File: dsl_how_to_guides.md

package info (click to toggle)
python-elasticsearch 9.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,552 kB
  • sloc: python: 108,433; makefile: 149; javascript: 97
file content (1755 lines) | stat: -rw-r--r-- 63,954 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
---
mapped_pages:
  - https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/_how_to_guides.html
---

# How-To Guides [_how_to_guides]

## Search DSL [search_dsl]

### The `Search` object [_the_search_object]

The `Search` object represents the entire search request:

* queries
* filters
* aggregations
* k-nearest neighbor searches
* sort
* pagination
* highlighting
* suggestions
* collapsing
* additional parameters
* associated client

The API is designed to be chainable. With the exception of the aggregations functionality this means that the `Search` object is immutable -all changes to the object will result in a shallow copy being created which contains the changes. You can safely pass the `Search` object to foreign code without fear of it modifying your objects as long as it sticks to the `Search` object APIs.

You can pass an instance of the [elasticsearch client](https://elasticsearch-py.readthedocs.io/) when instantiating the `Search` object:

```python
from elasticsearch import Elasticsearch
from elasticsearch.dsl import Search

client = Elasticsearch()

s = Search(using=client)
```

You can also define the client at a later time (for more options see the `configuration` chapter):

```python
s = s.using(client)
```

::::{note}
All methods return a *copy* of the object, making it safe to pass to outside code.

::::


The API is chainable, allowing you to combine multiple method calls in one statement:

```python
s = Search().using(client).query(Match("title", "python"))
```

To send the request to Elasticsearch:

```python
response = s.execute()
```

If you just want to iterate over the hits returned by your search you can iterate over the `Search` object:

```python
for hit in s:
    print(hit.title)
```

Search results will be cached. Subsequent calls to `execute` or trying to iterate over an already executed `Search` object will not trigger additional requests being sent to Elasticsearch. To force a new request to be issued specify `ignore_cache=True` when calling `execute`.

For debugging purposes you can serialize the `Search` object to a `dict` with the raw Elasticsearch request:

```python
print(s.to_dict())
```

#### Delete By Query [_delete_by_query]

You can delete the documents matching a search by calling `delete` on the `Search` object instead of `execute` like this:

```python
s = Search(index='i').query(Match("title", "python"))
response = s.delete()
```

To pass [deletion parameters](https://elasticsearch-py.readthedocs.io/en/latest/api/elasticsearch.html#elasticsearch.Elasticsearch.delete_by_query)
in your query, you can add them by calling ``params`` on the ``Search`` object before ``delete`` like this:

```python
s = Search(index='i').query("match", title="python")
s = s.params(ignore_unavailable=False, wait_for_completion=True)
response = s.delete()
```


#### Queries [_queries]

The `elasticsearch.dsl.query` module provides classes for all Elasticsearch query types. These classes accept keyword arguments in their constructors, which are serialized to the appropriate format to be sent to Elasticsearch. There is a clear one-to-one mapping between the raw query and its equivalent class-based version:

```python
>>> from elasticsearch.dsl.query import MultiMatch, Match

>>> q = MultiMatch(query='python django', fields=['title', 'body'])
>>> q.to_dict()
{'multi_match': {'query': 'python django', 'fields': ['title', 'body']}}

>>> q = Match("title", {"query": "web framework", "type": "phrase"})
>>> q.to_dict()
{'match': {'title': {'query': 'web framework', 'type': 'phrase'}}}
```

An alternative to the class-based queries is to use the `Q` shortcut, passing a query name followed by its parameters, or the raw query as a `dict`:

```python
from elasticsearch.dsl import Q

Q("multi_match", query='python django', fields=['title', 'body'])
Q({"multi_match": {"query": "python django", "fields": ["title", "body"]}})
```

To add a query to the `Search` object, use the `.query()` method. This works with class-based or `Q` queries:

```python
q = Q("multi_match", query='python django', fields=['title', 'body'])
s = s.query(q)
```

As a shortcut the `query()` method also accepts all the parameters of the `Q` shortcut directly:

```python
s = s.query("multi_match", query='python django', fields=['title', 'body'])
```

If you already have a query object, or a `dict` representing one, you can assign it to the `query` attribute of a `Search` object to add it to it, replacing any previously configured queries:

```python
s.query = Q('bool', must=[Q('match', title='python'), Q('match', body='best')])
```


#### Dotted fields [_dotted_fields]

Sometimes you want to refer to a field within another field, either as a multi-field (`title.keyword`) or in a structured `json` document like `address.city`. This is not a problem when using class-based queries, but when working without classes it is often required to pass field names as keyword arguments. To make this easier, you can use `__` (double underscore) in place of a dot in a keyword argument:

```python
s = Search()
s = s.filter('term', category__keyword='Python')
s = s.query('match', address__city='prague')
```

Alternatively you can use Python’s keyword argument unpacking:

```python
s = Search()
s = s.filter('term', **{'category.keyword': 'Python'})
s = s.query('match', **{'address.city': 'prague'})
```


#### Query combination [_query_combination]

Query objects can be combined using logical operators `|`, `&` and `~`:

```python
>>> q = Match("title", "python") | Match("title", "django")
>>> q.to_dict()
{'bool': {'should': [{'match': {'title': 'python'}}, {'match': {'title': 'django'}}]}}

>>> q = Match("title", "python") & Match("title", "django")
>>> q.to_dict()
{'bool': {'must': [{'match': {'title': 'python'}}, {'match': {'title': 'django'}}]}}

>>> q = ~Match("title", "python")
>>> q.to_dict()
{'bool': {'must_not': [{'match': {'title': 'python'}}]}}
```

When you call the `.query()` method multiple times, the `&` operator will be used internally to combine all the queries:

```python
s = s.query().query()
print(s.to_dict())
# {"query": {"bool": {...}}}
```

If you want to have precise control over the query form, use the `Q` shortcut to directly construct the combined query:

```python
q = Q('bool',
    must=[Q('match', title='python')],
    should=[Q(...), Q(...)],
    minimum_should_match=1
)
s = Search().query(q)
```


#### Filters [_filters]

If you want to add a query in a [filter context](docs-content://explore-analyze/query-filter/languages/querydsl.md) you can use the `filter()` method to make things easier:

```python
from elasticsearch.dsl.query import Terms

s = Search()
s = s.filter(Terms("tags", ['search', 'python']))
```

Behind the scenes this will produce a `Bool` query and place the specified `terms` query into its `filter` branch, making it equivalent to:

```python
from elasticsearch.dsl.query import Terms, Bool

s = Search()
s = s.query(Bool(filter=[Terms("tags", ["search", "python"])]))
```

If you want to use the `post_filter` element for faceted navigation, use the `.post_filter()` method.

