1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
|
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import json
import re
import subprocess
import textwrap
from urllib.error import HTTPError
from urllib.request import urlopen
from jinja2 import Environment, PackageLoader, select_autoescape
jinja_env = Environment(
loader=PackageLoader("utils"),
autoescape=select_autoescape(),
trim_blocks=True,
lstrip_blocks=True,
)
field_py = jinja_env.get_template("field.py.tpl")
query_py = jinja_env.get_template("query.py.tpl")
aggs_py = jinja_env.get_template("aggs.py.tpl")
response_init_py = jinja_env.get_template("response.__init__.py.tpl")
types_py = jinja_env.get_template("types.py.tpl")
# map with name replacements for Elasticsearch attributes
PROP_REPLACEMENTS = {"from": "from_", "global": "global_"}
# map with Elasticsearch type replacements
# keys and values are in given in "{namespace}:{name}" format
TYPE_REPLACEMENTS = {
"_types.query_dsl:DistanceFeatureQuery": "_types.query_dsl:DistanceFeatureQueryBase",
}
# some aggregation types are complicated to determine from the schema, so they
# have their correct type here
AGG_TYPES = {
"bucket_count_ks_test": "Pipeline",
"bucket_correlation": "Pipeline",
"bucket_sort": "Bucket",
"categorize_text": "Bucket",
"filter": "Bucket",
"moving_avg": "Pipeline",
"variable_width_histogram": "Bucket",
}
def property_to_class_name(name):
return "".join([w.title() if w != "ip" else "IP" for w in name.split("_")])
def wrapped_doc(text, width=70, initial_indent="", subsequent_indent=""):
"""Formats a docstring as a list of lines of up to the request width."""
return textwrap.wrap(
text.replace("\n", " "),
width=width,
initial_indent=initial_indent,
subsequent_indent=subsequent_indent,
)
def add_dict_type(type_):
"""Add Dict[str, Any] to a Python type hint."""
if type_.startswith("Union["):
type_ = f"{type_[:-1]}, Dict[str, Any]]"
else:
type_ = f"Union[{type_}, Dict[str, Any]]"
return type_
def add_seq_dict_type(type_):
"""Add Sequence[Dict[str, Any]] to a Python type hint."""
if type_.startswith("Union["):
type_ = f"{type_[:-1]}, Sequence[Dict[str, Any]]]"
else:
type_ = f"Union[{type_}, Sequence[Dict[str, Any]]]"
return type_
def add_not_set(type_):
"""Add DefaultType to a Python type hint."""
if type_.startswith("Union["):
type_ = f'{type_[:-1]}, "DefaultType"]'
else:
type_ = f'Union[{type_}, "DefaultType"]'
return type_
def type_for_types_py(type_):
"""Converts a type rendered in a generic way to the format needed in the
types.py module.
"""
type_ = type_.replace('"DefaultType"', "DefaultType")
type_ = type_.replace('"InstrumentedField"', "InstrumentedField")
type_ = re.sub(r'"(function\.[a-zA-Z0-9_]+)"', r"\1", type_)
type_ = re.sub(r'"types\.([a-zA-Z0-9_]+)"', r'"\1"', type_)
type_ = re.sub(r'"(wrappers\.[a-zA-Z0-9_]+)"', r"\1", type_)
return type_
class ElasticsearchSchema:
"""Operations related to the Elasticsearch schema."""
def __init__(self, version="main"):
response = None
for branch in [version, "main"]:
url = f"https://raw.githubusercontent.com/elastic/elasticsearch-specification/{branch}/output/schema/schema.json"
try:
response = urlopen(url)
print(f"Initializing code generation with '{branch}' specification.")
