File: test_embedding_service.py

package info (click to toggle)
python-elasticsearch 9.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 22,728 kB
  • sloc: python: 104,053; makefile: 151; javascript: 75
file content (91 lines) | stat: -rw-r--r-- 3,441 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#  Licensed to Elasticsearch B.V. under one or more contributor
#  license agreements. See the NOTICE file distributed with
#  this work for additional information regarding copyright
#  ownership. Elasticsearch B.V. licenses this file to you under
#  the Apache License, Version 2.0 (the "License"); you may
#  not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
# 	http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing,
#  software distributed under the License is distributed on an
#  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#  KIND, either express or implied.  See the License for the
#  specific language governing permissions and limitations
#  under the License.

import os
import re

import pytest

from elasticsearch import Elasticsearch
from elasticsearch.helpers.vectorstore import ElasticsearchEmbeddings
from elasticsearch.helpers.vectorstore._sync._utils import model_is_deployed

# deployed with
# https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-text-emb-vector-search-example.html
MODEL_ID = os.getenv("MODEL_ID", "sentence-transformers__all-minilm-l6-v2")
NUM_DIMENSIONS = int(os.getenv("NUM_DIMENSIONS", "384"))


def test_elasticsearch_embedding_documents(sync_client: Elasticsearch) -> None:
    """Test Elasticsearch embedding documents."""

    if not model_is_deployed(sync_client, MODEL_ID):
        pytest.skip(f"{MODEL_ID} model is not deployed in ML Node, skipping test")

    documents = ["foo bar", "bar foo", "foo"]
    embedding = ElasticsearchEmbeddings(
        client=sync_client, user_agent="test", model_id=MODEL_ID
    )
    output = embedding.embed_documents(documents)
    assert len(output) == 3
    assert len(output[0]) == NUM_DIMENSIONS
    assert len(output[1]) == NUM_DIMENSIONS
    assert len(output[2]) == NUM_DIMENSIONS


def test_elasticsearch_embedding_query(sync_client: Elasticsearch) -> None:
    """Test Elasticsearch embedding query."""

    if not model_is_deployed(sync_client, MODEL_ID):
        pytest.skip(f"{MODEL_ID} model is not deployed in ML Node, skipping test")

    document = "foo bar"
    embedding = ElasticsearchEmbeddings(
        client=sync_client, user_agent="test", model_id=MODEL_ID
    )
    output = embedding.embed_query(document)
    assert len(output) == NUM_DIMENSIONS


def test_user_agent_default(
    sync_client: Elasticsearch, sync_client_request_saving: Elasticsearch
) -> None:
    """Test to make sure the user-agent is set correctly."""

    if not model_is_deployed(sync_client, MODEL_ID):
        pytest.skip(f"{MODEL_ID} model is not deployed in ML Node, skipping test")

    embeddings = ElasticsearchEmbeddings(
        client=sync_client_request_saving, model_id=MODEL_ID
    )

    expected_pattern = r"^elasticsearch-py-es/\d+\.\d+\.\d+$"

    got_agent = embeddings.client._headers["User-Agent"]
    assert (
        re.match(expected_pattern, got_agent) is not None
    ), f"The user agent '{got_agent}' does not match the expected pattern."

    embeddings.embed_query("foo bar")

    requests = embeddings.client.transport.requests  # type: ignore
    assert len(requests) == 1

    got_request_agent = requests[0]["headers"]["User-Agent"]
    assert (
        re.match(expected_pattern, got_request_agent) is not None
    ), f"The user agent '{got_request_agent}' does not match the expected pattern."