The `exclude()` method works like `filter()`, but it applies the query as negated:

```python
s = Search()
s = s.exclude(Terms("tags", ['search', 'python']))
```

which is shorthand for:

```python
s = s.query(Bool(filter=[~Terms("tags", ["search", "python"])]))
```


#### Aggregations [_aggregations]

As with queries, there are classes that represent each aggregation type, all accessible through the `elasticsearch.dsl.aggs` module:

```python
from elasticsearch.dsl import aggs

a = aggs.Terms(field="tags")
# {"terms": {"field": "tags"}}
```

It is also possible to define an aggregation using the `A` shortcut:

```python
from elasticsearch.dsl import A

A('terms', field='tags')
```

To nest aggregations, you can use the `.bucket()`, `.metric()` and `.pipeline()` methods:

```python
a = aggs.Terms(field="category")
# {'terms': {'field': 'category'}}

a.metric("clicks_per_category", aggs.Sum(field="clicks")) \
    .bucket("tags_per_category", aggs.Terms(field="tags"))
# {
#   'terms': {'field': 'category'},
#   'aggs': {
#     'clicks_per_category': {'sum': {'field': 'clicks'}},
#     'tags_per_category': {'terms': {'field': 'tags'}}
#   }
# }
```

To add aggregations to the `Search` object, use the `.aggs` property, which acts as a top-level aggregation:

```python
s = Search()
a = aggs.Terms(field="category")
s.aggs.bucket("category_terms", a)
# {
#   'aggs': {
#     'category_terms': {
#       'terms': {
#         'field': 'category'
#       }
#     }
#   }
# }
```

or

```python
s = Search()
s.aggs.bucket("articles_per_day", aggs.DateHistogram(field="publish_date", interval="day")) \
    .metric("clicks_per_day", aggs.Sum(field="clicks")) \
    .pipeline("moving_click_average", aggs.MovingAvg(buckets_path="clicks_per_day")) \
    .bucket("tags_per_day", aggs.Terms(field="tags"))

s.to_dict()
# {
#   "aggs": {
#     "articles_per_day": {
#       "date_histogram": { "interval": "day", "field": "publish_date" },
#       "aggs": {
#         "clicks_per_day": { "sum": { "field": "clicks" } },
#         "moving_click_average": { "moving_avg": { "buckets_path": "clicks_per_day" } },
#         "tags_per_day": { "terms": { "field": "tags" } }
#       }
#     }
#   }
# }
```

You can access an existing bucket by its name:

```python
s = Search()

s.aggs.bucket("per_category", aggs.Terms(field="category"))
s.aggs["per_category"].metric("clicks_per_category", aggs.Sum(field="clicks"))
s.aggs["per_category"].bucket("tags_per_category", aggs.Terms(field="tags"))
```

::::{note}
When chaining multiple aggregations, there is a difference between what `.bucket()` and `.metric()` methods return - `.bucket()` returns the newly defined bucket while `.metric()` returns its parent bucket to allow further chaining.

::::


As opposed to other methods on the `Search` objects, aggregations are defined in-place, without returning a new copy.


#### K-Nearest Neighbor Searches [_k_nearest_neighbor_searches]

To issue a kNN search, use the `.knn()` method:

```python
s = Search()
vector = get_embedding("search text")

s = s.knn(
    field="embedding",
    k=5,
    num_candidates=10,
    query_vector=vector
)
```

The `field`, `k` and `num_candidates` arguments can be given as positional or keyword arguments and are required. In addition to these, `query_vector` or `query_vector_builder` must be given as well.

The `.knn()` method can be invoked multiple times to include multiple kNN searches in the request.


#### Sorting [_sorting]

To specify sorting order, use the `.sort()` method:

```python
s = Search().sort(
    'category',
    '-title',
    {"lines" : {"order" : "asc", "mode" : "avg"}}
)
```

It accepts positional arguments which can be either strings or dictionaries. String value is a field name, optionally prefixed by the `-` sign to specify a descending order.

To reset the sorting, just call the method with no arguments:

```python
s = s.sort()
```


#### Pagination [_pagination]

To specify the from/size parameters, apply the standard Python slicing operator on the `Search` instance:

```python
s = s[10:20]
# {"from": 10, "size": 10}

s = s[:20]
# {"size": 20}

s = s[10:]
# {"from": 10}

s = s[10:20][2:]
# {"from": 12, "size": 8}
```

If you want to access all the documents matched by your query you can use the `scan` method which uses the scan/scroll elasticsearch API:

```python
for hit in s.scan():
    print(hit.title)
```

Note that in this case the results won’t be sorted.


#### Highlighting [_highlighting]

To set common attributes for highlighting use the `highlight_options` method:

```python
s = s.highlight_options(order='score')
```

Enabling highlighting for individual fields is done using the `highlight` method:

```python
s = s.highlight('title')
# or, including parameters:
s = s.highlight('title', fragment_size=50)
```

The fragments in the response will then be available on each `Result` object as `.meta.highlight.FIELD` which will contain the list of fragments:

```python
response = s.execute()
for hit in response:
    for fragment in hit.meta.highlight.title:
        print(fragment)
```


#### Suggestions [_suggestions]

To specify a suggest request on your `Search` object use the `suggest` method:

```python
# check for correct spelling
s = s.suggest('my_suggestion', 'pyhton', term={'field': 'title'})
```

The first argument is the name of the suggestions (name under which it will be returned), second is the actual text you wish the suggester to work on and the keyword arguments will be added to the suggest’s json as-is which means that it should be one of `term`, `phrase` or `completion` to indicate which type of suggester should be used.