break
except HTTPError:
continue
if not response:
raise RuntimeError("Could not download Elasticsearch schema")
self.schema = json.loads(response.read())
# Interfaces collects interfaces that are seen while traversing the schema.
# Any interfaces collected here are then rendered as Python in the
# types.py module.
self.interfaces = []
self.response_interfaces = []
def find_type(self, name, namespace=None):
for t in self.schema["types"]:
if t["name"]["name"] == name and (
namespace is None or t["name"]["namespace"] == namespace
):
return t
def inherits_from(self, type_, name, namespace=None):
while "inherits" in type_:
type_ = self.find_type(
type_["inherits"]["type"]["name"],
type_["inherits"]["type"]["namespace"],
)
if type_["name"]["name"] == name and (
namespace is None or type_["name"]["namespace"] == namespace
):
return True
return False
def get_python_type(self, schema_type, for_response=False):
"""Obtain Python typing details for a given schema type
This method returns a tuple. The first element is a string with the
Python type hint. The second element is a dictionary with Python DSL
specific typing details to be stored in the DslBase._param_defs
attribute (or None if the type does not need to be in _param_defs).
When `for_response` is `False`, any new interfaces that are discovered
are registered to be generated in "request" style, with alternative
Dict type hints and default values. If `for_response` is `True`,
interfaces are generated just with their declared type, without
Dict alternative and without defaults, to help type checkers be more
effective at parsing response expressions.
"""
if schema_type["kind"] == "instance_of":
type_name = schema_type["type"]
if type_name["namespace"] in ["_types", "internal", "_builtins"]:
if type_name["name"] in ["integer", "uint", "long", "ulong"]:
return "int", None
elif type_name["name"] in ["number", "float", "double"]:
return "float", None
elif type_name["name"] == "string":
return "str", None
elif type_name["name"] == "boolean":
return "bool", None
elif type_name["name"] == "binary":
return "bytes", None
elif type_name["name"] == "null":
return "None", None
elif type_name["name"] == "Field":
if for_response:
return "str", None
else:
return 'Union[str, "InstrumentedField"]', None
else:
# not an instance of a native type, so we get the type and try again
return self.get_python_type(
self.find_type(type_name["name"], type_name["namespace"]),
for_response=for_response,
)
elif (
type_name["namespace"] == "_types.query_dsl"
and type_name["name"] == "QueryContainer"
):
# QueryContainer maps to the DSL's Query class
return "Query", {"type": "query"}
elif (
type_name["namespace"] == "_global.search._types"
and type_name["name"] == "SearchRequestBody"
):
# we currently do not provide specific typing for this one
return "Dict[str, Any]", None
elif (
type_name["namespace"] == "_types.query_dsl"
and type_name["name"] == "FunctionScoreContainer"
):
# FunctionScoreContainer maps to the DSL's ScoreFunction class
return "ScoreFunction", {"type": "score_function"}
elif (
type_name["namespace"] == "_types.aggregations"
and type_name["name"] == "Buckets"
):
if for_response:
return "Union[Sequence[Any], Dict[str, Any]]", None
else:
return "Dict[str, Query]", {"type": "query", "hash": True}
elif (
type_name["namespace"] == "_types.aggregations"
and type_name["name"] == "CompositeAggregationSource"
):
# CompositeAggreagationSource maps to the DSL's Agg class
return "Agg[_R]", None
else:
# for any other instances we get the type and recurse
type_ = self.find_type(type_name["name"], type_name["namespace"])
if type_:
return self.get_python_type(type_, for_response=for_response)
elif schema_type["kind"] == "type_alias":
# for an alias, we use the aliased type
return self.get_python_type(schema_type["type"], for_response=for_response)
elif schema_type["kind"] == "array_of":
# for arrays we use Sequence[element_type]
type_, param = self.get_python_type(
schema_type["value"], for_response=for_response
)
return f"Sequence[{type_}]", {**param, "multi": True} if param else None
elif schema_type["kind"] == "dictionary_of":
# for dicts we use Mapping[key_type, value_type]
key_type, key_param = self.get_python_type(
