please specify a query string")
return {
"query": {
"bool": {
"must": [
{
"sparse_vector": {
"field": f"{vector_field}.{self._tokens_field}",
"inference_id": self.model_id,
"query": query,
}
}
],
"filter": filter,
}
}
}
def es_mappings_settings(
self,
*,
text_field: str,
vector_field: str,
num_dimensions: Optional[int],
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
mappings: Dict[str, Any] = {
"properties": {
vector_field: {
"properties": {self._tokens_field: {"type": "sparse_vector"}}
}
}
}
settings = {"default_pipeline": self._pipeline_name}
return mappings, settings
def before_index_creation(
self, *, client: Elasticsearch, text_field: str, vector_field: str
) -> None:
if self.model_id:
model_must_be_deployed(client, self.model_id)
# Create a pipeline for the model
client.ingest.put_pipeline(
id=self._pipeline_name,
description="Embedding pipeline for Python VectorStore",
processors=[
{
"inference": {
"model_id": self.model_id,
"input_output": [
{
"input_field": text_field,
"output_field": f"{vector_field}.{self._tokens_field}",
},
],
}
}
],
)
class DenseVectorStrategy(RetrievalStrategy):
"""K-nearest-neighbors retrieval."""
def __init__(
self,
*,
distance: DistanceMetric = DistanceMetric.COSINE,
model_id: Optional[str] = None,
hybrid: bool = False,
rrf: Union[bool, Dict[str, Any]] = True,
text_field: Optional[str] = "text_field",
):
if hybrid and not text_field:
raise ValueError(
"to enable hybrid you have to specify a text_field (for BM25Strategy matching)"
)
self.distance = distance
self.model_id = model_id
self.hybrid = hybrid
self.rrf = rrf
self.text_field = text_field
def es_query(
self,
*,
query: Optional[str],
query_vector: Optional[List[float]],
text_field: str,
vector_field: str,
k: int,
num_candidates: int,
filter: List[Dict[str, Any]] = [],
) -> Dict[str, Any]:
knn = {
"filter": filter,
"field": vector_field,
"k": k,
"num_candidates": num_candidates,
}
if query_vector is not None:
knn["query_vector"] = query_vector
else:
# Inference in Elasticsearch. When initializing we make sure to always have
# a model_id if don't have an embedding_service.
knn["query_vector_builder"] = {
"text_embedding": {
"model_id": self.model_id,
"model_text": query,
}
}
if self.hybrid:
return self._hybrid(query=cast(str, query), knn=knn, filter=filter)
return {"knn": knn}
def es_mappings_settings(
self,
*,
text_field: str,
vector_field: str,
num_dimensions: Optional[int],
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
if self.distance is DistanceMetric.COSINE:
similarity = "cosine"
elif self.distance is DistanceMetric.EUCLIDEAN_DISTANCE:
similarity = "l2_norm"
elif self.distance is DistanceMetric.DOT_PRODUCT:
similarity = "dot_product"
elif self.distance is DistanceMetric.MAX_INNER_PRODUCT:
similarity = "max_inner_product"
else:
raise ValueError(f"Similarity {self.distance} not supported.")
mappings: Dict[str, Any] = {
"properties": {
vector_field: {
"type": "dense_vector",
"dims": num_dimensions,
"index": True,
"similarity": similarity,
},
}
}
return mappings, {}
def before_index_creation(
self, *, client: Elasticsearch, text_field: str, vector_field: str
) -> None:
if self.model_id:
model_must_be_deployed(client, self.model_id)
def _hybrid(
self, query: str, knn: Dict[str, Any], filter: List[Dict[str, Any]]
) -> Dict[str, Any]:
# Add a query to the knn query.
# RRF is used to even the score from the knn query and text query
# RRF has two optional parameters: {'rank_constant':int, 'rank_window_size':int}
# https://www.elastic.co/guide/en/elasticsearch/reference/current/rrf.html
standard_query = {
"query": {
"bool": {
"must": [
{
"match": {
self.text_field: {
"query": query,
}
}
}
],
"filter": filter,
}
}
}
if self.rrf is False:
query_body = {
"knn": knn,
**standard_query,
}
else:
rrf_options = {}
if isinstance(self.rrf, Dict):
if "rank_constant" in self.rrf:
rrf_options["rank_constant"] = self.rrf["rank_constant"]
if "window_size" in self.rrf:
# 'window_size' was renamed to 'rank_window_size', but we support
# the older name for backwards compatibility
rrf_options["rank_window_size"] = self.rrf["window_size"]
if "rank_window_size" in self.rrf:
rrf_options["rank_window_size"] = self.rrf["rank_window_size"]
query_body = {
"retriever": {
"rrf": {
"retrievers": [
{"standard": standard_query},
{"knn": knn},
],
**rrf_options,
},
},
}
return query_body
def needs_inference(self) -> bool:
return not self.model_id
class DenseVectorScriptScoreStrategy(RetrievalStrategy):
"""Exact nearest neighbors retrieval using the `script_score` query."""
def __init__(self, distance: DistanceMetric = DistanceMetric.COSINE) -> None:
self.distance = distance
def es_query(
self,
*,
query: Optional[str],
query_vector: Optional[List[float]],
text_field: str,
vector_field: str,
k: int,
num_candidates: int,
filter: List[Dict[str, Any]] = [],
) -> Dict[str, Any]:
if not query_vector:
raise ValueError("specify a query_vector")
if self.distance is DistanceMetric.COSINE:
similarity_algo = (
f"cosineSimilarity(params.query_vector, '{vector_field}') + 1.0"
)
elif self.distance is DistanceMetric.EUCLIDEAN_DISTANCE:
similarity_algo = f"1 / (1 + l2norm(params.query_vector, '{vector_field}'))"
elif self.distance is DistanceMetric.DOT_PRODUCT:
similarity_algo = f"""
double value = dotProduct(params.query_vector, '{vector_field}');
return sigmoid(1, Math.E, -value);
"""
elif self.distance is DistanceMetric.MAX_INNER_PRODUCT:
similarity_algo = f"""
double value = dotProduct(params.query_vector, '{vector_field}');
if (dotProduct < 0) {{
return 1 / (1 + -1 * dotProduct);
}}
return dotProduct + 1;
"""
else:
raise ValueError(f"Similarity {self.distance} not supported.")
query_bool: Dict[str, Any] = {"match_all": {}}
if filter:
query_bool = {"bool": {"filter": filter}}
return {
"query": {
"script_score": {
"query": query_bool,
"script": {
"source": similarity_algo,
"params": {"query_vector": query_vector},
},
},
}
}
def es_mappings_settings(
self,
*,
text_field: str,
vector_field: str,
num_dimensions: Optional[int],
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
mappings = {
"properties": {
vector_field: {
"type": "dense_vector",
"dims": num_dimensions,
"index": False,
}
}
}
return mappings, {}
def needs_inference(self) -> bool:
return True
class BM25Strategy(RetrievalStrategy):
def __init__(
self,
k1: Optional[float] = None,
b: Optional[float] = None,
):
self.k1 = k1
self.b = b
def es_query(
self,
*,
query: Optional[str],
query_vector: Optional[List[float]],
text_field: str,
vector_field: str,
k: int,
num_candidates: int,
filter: List[Dict[str, Any]] = [],
) -> Dict[str, Any]:
return {
"query": {
"bool": {
"must": [
{
"match": {
text_field: {
"query": query,
}
},
},
],
"filter": filter,
},
},
}
def es_mappings_settings(
self,
*,
text_field: str,
vector_field: str,
num_dimensions: Optional[int],
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
similarity_name = "custom_bm25"
mappings: Dict[str, Any] = {
"properties": {
text_field: {
"type": "text",
"similarity": similarity_name,
},
},
}
bm25: Dict[str, Any] = {
"type": "BM25",
}
if self.k1 is not None:
bm25["k1"] = self.k1
if self.b is not None:
bm25["b"] = self.b
settings = {
"similarity": {
similarity_name: bm25,
}
}
return mappings, settings
|