#### Collapsing [_collapsing]

To collapse search results use the `collapse` method on your `Search` object:

```python
s = Search().query(Match("message", "GET /search"))
# collapse results by user_id
s = s.collapse("user_id")
```

The top hits will only include one result per `user_id`. You can also expand each collapsed top hit with the `inner_hits` parameter, `max_concurrent_group_searches` being the number of concurrent requests allowed to retrieve the inner hits per group:

```python
inner_hits = {"name": "recent_search", "size": 5, "sort": [{"@timestamp": "desc"}]}
s = s.collapse("user_id", inner_hits=inner_hits, max_concurrent_group_searches=4)
```


#### More Like This Query [_more_like_this_query]

To use Elasticsearch’s `more_like_this` functionality, you can use the MoreLikeThis query type.

A simple example is below

```python
from elasticsearch.dsl.query import MoreLikeThis
from elasticsearch.dsl import Search

my_text = 'I want to find something similar'

s = Search()
# We're going to match based only on two fields, in this case text and title
s = s.query(MoreLikeThis(like=my_text, fields=['text', 'title']))
# You can also exclude fields from the result to make the response quicker in the normal way
s = s.source(exclude=["text"])
response = s.execute()

for hit in response:
    print(hit.title)
```


#### Extra properties and parameters [_extra_properties_and_parameters]

To set extra properties of the search request, use the `.extra()` method. This can be used to define keys in the body that cannot be defined via a specific API method like `explain` or `search_after`:

```python
s = s.extra(explain=True)
```

To set query parameters, use the `.params()` method:

```python
s = s.params(routing="42")
```

If you need to limit the fields being returned by elasticsearch, use the `source()` method:

```python
# only return the selected fields
s = s.source(['title', 'body'])
# don't return any fields, just the metadata
s = s.source(False)
# explicitly include/exclude fields
s = s.source(includes=["title"], excludes=["user.*"])
# reset the field selection
s = s.source(None)
```


#### Serialization and Deserialization [_serialization_and_deserialization]

The search object can be serialized into a dictionary by using the `.to_dict()` method.

You can also create a `Search` object from a `dict` using the `from_dict` class method. This will create a new `Search` object and populate it using the data from the dict:

```python
s = Search.from_dict({"query": {"match": {"title": "python"}}})
```

If you wish to modify an existing `Search` object, overriding it’s properties, instead use the `update_from_dict` method that alters an instance **in-place**:

```python
s = Search(index='i')
s.update_from_dict({"query": {"match": {"title": "python"}}, "size": 42})
```



### Response [_response]

You can execute your search by calling the `.execute()` method that will return a `Response` object. The `Response` object allows you access to any key from the response dictionary via attribute access. It also provides some convenient helpers:

```python
response = s.execute()

print(response.success())
# True

print(response.took)
# 12

print(response.hits.total.relation)
# eq
print(response.hits.total.value)
# 142

print(response.suggest.my_suggestions)
```

If you want to inspect the contents of the `response` objects, just use its `to_dict` method to get access to the raw data for pretty printing.

#### Hits [_hits]

To access the hits returned by the search, use the `hits` property or just iterate over the `Response` object:

```python
response = s.execute()
print(f"Total {response.hits.total} hits found.")
for h in response:
    print(h.title, h.body)
```

::::{note}
If you are only seeing partial results (e.g. 10000 or even 10 results), consider using the option `s.extra(track_total_hits=True)` to get a full hit count.

::::



#### Result [_result]

The individual hits is wrapped in a convenience class that allows attribute access to the keys in the returned dictionary. All the metadata for the results are accessible via `meta` (without the leading `_`):

```python
response = s.execute()
h = response.hits[0]
print(f"/{h.meta.index}/{h.meta.doc_type}/{h.meta.id} returned with score {h.meta.score}")
```

::::{note}
If your document has a field called `meta` you have to access it using the get item syntax: `hit['meta']`.

::::



#### Aggregations [_aggregations_2]

Aggregations are available through the `aggregations` property:

```python
for tag in response.aggregations.per_tag.buckets:
    print(tag.key, tag.max_lines.value)
```



### `MultiSearch` [_multisearch]

If you need to execute multiple searches at the same time you can use the `MultiSearch` class which will use the `_msearch` API:

```python
from elasticsearch.dsl import MultiSearch, Search
from elasticsearch.dsl.query import Term

ms = MultiSearch(index='blogs')

ms = ms.add(Search().filter(Term("tags", "python")))
ms = ms.add(Search().filter(Term("tags", 'elasticsearch')))

responses = ms.execute()

for response in responses:
    print("Results for query %r." % response._search.query)
    for hit in response:
        print(hit.title)
```


### `EmptySearch` [_emptysearch]

The `EmptySearch` class can be used as a fully compatible version of `Search` that will return no results, regardless of any queries configured.



## Persistence [_persistence_2]

You can use the DSL module to define your mappings and a basic persistent layer for your application.

For more comprehensive examples have a look at the [DSL examples](https://github.com/elastic/elasticsearch-py/tree/main/examples/dsl) directory in the repository.