schema_type["key"], for_response=for_response
)
value_type, value_param = self.get_python_type(
schema_type["value"], for_response=for_response
)
return f"Mapping[{key_type}, {value_type}]", (
{**value_param, "hash": True} if value_param else None
)
elif schema_type["kind"] == "union_of":
if (
len(schema_type["items"]) == 2
and schema_type["items"][0]["kind"] == "instance_of"
and schema_type["items"][1]["kind"] == "array_of"
and schema_type["items"][0] == schema_type["items"][1]["value"]
):
# special kind of unions in the form Union[type, Sequence[type]]
type_, param = self.get_python_type(
schema_type["items"][0], for_response=for_response
)
if schema_type["items"][0]["type"]["name"] in [
"CompletionSuggestOption",
"PhraseSuggestOption",
"TermSuggestOption",
]:
# for suggest types we simplify this type and return just the array form
return (
f"Sequence[{type_}]",
({"type": param["type"], "multi": True} if param else None),
)
else:
# for every other types we produce an union with the two alternatives
return (
f"Union[{type_}, Sequence[{type_}]]",
({"type": param["type"], "multi": True} if param else None),
)
elif (
len(schema_type["items"]) == 2
and schema_type["items"][0]["kind"] == "instance_of"
and schema_type["items"][1]["kind"] == "instance_of"
and schema_type["items"][0]["type"]
== {"name": "T", "namespace": "_spec_utils.PipeSeparatedFlags"}
and schema_type["items"][1]["type"]
== {"name": "string", "namespace": "_builtins"}
):
# for now we treat PipeSeparatedFlags as a special case
if "PipeSeparatedFlags" not in self.interfaces:
self.interfaces.append("PipeSeparatedFlags")
return '"types.PipeSeparatedFlags"', None
else:
# generic union type
types = list(
dict.fromkeys( # eliminate duplicates
[
self.get_python_type(t, for_response=for_response)
for t in schema_type["items"]
]
)
)
if len(types) == 1:
return types[0]
return "Union[" + ", ".join([type_ for type_, _ in types]) + "]", None
elif schema_type["kind"] == "enum":
# enums are mapped to Literal[member, ...]
t = (
"Literal["
+ ", ".join(
[f"\"{member['name']}\"" for member in schema_type["members"]]
)
+ "]"
)
if {"name": "true"} in schema_type["members"] and {
"name": "false"
} in schema_type["members"]:
# this is a boolean that was later upgraded to an enum, so we
# should also allow bools
t = f"Union[{t}, bool]"
return t, None
elif schema_type["kind"] == "interface":
if schema_type["name"]["namespace"] == "_types.query_dsl":
# handle specific DSL classes explicitly to map to existing
# Python DSL classes
if schema_type["name"]["name"].endswith("RangeQuery"):
return '"wrappers.Range[Any]"', None
elif schema_type["name"]["name"].endswith("ScoreFunction"):
name = schema_type["name"]["name"].removesuffix("Function")
return f'"function.{name}"', None
elif schema_type["name"]["name"].endswith("DecayFunction"):
return '"function.DecayFunction"', None
elif schema_type["name"]["name"].endswith("Function"):
return f"\"function.{schema_type['name']['name']}\"", None
elif schema_type["name"]["namespace"] == "_types.analysis" and schema_type[
"name"
]["name"].endswith("Analyzer"):
# not expanding analyzers at this time, maybe in the future
return "str, Dict[str, Any]", None
elif schema_type["name"]["namespace"] == "_types.aggregations":
if (
schema_type["name"]["name"].endswith("AggregationRange")
or schema_type["name"]["name"] == "DateRangeExpression"
) and schema_type["name"]["name"] != "IpRangeAggregationRange":
return '"wrappers.AggregationRange"', None
# to handle other interfaces we generate a type of the same name
# and add the interface to the interfaces.py module
if schema_type["name"]["name"] not in self.interfaces:
self.interfaces.append(schema_type["name"]["name"])
if for_response:
self.response_interfaces.append(schema_type["name"]["name"])
return f"\"types.{schema_type['name']['name']}\"", None
elif schema_type["kind"] == "user_defined_value":
# user_defined_value maps to Python's Any type
return "Any", None
raise RuntimeError(f"Cannot find Python type for {schema_type}")
def add_attribute(self, k, arg, for_types_py=False, for_response=False):
"""Add an attribute to the internal representation of a class.
