1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
# Vector database example
Requirements:
$ pip install nltk sentence_transformers tqdm "elasticsearch"
To run the example:
$ python vectors.py "text to search"
The index will be created automatically if it does not exist. Add
`--recreate-index` to regenerate it.
The example dataset includes a selection of workplace documents. The
following are good example queries to try out with this dataset:
$ python vectors.py "work from home"
$ python vectors.py "vacation time"
$ python vectors.py "can I bring a bird to work?"
When the index is created, the documents are split into short passages, and for
each passage an embedding is generated using the open source
"all-MiniLM-L6-v2" model. The documents that are returned as search results are
those that have the highest scored passages. Add `--show-inner-hits` to the
command to see individual passage results as well.
"""
import argparse
import json
import os
from datetime import datetime
from typing import Any, List, Optional, cast
from urllib.request import urlopen
import nltk
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from elasticsearch.dsl import (
DenseVector,
Document,
InnerDoc,
Keyword,
M,
Search,
connections,
mapped_field,
)
DATASET_URL = "https://raw.githubusercontent.com/elastic/elasticsearch-labs/main/datasets/workplace-documents.json"
MODEL_NAME = "all-MiniLM-L6-v2"
# initialize sentence tokenizer
nltk.download("punkt_tab", quiet=True)
# this will be the embedding model
embedding_model: Any = None
class Passage(InnerDoc):
content: str
embedding: List[float] = mapped_field(DenseVector())
class WorkplaceDoc(Document):
class Index:
name = "workplace_documents"
name: str
summary: str
content: str
created: datetime
updated: Optional[datetime]
url: str = mapped_field(Keyword(required=True))
category: str = mapped_field(Keyword(required=True))
passages: M[List[Passage]] = mapped_field(default=[])
@classmethod
def get_embedding(cls, input: str) -> List[float]:
global embedding_model
if embedding_model is None:
embedding_model = SentenceTransformer(MODEL_NAME)
return cast(List[float], list(embedding_model.encode(input)))
def clean(self) -> None:
# split the content into sentences
passages = cast(List[str], nltk.sent_tokenize(self.content))
# generate an embedding for each passage and save it as a nested document
for passage in passages:
self.passages.append(
Passage(content=passage, embedding=self.get_embedding(passage))
)
def create() -> None:
# create the index
WorkplaceDoc._index.delete(ignore_unavailable=True)
WorkplaceDoc.init()
# download the data
dataset = json.loads(urlopen(DATASET_URL).read())
# import the dataset
for data in tqdm(dataset, desc="Indexing documents..."):
doc = WorkplaceDoc(
name=data["name"],
summary=data["summary"],
content=data["content"],
created=data.get("created_on"),
updated=data.get("updated_at"),
url=data["url"],
category=data["category"],
)
doc.save()
def search(query: str) -> Search[WorkplaceDoc]:
return WorkplaceDoc.search().knn(
field=WorkplaceDoc.passages.embedding,
k=5,
num_candidates=50,
query_vector=list(WorkplaceDoc.get_embedding(query)),
inner_hits={"size": 2},
)
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Vector database with Elasticsearch")
parser.add_argument(
"--recreate-index", action="store_true", help="Recreate and populate the index"
)
parser.add_argument(
"--show-inner-hits",
action="store_true",
help="Show results for individual passages",
)
parser.add_argument("query", action="store", help="The search query")
return parser.parse_args()
def main() -> None:
args = parse_args()
# initiate the default connection to elasticsearch
connections.create_connection(hosts=[os.environ["ELASTICSEARCH_URL"]])
if args.recreate_index or not WorkplaceDoc._index.exists():
create()
results = search(args.query)
for hit in results:
print(
f"Document: {hit.name} [Category: {hit.category}] [Score: {hit.meta.score}]"
)
print(f"Summary: {hit.summary}")
if args.show_inner_hits:
for passage in hit.meta.inner_hits["passages"]:
print(f" - [Score: {passage.meta.score}] {passage.content!r}")
print("")
# close the connection
connections.get_connection().close()
if __name__ == "__main__":
main()
|