### Document [doc_type]

If you want to create a model-like wrapper around your documents, use the `Document` class (or the equivalent `AsyncDocument` for asynchronous applications). It can also be used to create all the necessary mappings and settings in Elasticsearch (see [Document life cycle](#life-cycle) below for details).

```python
from datetime import datetime
from elasticsearch.dsl import Document, Date, Nested, Boolean, \
    analyzer, InnerDoc, Completion, Keyword, Text

html_strip = analyzer('html_strip',
    tokenizer="standard",
    filter=["standard", "lowercase", "stop", "snowball"],
    char_filter=["html_strip"]
)

class Comment(InnerDoc):
    author = Text(fields={'raw': Keyword()})
    content = Text(analyzer='snowball')
    created_at = Date()

    def age(self):
        return datetime.now() - self.created_at

class Post(Document):
    title = Text()
    title_suggest = Completion()
    created_at = Date()
    published = Boolean()
    category = Text(
        analyzer=html_strip,
        fields={'raw': Keyword()}
    )

    comments = Nested(Comment)

    class Index:
        name = 'blog'

    def add_comment(self, author, content):
        self.comments.append(
          Comment(author=author, content=content, created_at=datetime.now()))

    def save(self, ** kwargs):
        self.created_at = datetime.now()
        return super().save(** kwargs)
```

#### Data types [_data_types]

The `Document` instances use native python types such as `str` and `datetime` for its attributes. In case of `Object` or `Nested` fields an instance of the `InnerDoc` subclass is used, as in the `add_comment` method in the above example, where we are creating an instance of the `Comment` class.

There are some specific types that were created to make working with some field types easier, for example the `Range` object used in any of the [range fields](elasticsearch://reference/elasticsearch/mapping-reference/range.md):

```python
from elasticsearch.dsl import Document, DateRange, Keyword, Range

class RoomBooking(Document):
    room = Keyword()
    dates = DateRange()

rb = RoomBooking(
  room='Conference Room II',
  dates=Range(
    gte=datetime(2018, 11, 17, 9, 0, 0),
    lt=datetime(2018, 11, 17, 10, 0, 0)
  )
)

# Range supports the in operator correctly:
datetime(2018, 11, 17, 9, 30, 0) in rb.dates # True

# you can also get the limits and whether they are inclusive or exclusive:
rb.dates.lower # datetime(2018, 11, 17, 9, 0, 0), True
rb.dates.upper # datetime(2018, 11, 17, 10, 0, 0), False

# empty range is unbounded
Range().lower # None, False
```


#### Python Type Hints [_python_type_hints]

Document fields can be defined using standard Python type hints if desired. Here are some simple examples:

```python
from typing import Optional

class Post(Document):
    title: str                      # same as title = Text(required=True)
    created_at: Optional[datetime]  # same as created_at = Date(required=False)
    published: bool                 # same as published = Boolean(required=True)
```

::::{note}
When using `Field` subclasses such as `Text`, `Date` and `Boolean` to define attributes, these classes must be given in the right-hand side.

```python
class Post(Document):
    title = Text()  # correct
    subtitle: Text  # incorrect
```

Using a `Field` subclass as a Python type hint will result in errors.
::::

Python types are mapped to their corresponding `Field` types according to the following table:

| Python type | DSL field |
| --- | --- |
| `str` | `Text(required=True)` |
| `bool` | `Boolean(required=True)` |
| `int` | `Integer(required=True)` |
| `float` | `Float(required=True)` |
| `bytes` | `Binary(required=True)` |
| `datetime` | `Date(required=True)` |
| `date` | `Date(format="yyyy-MM-dd", required=True)` |

To type a field as optional, the standard `Optional` modifier from the Python `typing` package can be used. When using Python 3.10 or newer, "pipe" syntax can also be used, by adding `| None` to a type. The `List` modifier can be added to a field to convert it to an array, similar to using the `multi=True` argument on the `Field` object.

```python
from typing import Optional, List

class MyDoc(Document):
    pub_date: Optional[datetime]  # same as pub_date = Date()
    middle_name: str | None       # same as middle_name = Text()
    authors: List[str]            # same as authors = Text(multi=True, required=True)
    comments: Optional[List[str]] # same as comments = Text(multi=True)
```

A field can also be given a type hint of an `InnerDoc` subclass, in which case it becomes an `Object` field of that class. When the `InnerDoc` subclass is wrapped with `List`, a `Nested` field is created instead.

```python
from typing import List

class Address(InnerDoc):
    ...

class Comment(InnerDoc):
    ...

class Post(Document):
    address: Address         # same as address = Object(Address, required=True)
    comments: List[Comment]  # same as comments = Nested(Comment, required=True)
```

Unfortunately it is impossible to have Python type hints that uniquely identify every possible Elasticsearch `Field` type. To choose a type that is different than the one that is assigned according to the table above, the desired `Field` instance can be added explicitly as a right-side assignment in the field declaration. The next example creates a field that is typed as `Optional[str]`, but is mapped to `Keyword` instead of `Text`:

```python
class MyDocument(Document):
    category: Optional[str] = Keyword()
```

This form can also be used when additional options need to be given to initialize the field, such as when using custom analyzer settings:

```python
class Comment(InnerDoc):
    content: str = Text(analyzer='snowball')
```

When using type hints as above, subclasses of `Document` and `InnerDoc` inherit some of the behaviors associated with Python dataclasses, as defined by [PEP 681](https://peps.python.org/pep-0681/) and the [dataclass_transform decorator](https://typing.readthedocs.io/en/latest/spec/dataclasses.html#dataclass-transform). To add per-field dataclass options such as `default` or `default_factory`, the `mapped_field()` wrapper can be used on the right side of a typed field declaration:

```python
class MyDocument(Document):
    title: str = mapped_field(default="no title")
    created_at: datetime = mapped_field(default_factory=datetime.now)
    published: bool = mapped_field(default=False)
    category: str = mapped_field(Keyword(), default="general")
```

The `mapped_field()` wrapper function can optionally be given an explicit field type instance as a first positional argument, as the `category` field does in the example above to be defined as `Keyword` instead of the `Text` default.

Static type checkers such as [mypy](https://mypy-lang.org/) and [pyright](https://github.com/microsoft/pyright) can use the type hints and the dataclass-specific options added to the `mapped_field()` function to improve type inference and provide better real-time code completion and suggestions in IDEs.