This method adds the argument `arg` to the data structure for a class
stored in `k`. In particular, the argument is added to the `k["args"]`
list, making sure required arguments are first in the list. If the
argument is of a type that needs Python DSL specific typing details to
be stored in the DslBase._param_defs attribute, then this is added to
`k["params"]`.
When `for_types_py` is `True`, type hints are formatted in the most
convenient way for the types.py file. When possible, double quotes are
removed from types, and for types that are in the same file the quotes
are kept to prevent forward references, but the "types." namespace is
removed. When `for_types_py` is `False`, all non-native types use
quotes and are namespaced.
When `for_response` is `True`, type hints are not given the optional
dictionary representation, nor the `DefaultType` used for omitted
attributes.
"""
try:
type_, param = self.get_python_type(arg["type"], for_response=for_response)
except RuntimeError:
type_ = "Any"
param = None
if not for_response:
if type_ != "Any":
if (
'Sequence["types.' in type_
or 'Sequence["wrappers.AggregationRange' in type_
):
type_ = add_seq_dict_type(type_) # interfaces can be given as dicts
elif "types." in type_ or "wrappers.AggregationRange" in type_:
type_ = add_dict_type(type_) # interfaces can be given as dicts
type_ = add_not_set(type_)
if for_types_py:
type_ = type_for_types_py(type_)
required = "(required) " if arg["required"] else ""
server_default = (
f" Defaults to `{arg['serverDefault']}` if omitted."
if arg.get("serverDefault")
else ""
)
doc = wrapped_doc(
f":arg {arg['name']}: {required}{arg.get('description', '')}{server_default}",
subsequent_indent=" ",
)
arg = {
"name": PROP_REPLACEMENTS.get(arg["name"], arg["name"]),
"type": type_,
"doc": doc,
"required": arg["required"],
}
if param is not None:
param = {"name": arg["name"], "param": param}
if arg["required"]:
# insert in the right place so that all required arguments
# appear at the top of the argument list
i = 0
for i in range(len(k["args"]) + 1):
if i == len(k["args"]):
break
if k["args"][i].get("positional"):
continue
if k["args"][i]["required"] is False:
break
k["args"].insert(i, arg)
else:
k["args"].append(arg)
if param and "params" in k:
k["params"].append(param)
def add_behaviors(self, type_, k, for_types_py=False, for_response=False):
"""Add behaviors reported in the specification of the given type to the
class representation.
"""
if "behaviors" in type_:
for behavior in type_["behaviors"]:
if (
behavior["type"]["name"] != "AdditionalProperty"
or behavior["type"]["namespace"] != "_spec_utils"
):
# we do not support this behavior, so we ignore it
continue
key_type, _ = self.get_python_type(
behavior["generics"][0], for_response=for_response
)
if "InstrumentedField" in key_type:
value_type, _ = self.get_python_type(
behavior["generics"][1], for_response=for_response
)
if for_types_py:
value_type = value_type.replace('"DefaultType"', "DefaultType")
value_type = value_type.replace(
'"InstrumentedField"', "InstrumentedField"
)
value_type = re.sub(
r'"(function\.[a-zA-Z0-9_]+)"', r"\1", value_type
)
value_type = re.sub(
r'"types\.([a-zA-Z0-9_]+)"', r'"\1"', value_type
)
value_type = re.sub(
r'"(wrappers\.[a-zA-Z0-9_]+)"', r"\1", value_type
)
k["args"].append(
{
"name": "_field",
"type": add_not_set(key_type),
"doc": [":arg _field: The field to use in this query."],
"required": False,
"positional": True,
}
)
k["args"].append(
{
"name": "_value",
"type": add_not_set(add_dict_type(value_type)),
"doc": [":arg _value: The query value for the field."],
"required": False,
"positional": True,
}
)
k["is_single_field"] = True
else:
raise RuntimeError(
f"Non-field AdditionalProperty are not supported for interface {type_['name']['namespace']}:{type_['name']['name']}."