One situation in which type checkers can’t infer the correct type is when using fields as class attributes. Consider the following example:

```python
class MyDocument(Document):
    title: str

doc = MyDocument()
# doc.title is typed as "str" (correct)
# MyDocument.title is also typed as "str" (incorrect)
```

To help type checkers correctly identify class attributes as such, the `M` generic must be used as a wrapper to the type hint, as shown in the next examples:

```python
from elasticsearch.dsl import M

class MyDocument(Document):
    title: M[str]
    created_at: M[datetime] = mapped_field(default_factory=datetime.now)

doc = MyDocument()
# doc.title is typed as "str"
# doc.created_at is typed as "datetime"
# MyDocument.title is typed as "InstrumentedField"
# MyDocument.created_at is typed as "InstrumentedField"
```

Note that the `M` type hint does not provide any runtime behavior and its use is not required, but it can be useful to eliminate spurious type errors in IDEs or type checking builds.

The `InstrumentedField` objects returned when fields are accessed as class attributes are proxies for the field instances that can be used anywhere a field needs to be referenced, such as when specifying sort options in a `Search` object:

```python
# sort by creation date descending, and title ascending
s = MyDocument.search().sort(-MyDocument.created_at, MyDocument.title)
```

When specifying sorting order, the `+` and `-` unary operators can be used on the class field attributes to indicate ascending and descending order.

Finally, it is also possible to define class attributes and request that they are ignored when building the Elasticsearch mapping. One way is to type attributes with the `ClassVar` annotation. Alternatively, the `mapped_field()` wrapper function accepts an `exclude` argument that can be set to `True`:

```python
from typing import ClassVar

class MyDoc(Document):
    title: M[str] created_at: M[datetime] = mapped_field(default_factory=datetime.now)
    my_var: ClassVar[str]  # regular class variable, ignored by Elasticsearch
    anoter_custom_var: int = mapped_field(exclude=True)  # also ignored by Elasticsearch
```

#### Note on dates [_note_on_dates]

The DSL module will always respect the timezone information (or lack thereof) on the `datetime` objects passed in or stored in Elasticsearch. Elasticsearch itself interprets all datetimes with no timezone information as `UTC`. If you wish to reflect this in your python code, you can specify `default_timezone` when instantiating a `Date` field:

```python
class Post(Document):
    created_at = Date(default_timezone='UTC')
```

In that case any `datetime` object passed in (or parsed from elasticsearch) will be treated as if it were in `UTC` timezone.


#### Document life cycle [life-cycle]

Before you first use the `Post` document type, you need to create the mappings in Elasticsearch. For that you can either use the `index` object or create the mappings directly by calling the `init` class method:

```python
# create the mappings in Elasticsearch
Post.init()
```

This code will typically be run in the setup for your application during a code deploy, similar to running database migrations.

To create a new `Post` document just instantiate the class and pass in any fields you wish to set, you can then use standard attribute setting to change/add more fields. Note that you are not limited to the fields defined explicitly:

```python
# instantiate the document
first = Post(title='My First Blog Post, yay!', published=True)
# assign some field values, can be values or lists of values
first.category = ['everything', 'nothing']
# every document has an id in meta
first.meta.id = 47


# save the document into the cluster
first.save()
```

All the metadata fields (`id`, `routing`, `index`, etc.) can be accessed (and set) via a `meta` attribute or directly using the underscored variant:

```python
post = Post(meta={'id': 42})

# prints 42
print(post.meta.id)

# override default index
post.meta.index = 'my-blog'
```

::::{note}
Having all metadata accessible through `meta` means that this name is reserved and you shouldn’t have a field called `meta` on your document. If you, however, need it you can still access the data using the get item (as opposed to attribute) syntax: `post['meta']`.

::::


To retrieve an existing document use the `get` class method:

```python
# retrieve the document
first = Post.get(id=42)
# now we can call methods, change fields, ...
first.add_comment('me', 'This is nice!')
# and save the changes into the cluster again
first.save()
```

The [Update API](https://www.elastic.co/docs/api/doc/elasticsearch/v8/group/endpoint-document) can also be used via the `update` method. By default any keyword arguments, beyond the parameters of the API, will be considered fields with new values. Those fields will be updated on the local copy of the document and then sent over as partial document to be updated:

```python
# retrieve the document
first = Post.get(id=42)
# you can update just individual fields which will call the update API
# and also update the document in place
first.update(published=True, published_by='me')
```

In case you wish to use a `painless` script to perform the update you can pass in the script string as `script` or the `id` of a [stored script](docs-content://explore-analyze/scripting/modules-scripting-using.md) via `script_id`. All additional keyword arguments to the `update` method will then be passed in as parameters of the script. The document will not be updated in place.

```python
# retrieve the document
first = Post.get(id=42)
# we execute a script in elasticsearch with additional kwargs being passed
# as params into the script
first.update(script='ctx._source.category.add(params.new_category)',
             new_category='testing')
```

If the document is not found in elasticsearch an exception (`elasticsearch.NotFoundError`) will be raised. If you wish to return `None` instead just pass in `ignore=404` to suppress the exception:

```python
p = Post.get(id='not-in-es', ignore=404)
p is None
```

When you wish to retrieve multiple documents at the same time by their `id` you can use the `mget` method:

```python
posts = Post.mget([42, 47, 256])
```

`mget` will, by default, raise a `NotFoundError` if any of the documents wasn’t found and `RequestError` if any of the document had resulted in error. You can control this behavior by setting parameters:

* `raise_on_error`: If `True` (default) then any error will cause an exception to be raised. Otherwise all documents containing errors will be treated as missing.
* `missing`: Can have three possible values: `'none'` (default), `'raise'` and `'skip'`. If a document is missing or errored it will either be replaced with `None`, an exception will be raised or the document will be skipped in the output list entirely.

The index associated with the `Document` is accessible via the `_index` class property which gives you access to the `index` class.