)
def property_to_python_class(self, p):
"""Return a dictionary with template data necessary to render a schema
property as a Python class.
Used for "container" sub-classes such as `QueryContainer`, where each
sub-class is represented by a Python DSL class.
The format is as follows:
```python
{
"property_name": "the name of the property",
"name": "the class name to use for the property",
"docstring": "the formatted docstring as a list of strings",
"args": [ # a Python description of each class attribute
"name": "the name of the attribute",
"type": "the Python type hint for the attribute",
"doc": ["formatted lines of documentation to add to class docstring"],
"required": bool,
"positional": bool,
],
"params": [
"name": "the attribute name",
"param": "the param dictionary to include in `_param_defs` for the class",
], # a DSL-specific description of interesting attributes
"is_single_field": bool # True for single-key dicts with field key
"is_multi_field": bool # True for multi-key dicts with field keys
}
```
"""
k = {
"property_name": p["name"],
"name": property_to_class_name(p["name"]),
}
k["docstring"] = wrapped_doc(p.get("description") or "")
other_classes = []
kind = p["type"]["kind"]
if kind == "instance_of":
namespace = p["type"]["type"]["namespace"]
name = p["type"]["type"]["name"]
if f"{namespace}:{name}" in TYPE_REPLACEMENTS:
namespace, name = TYPE_REPLACEMENTS[f"{namespace}:{name}"].split(":")
if name == "QueryContainer" and namespace == "_types.query_dsl":
type_ = {
"kind": "interface",
"properties": [p],
}
else:
type_ = self.find_type(name, namespace)
if p["name"] in AGG_TYPES:
k["parent"] = AGG_TYPES[p["name"]]
if type_["kind"] == "interface":
# set the correct parent for bucket and pipeline aggregations
if self.inherits_from(
type_, "PipelineAggregationBase", "_types.aggregations"
):
k["parent"] = "Pipeline"
elif self.inherits_from(
type_, "BucketAggregationBase", "_types.aggregations"
):
k["parent"] = "Bucket"
# generate class attributes
k["args"] = []
k["params"] = []
self.add_behaviors(type_, k)
while True:
for arg in type_["properties"]:
self.add_attribute(k, arg)
if "inherits" in type_ and "type" in type_["inherits"]:
type_ = self.find_type(
type_["inherits"]["type"]["name"],
type_["inherits"]["type"]["namespace"],
)
else:
break
elif type_["kind"] == "type_alias":
if type_["type"]["kind"] == "union_of":
# for unions we create sub-classes
for other in type_["type"]["items"]:
other_class = self.interface_to_python_class(
other["type"]["name"],
other["type"]["namespace"],
for_types_py=False,
)
other_class["parent"] = k["name"]
other_classes.append(other_class)
else:
raise RuntimeError(
"Cannot generate code for instances of type_alias instances that are not unions."
)
else:
raise RuntimeError(
f"Cannot generate code for instances of kind '{type_['kind']}'"
)
elif kind == "dictionary_of":
key_type, _ = self.get_python_type(p["type"]["key"])
if "InstrumentedField" in key_type:
value_type, _ = self.get_python_type(p["type"]["value"])
if p["type"]["singleKey"]:
# special handling for single-key dicts with field key
k["args"] = [
{
"name": "_field",
"type": add_not_set(key_type),
"doc": [":arg _field: The field to use in this query."],
"required": False,
"positional": True,
},
{
"name": "_value",
"type": add_not_set(add_dict_type(value_type)),
"doc": [":arg _value: The query value for the field."],
"required": False,
"positional": True,
},
]
k["is_single_field"] = True
else:
# special handling for multi-key dicts with field keys
k["args"] = [
{
"name": "_fields",
"type": f"Optional[Mapping[{key_type}, {value_type}]]",
"doc": [
":arg _fields: A dictionary of fields with their values."
],
"required": False,
"positional": True,
},
]
k["is_multi_field"] = True
else:
raise RuntimeError(f"Cannot generate code for type {p['type']}")
else:
raise RuntimeError(f"Cannot generate code for type {p['type']}")
return [k] + other_classes
def interface_to_python_class(
self,
interface,
namespace=None,
*,
for_types_py=True,
for_response=False,
):
"""Return a dictionary with template data necessary to render an
interface a Python class.
This is used to render interfaces that are referenced by container
classes. The current list of rendered interfaces is passed as a second
argument to allow this method to add more interfaces to it as they are
discovered.
The returned format is as follows:
```python
{
"name": "the class name to use for the interface class",
"parent": "the parent class name",
"args": [ # a Python description of each class attribute
"name": "the name of the attribute",
"type": "the Python type hint for the attribute",
"doc": ["formatted lines of documentation to add to class docstring"],
"required": bool,
"positional": bool,
],
"buckets_as_dict": "type" # optional, only present in aggregation response
# classes that have buckets that can have a list
# or dict representation
}
```
"""
type_ = self.find_type(interface, namespace)
if type_["kind"] not in ["interface", "response"]:
raise RuntimeError(f"Type {interface} is not an interface")
if type_["kind"] == "response":
# we consider responses as interfaces because they also have properties
# but the location of the properties is different
type_ = type_["body"]
k = {"name": interface, "for_response": for_response, "args": []}
k["docstring"] = wrapped_doc(type_.get("description") or "")
self.add_behaviors(
type_, k, for_types_py=for_types_py, for_response=for_response
)
generics = []
while True:
for arg in type_["properties"]:
if interface == "ResponseBody" and arg["name"] == "hits":
k["args"].append(
{
"name": "hits",
"type": "Sequence[_R]",
"doc": [":arg hits: search results"],
"required": arg["required"],
}
)
elif interface == "ResponseBody" and arg["name"] == "aggregations":
# Aggregations are tricky because the DSL client uses a
# flexible representation that is difficult to generate
# from the schema.
# To handle this we let the generator do its work by calling
# `add_attribute()`, but then we save the generated attribute
# apart and replace it with the DSL's `AggResponse` class.
# The generated type is then used in type hints in variables
# and methods of this class.
self.add_attribute(
k, arg, for_types_py=for_types_py, for_response=for_response
)
k["aggregate_type"] = (
k["args"][-1]["type"]
.split("Mapping[str, ")[1]
.rsplit("]", 1)[0]
)
k["args"][-1] = {
"name": "aggregations",
"type": '"AggResponse[_R]"',
"doc": [":arg aggregations: aggregation results"],
"required": arg["required"],
}
elif (
"name" in type_
and type_["name"]["name"] == "MultiBucketAggregateBase"
and arg["name"] == "buckets"
):