The `_index` attribute is also home to the `load_mappings` method which will update the mapping on the `Index` from elasticsearch. This is very useful if you use dynamic mappings and want the class to be aware of those fields (for example if you wish the `Date` fields to be properly (de)serialized):

```python
Post._index.load_mappings()
```

To delete a document just call its `delete` method:

```python
first = Post.get(id=42)
first.delete()
```

#### Integration with Pydantic models

::::{warning}
This functionality is in technical preview and may be changed or removed in a future release. Elastic will work to fix any issues, but features in technical preview are not subject to the support SLA of official GA features.
::::

::::{note}
This feature is available in the Python Elasticsearch client starting with release 9.2.0.
::::

Applications that define their data models using [Pydantic](https://docs.pydantic.dev/latest/) can combine these
models with Elasticsearch DSL annotations. To take advantage of this option, Pydantic's `BaseModel` base class
needs to be replaced with `BaseESModel` (or `AsyncBaseESModel` for asynchronous applications), and then the model
can include type annotations for Pydantic and Elasticsearch both, as demonstrated in the following example:

```python
from typing import Annotated
from pydantic import Field
from elasticsearch import dsl
from elasticsearch.dsl.pydantic import BaseESModel

class Quote(BaseESModel):
    quote: str
    author: Annotated[str, dsl.Keyword()]
    tags: Annotated[list[str], dsl.Keyword(normalizer="lowercase")]
    embedding: Annotated[list[float], dsl.DenseVector()] = Field(init=False, default=[])

    class Index:
        name = "quotes"
```

In this example, the `quote` attribute is annotated with a `str` type hint. Both Pydantic and Elasticsearch use this 
annotation.

The `author` and `tags` attributes have a Python type hint and an Elasticsearch annotation, both wrapped with
Python's `typing.Annotated`. When using the `BaseESModel` class, the typing information intended for Elasticsearch needs
to be defined inside `Annotated`.

The `embedding` attribute includes a base Python type and an Elasticsearch annotation in the same format as the
other fields, but it adds Pydantic's `Field` definition as a right-hand side assignment.

Finally, any other items that need to be defined for the Elasticsearch document class, such as `class Index` and
`class Meta` entries (discussed later), can be added as well.

The next example demonstrates how to define `Object` and `Nested` fields:

```python
from typing import Annotated
from pydantic import BaseModel, Field
from elasticsearch import dsl
from elasticsearch.dsl.pydantic import BaseESModel

class Phone(BaseModel):
    type: Annotated[str, dsl.Keyword()] = Field(default="Home")
    number: str

class Person(BaseESModel):
    name: str
    main_phone: Phone          # same as Object(Phone)
    other_phones: list[Phone]  # same as Nested(Phone)

    class Index:
        name = "people"
```

Note that inner classes do not need to be defined with a custom base class; these should be standard Pydantic model 
classes. The attributes defined in these classes can include Elasticsearch annotations, as long as they are given
in an `Annotated` type hint.

All model classes that are created as described in this section function like normal Pydantic models and can be used
anywhere standard Pydantic models are used, but they have some added attributes:

- `_doc`: a class attribute that is a dynamically generated `Document` class to use with the Elasticsearch index.
- `meta`: an attribute added to all models that includes Elasticsearch document metadata items such as `id`, `score`, etc.
- `to_doc()`: a method that converts the Pydantic model to an Elasticsearch document.
- `from_doc()`: a class method that accepts an Elasticsearch document as an argument and returns an equivalent Pydantic model.

These are demonstrated in the examples below:

```python
# create a Pydantic model
quote = Quote(
    quote="An unexamined life is not worth living.",
    author="Socrates",
    tags=["phillosophy"]
)

# save the model to the Elasticsearch index
quote.to_doc().save()

# get a document from the Elasticsearch index as a Pydantic model
quote = Quote.from_doc(Quote._doc.get(id=42))

# run a search and print the Pydantic models
s = Quote._doc.search().query(Match(Quote._doc.quote, "life"))
for doc in s:
    quote = Quote.from_doc(doc)
    print(quote.meta.id, quote.meta.score, quote.quote)
```

#### Analysis [_analysis]

To specify `analyzer` values for `Text` fields you can just use the name of the analyzer (as a string) and either rely on the analyzer being defined (like built-in analyzers) or define the analyzer yourself manually.

Alternatively, you can create your own analyzer and have the persistence layer handle its creation, from our example earlier:

```python
from elasticsearch.dsl import analyzer, tokenizer

my_analyzer = analyzer('my_analyzer',
    tokenizer=tokenizer('trigram', 'nGram', min_gram=3, max_gram=3),
    filter=['lowercase']
)
```

Each analysis object needs to have a name (`my_analyzer` and `trigram` in our example) and tokenizers, token filters and char filters also need to specify type (`nGram` in our example).

Once you have an instance of a custom `analyzer` you can also call the [analyze API](https://www.elastic.co/docs/api/doc/elasticsearch/v8/group/endpoint-indices) on it by using the `simulate` method:

```python
response = my_analyzer.simulate('Hello World!')

# ['hel', 'ell', 'llo', 'lo ', 'o w', ' wo', 'wor', 'orl', 'rld', 'ld!']
tokens = [t.token for t in response.tokens]
```

::::{note}
When creating a mapping which relies on a custom analyzer the index must either not exist or be closed. To create multiple `Document`-defined mappings you can use the `index` object.

::::



#### Search [_search_2]

To search for this document type, use the `search` class method:

```python
# by calling .search we get back a standard Search object
s = Post.search()
# the search is already limited to the index and doc_type of our document
s = s.filter('term', published=True).query('match', title='first')


results = s.execute()

# when you execute the search the results are wrapped in your document class (Post)
for post in results:
    print(post.meta.score, post.title)
```

Alternatively you can just take a `Search` object and restrict it to return our document type, wrapped in correct class:

```python
s = Search()
s = s.doc_type(Post)
```

You can also combine document classes with standard doc types (just strings), which will be treated as before. You can also pass in multiple `Document` subclasses and each document in the response will be wrapped in it’s class.

If you want to run suggestions, just use the `suggest` method on the `Search` object:

```python
s = Post.search()
s = s.suggest('title_suggestions', 'pyth', completion={'field': 'title_suggest'})

response = s.execute()

for result in response.suggest.title_suggestions:
    print('Suggestions for %s:' % result.text)
    for option in result.options:
        print('  %s (%r)' % (option.text, option.payload))
```


#### `class Meta` options [_class_meta_options]

In the `Meta` class inside your document definition you can define various metadata for your document:

* `mapping`: optional instance of `Mapping` class to use as base for the mappings created from the fields on the document class itself.