# Also during aggregation response generation, the "buckets"
# attribute that many aggregation responses have is very
# complex, supporting over a dozen different aggregation
# types via generics, each in array or object configurations.
# Typing this attribute proved very difficult. A solution
# that worked with mypy and pyright is to type "buckets"
# for the list form, and create a `buckets_as_dict`
# property that is typed appropriately for accessing the
# buckets in dictionary form.
# The generic type is assumed to be the first in the list,
# which is a simplification that should be improved when a
# more complete implementation of generics is added.
if generics[0]["type"]["name"] == "Void":
generic_type = "Any"
else:
_g = self.find_type(
generics[0]["type"]["name"],
generics[0]["type"]["namespace"],
)
generic_type, _ = self.get_python_type(
_g, for_response=for_response
)
generic_type = type_for_types_py(generic_type)
k["args"].append(
{
"name": arg["name"],
# for the type we only include the array form, since
# this client does not request the dict form
"type": f"Sequence[{generic_type}]",
"doc": [
":arg buckets: (required) the aggregation buckets as a list"
],
"required": True,
}
)
k["buckets_as_dict"] = generic_type
elif namespace == "_types.mapping":
if arg["name"] in ["fields", "properties"]:
# Python DSL provides a high level representation for the
# "fields" and 'properties' properties that many types support
k["args"].append(
{
"name": arg["name"],
"type": 'Union[Mapping[str, Field], "DefaultType"]',
"doc": [f":arg {arg['name']}:"],
"required": False,
}
)
if "params" not in k:
k["params"] = []
k["params"].append(
{
"name": arg["name"],
"param": {"type": "field", "hash": True},
}
)
else:
# also the Python DSL provides implementations of analyzers
# and normalizers, so here we make sure these are noted as
# params and have an appropriate type hint.
self.add_attribute(
k, arg, for_types_py=for_types_py, for_response=for_response
)
if arg["name"].endswith("analyzer"):
if "params" not in k:
k["params"] = []
k["params"].append(
{"name": arg["name"], "param": {"type": "analyzer"}}
)
k["args"][-1]["type"] = 'Union[str, DslBase, "DefaultType"]'
elif arg["name"].endswith("normalizer"):
if "params" not in k:
k["params"] = []
k["params"].append(
{"name": arg["name"], "param": {"type": "normalizer"}}
)
k["args"][-1]["type"] = 'Union[str, DslBase, "DefaultType"]'
else:
if interface == "Hit" and arg["name"].startswith("_"):
# Python DSL removes the undersore prefix from all the
# properties of the hit, so we do the same
arg["name"] = arg["name"][1:]
self.add_attribute(
k, arg, for_types_py=for_types_py, for_response=for_response
)
if "inherits" not in type_ or "type" not in type_["inherits"]:
break
if "generics" in type_["inherits"]:
# Generics are only supported for certain specific cases at this
# time. Here we just save them so that they can be recalled later
# while traversing over to parent classes to find inherited
# attributes.
for generic_type in type_["inherits"]["generics"]:
generics.append(generic_type)
type_ = self.find_type(
type_["inherits"]["type"]["name"],
type_["inherits"]["type"]["namespace"],
)
return k
def generate_field_py(schema, filename):
"""Generate field.py with all the Elasticsearch fields as Python classes."""
float_fields = ["half_float", "scaled_float", "double", "rank_feature"]
integer_fields = ["byte", "short", "long"]
range_fields = [
"integer_range",
"float_range",
"long_range",
"double_range",
"date_range",
]
object_fields = ["nested"]
coerced_fields = [
"boolean",
"date",
"float",
"object",
"dense_vector",
"integer",
"ip",
"binary",
"percolator",
]
classes = []
property = schema.find_type("Property", "_types.mapping")
for type_ in property["type"]["items"]:
if type_["type"]["name"] == "DynamicProperty":
# no support for dynamic properties
continue
field = schema.find_type(type_["type"]["name"], type_["type"]["namespace"])
name = class_name = ""
for prop in field["properties"]:
if prop["name"] == "type":
if prop["type"]["kind"] != "literal_value":
raise RuntimeError(f"Unexpected property type {prop}")
name = prop["type"]["value"]
class_name = "".join([n.title() for n in name.split("_")])
k = schema.interface_to_python_class(