Any attributes on the `Meta` class that are instance of `MetaField` will be used to control the mapping of the meta fields (`_all`, `dynamic` etc). Just name the parameter (without the leading underscore) as the field you wish to map and pass any parameters to the `MetaField` class:

```python
class Post(Document):
    title = Text()

    class Meta:
        all = MetaField(enabled=False)
        dynamic = MetaField('strict')
```


#### `class Index` options [_class_index_options]

This section of the `Document` definition can contain any information about the index, its name, settings and other attributes:

* `name`: name of the index to use, if it contains a wildcard (`*`) then it cannot be used for any write operations and an `index` kwarg will have to be passed explicitly when calling methods like `.save()`.
* `using`: default connection alias to use, defaults to `'default'`
* `settings`: dictionary containing any settings for the `Index` object like `number_of_shards`.
* `analyzers`: additional list of analyzers that should be defined on an index (see `analysis` for details).
* `aliases`: dictionary with any aliases definitions


#### Document Inheritance [_document_inheritance]

You can use standard Python inheritance to extend models, this can be useful in a few scenarios. For example if you want to have a `BaseDocument` defining some common fields that several different `Document` classes should share:

```python
class User(InnerDoc):
    username: str = mapped_field(Text(fields={'keyword': Keyword()}))
    email: str

class BaseDocument(Document):
    created_by: User
    created_date: datetime
    last_updated: datetime

    def save(**kwargs):
        if not self.created_date:
            self.created_date = datetime.now()
        self.last_updated = datetime.now()
        return super(BaseDocument, self).save(**kwargs)

class BlogPost(BaseDocument):
    class Index:
        name = 'blog'
```

Another use case would be using the [join type](elasticsearch://reference/elasticsearch/mapping-reference/parent-join.md) to have multiple different entities in a single index. You can see an [example](https://github.com/elastic/elasticsearch-py/blob/master/examples/dsl/parent_child.py) of this approach. Note that in this case, if the subclasses don’t define their own Index classes, the mappings are merged and shared between all the subclasses.



### Index [_index]

In typical scenario using `class Index` on a `Document` class is sufficient to perform any action. In a few cases though it can be useful to manipulate an `Index` object directly.

`Index` is a class responsible for holding all the metadata related to an index in elasticsearch - mappings and settings. It is most useful when defining your mappings since it allows for easy creation of multiple mappings at the same time. This is especially useful when setting up your elasticsearch objects in a migration:

```python
from elasticsearch.dsl import Index, Document, Text, analyzer

blogs = Index('blogs')

# define custom settings
blogs.settings(
    number_of_shards=1,
    number_of_replicas=0
)

# define aliases
blogs.aliases(
    old_blogs={}
)

# register a document with the index
blogs.document(Post)

# can also be used as class decorator when defining the Document
@blogs.document
class Post(Document):
    title: str

# You can attach custom analyzers to the index

html_strip = analyzer('html_strip',
    tokenizer="standard",
    filter=["standard", "lowercase", "stop", "snowball"],
    char_filter=["html_strip"]
)

blogs.analyzer(html_strip)

# delete the index, ignore if it doesn't exist
blogs.delete(ignore=404)

# create the index in elasticsearch
blogs.create()
```

You can also set up a template for your indices and use the `clone` method to create specific copies:

```python
blogs = Index('blogs', using='production')
blogs.settings(number_of_shards=2)
blogs.document(Post)

# create a copy of the index with different name
company_blogs = blogs.clone('company-blogs')

# create a different copy on different cluster
dev_blogs = blogs.clone('blogs', using='dev')
# and change its settings
dev_blogs.setting(number_of_shards=1)
```

#### IndexTemplate [index-template]

The DSL module also exposes an option to manage [index templates](docs-content://manage-data/data-store/templates.md) in elasticsearch using the `ComposableIndexTemplate` and `IndexTemplate` classes, which have very similar API to `Index`.

::::{note}
Composable index templates should be always be preferred over the legacy index templates, since the latter are deprecated.

::::


Once an index template is saved in Elasticsearch its contents will be automatically applied to new indices (existing indices are completely unaffected by templates) that match the template pattern (any index starting with `blogs-` in our example), even if the index is created automatically upon indexing a document into that index.

Potential workflow for a set of time based indices governed by a single template:

```python
from datetime import datetime

from elasticsearch.dsl import Document, Date, Text


class Log(Document):
    content: str
    timestamp: datetime

    class Index:
        name = "logs-*"

    def save(self, **kwargs):
        # assign now if no timestamp given
        if not self.timestamp:
            self.timestamp = datetime.now()

        # override the index to go to the proper timeslot
        kwargs['index'] = self.timestamp.strftime('logs-%Y%m%d')
        return super().save(**kwargs)

# once, as part of application setup, during deploy/migrations:
logs = Log._index.as_composable_template('logs', priority=100)
logs.save()

# to perform search across all logs:
search = Log.search()
```




## Faceted Search [faceted_search]

The library comes with a simple abstraction aimed at helping you develop faceted navigation for your data.