type_["type"]["name"],
type_["type"]["namespace"],
for_types_py=False,
for_response=False,
)
k["name"] = class_name
k["field"] = name
k["coerced"] = name in coerced_fields
if name in float_fields:
k["parent"] = "Float"
elif name in integer_fields:
k["parent"] = "Integer"
elif name in range_fields:
k["parent"] = "RangeField"
elif name in object_fields:
k["parent"] = "Object"
else:
k["parent"] = "Field"
k["args"] = [prop for prop in k["args"] if prop["name"] != "type"]
if name == "object":
# the DSL's object field has a doc_class argument
k["args"] = [
{
"name": "doc_class",
"type": 'Union[Type["InnerDoc"], "DefaultType"]',
"doc": [
":arg doc_class: base doc class that handles mapping.",
" If no `doc_class` is provided, new instance of `InnerDoc` will be created,",
" populated with `properties` and used. Can not be provided together with `properties`",
],
"positional": True,
"required": False,
}
] + k["args"]
elif name == "date":
k["args"] = [
{
"name": "default_timezone",
"type": 'Union[str, "tzinfo", "DefaultType"]',
"doc": [
":arg default_timezone: timezone that will be automatically used for tz-naive values",
" May be instance of `datetime.tzinfo` or string containing TZ offset",
],
"positional": True,
"required": False,
}
] + k["args"]
classes.append(k)
# make sure parent classes appear first
classes = sorted(
classes,
key=lambda k: (
f'AA{k["name"]}'
if k["name"] in ["Float", "Integer", "Object"]
else k["name"]
),
)
with open(filename, "w") as f:
f.write(field_py.render(classes=classes))
print(f"Generated {filename}.")
def generate_query_py(schema, filename):
"""Generate query.py with all the properties of `QueryContainer` as Python
classes.
"""
classes = []
query_container = schema.find_type("QueryContainer", "_types.query_dsl")
for p in query_container["properties"]:
classes += schema.property_to_python_class(p)
with open(filename, "w") as f:
f.write(query_py.render(classes=classes, parent="Query"))
print(f"Generated {filename}.")
def generate_aggs_py(schema, filename):
"""Generate aggs.py with all the properties of `AggregationContainer` as
Python classes.
"""
classes = []
aggs_container = schema.find_type("AggregationContainer", "_types.aggregations")
for p in aggs_container["properties"]:
if "containerProperty" not in p or not p["containerProperty"]:
classes += schema.property_to_python_class(p)
with open(filename, "w") as f:
f.write(aggs_py.render(classes=classes, parent="Agg"))
print(f"Generated {filename}.")
def generate_response_init_py(schema, filename):
"""Generate response/__init__.py with all the response properties
documented and typed.
"""
search_response = schema.interface_to_python_class(
"ResponseBody",
"_global.search",
for_types_py=False,
for_response=True,
)
ubq_response = schema.interface_to_python_class(
"Response",
"_global.update_by_query",
for_types_py=False,
for_response=True,
)
with open(filename, "w") as f:
f.write(
response_init_py.render(response=search_response, ubq_response=ubq_response)
)
print(f"Generated {filename}.")
def generate_types_py(schema, filename):
"""Generate types.py"""
classes = {}
for interface in schema.interfaces:
if interface == "PipeSeparatedFlags":
continue # handled as a special case
for_response = interface in schema.response_interfaces
k = schema.interface_to_python_class(
interface, for_types_py=True, for_response=for_response
)
classes[k["name"]] = k
# sort classes by being request/response and then by name
sorted_classes = sorted(
list(classes.keys()),
key=lambda i: str(int(i in schema.response_interfaces)) + i,
)
classes_list = []
for n in sorted_classes:
k = classes[n]
if k in classes_list:
continue
classes_list.append(k)
with open(filename, "w") as f:
f.write(types_py.render(classes=classes_list))
print(f"Generated {filename}.")
if __name__ == "__main__":
v = subprocess.check_output(["git", "branch", "--show-current"]).strip().decode()
schema = ElasticsearchSchema(v)
generate_field_py(schema, "elasticsearch/dsl/field.py")
generate_query_py(schema, "elasticsearch/dsl/query.py")
generate_aggs_py(schema, "elasticsearch/dsl/aggs.py")
generate_response_init_py(schema, "elasticsearch/dsl/response/__init__.py")
generate_types_py(schema, "elasticsearch/dsl/types.py")
|