### Configuration [_configuration_2]

You can provide several configuration options (as class attributes) when declaring a `FacetedSearch` subclass:

* `index`: the name of the index (as string) to search through, defaults to `'_all'`.
* `doc_types`: list of `Document` subclasses or strings to be used, defaults to `['_all']`.
* `fields`: list of fields on the document type to search through. The list will be passes to `MultiMatch` query so can contain boost values (`'title^5'`), defaults to `['*']`.
* `facets`: dictionary of facets to display/filter on. The key is the name displayed and values should be instances of any `Facet` subclass, for example: `{'tags': TermsFacet(field='tags')}`

#### Facets [_facets]

There are several different facets available:

* `TermsFacet`: provides an option to split documents into groups based on a value of a field, for example `TermsFacet(field='category')`
* `DateHistogramFacet`: split documents into time intervals, example: `DateHistogramFacet(field="published_date", calendar_interval="day")`
* `HistogramFacet`: similar to `DateHistogramFacet` but for numerical values: `HistogramFacet(field="rating", interval=2)`
* `RangeFacet`: allows you to define your own ranges for a numerical fields: `RangeFacet(field="comment_count", ranges=[("few", (None, 2)), ("lots", (2, None))])`
* `NestedFacet`: is just a simple facet that wraps another to provide access to nested documents: `NestedFacet('variants', TermsFacet(field='variants.color'))`

By default facet results will only calculate document count, if you wish for a different metric you can pass in any single value metric aggregation as the `metric` kwarg (`TermsFacet(field='tags', metric=A('max', field=timestamp))`). When specifying `metric` the results will be, by default, sorted in descending order by that metric. To change it to ascending specify `metric_sort="asc"` and to just sort by document count use `metric_sort=False`.


#### Advanced [_advanced]

If you require any custom behavior or modifications simply override one or more of the methods responsible for the class' functions:

* `search(self)`: is responsible for constructing the `Search` object used. Override this if you want to customize the search object (for example by adding a global filter for published articles only).
* `query(self, search)`: adds the query position of the search (if search input specified), by default using `MultiField` query. Override this if you want to modify the query type used.
* `highlight(self, search)`: defines the highlighting on the `Search` object and returns a new one. Default behavior is to highlight on all fields specified for search.



### Usage [_usage]

The custom subclass can be instantiated empty to provide an empty search (matching everything) or with `query`, `filters` and `sort`.

* `query`: is used to pass in the text of the query to be performed. If `None` is passed in (default) a `MatchAll` query will be used. For example `'python web'`
* `filters`: is a dictionary containing all the facet filters that you wish to apply. Use the name of the facet (from `.facets` attribute) as the key and one of the possible values as value. For example `{'tags': 'python'}`.
* `sort`: is a tuple or list of fields on which the results should be sorted. The format of the individual fields are to be the same as those passed to `~elasticsearch.dsl.Search.sort`.

#### Response [_response_2]

the response returned from the `FacetedSearch` object (by calling `.execute()`) is a subclass of the standard `Response` class that adds a property called `facets` which contains a dictionary with lists of buckets -each represented by a tuple of key, document count and a flag indicating whether this value has been filtered on.



### Example [_example]

```python
from datetime import date

from elasticsearch.dsl import FacetedSearch, TermsFacet, DateHistogramFacet

class BlogSearch(FacetedSearch):
    doc_types = [Article, ]
    # fields that should be searched
    fields = ['tags', 'title', 'body']

    facets = {
        # use bucket aggregations to define facets
        'tags': TermsFacet(field='tags'),
        'publishing_frequency': DateHistogramFacet(field='published_from', interval='month')
    }

    def search(self):
        # override methods to add custom pieces
        s = super().search()
        return s.filter('range', publish_from={'lte': 'now/h'})

bs = BlogSearch('python web', {'publishing_frequency': date(2015, 6)})
response = bs.execute()

# access hits and other attributes as usual
total = response.hits.total
print('total hits', total.relation, total.value)
for hit in response:
    print(hit.meta.score, hit.title)

for (tag, count, selected) in response.facets.tags:
    print(tag, ' (SELECTED):' if selected else ':', count)

for (month, count, selected) in response.facets.publishing_frequency:
    print(month.strftime('%B %Y'), ' (SELECTED):' if selected else ':', count)
```



## Update By Query [update_by_query]

### The `Update By Query` object [_the_update_by_query_object]

The `Update By Query` object enables the use of the [_update_by_query](https://www.elastic.co/docs/api/doc/elasticsearch/v8/operation/operation-update-by-query) endpoint to perform an update on documents that match a search query.

The object is implemented as a modification of the `Search` object, containing a subset of its query methods, as well as a script method, which is used to make updates.

The `Update By Query` object implements the following `Search` query types:

* queries
* filters
* excludes

For more information on queries, see the `search_dsl` chapter.

Like the `Search` object, the API is designed to be chainable. This means that the `Update By Query` object is immutable: all changes to the object will result in a shallow copy being created which contains the changes. This means you can safely pass the `Update By Query` object to foreign code without fear of it modifying your objects as long as it sticks to the `Update By Query` object APIs.

You can define your client in a number of ways, but the preferred method is to use a global configuration. For more information on defining a client, see the `configuration` chapter.

Once your client is defined, you can instantiate a copy of the `Update By Query` object as seen below:

```python
from elasticsearch.dsl import UpdateByQuery

ubq = UpdateByQuery().using(client)
# or
ubq = UpdateByQuery(using=client)
```

::::{note}
All methods return a *copy* of the object, making it safe to pass to outside code.

::::


The API is chainable, allowing you to combine multiple method calls in one statement:

```python
ubq = UpdateByQuery().using(client).query(Match("title", python"))
```

To send the request to Elasticsearch:

```python
response = ubq.execute()
```

It should be noted, that there are limits to the chaining using the script method: calling script multiple times will overwrite the previous value. That is, only a single script can be sent with a call. An attempt to use two scripts will result in only the second script being stored.

Given the below example:

```python
ubq = UpdateByQuery() \
    .using(client) \
    .script(source="ctx._source.likes++") \
    .script(source="ctx._source.likes+=2")
```

This means that the stored script by this client will be `'source': 'ctx._source.likes{{plus}}=2'` and the previous call will not be stored.

For debugging purposes you can serialize the `Update By Query` object to a `dict` explicitly:

```python
print(ubq.to_dict())
```

Also, to use variables in script see below example:

```python
ubq.script(
  source="ctx._source.messages.removeIf(x -> x.somefield == params.some_var)",
  params={
    'some_var': 'some_string_val'
  }
)
```

#### Serialization and Deserialization [_serialization_and_deserialization_2]

The search object can be serialized into a dictionary by using the `.to_dict()` method.

You can also create a `Update By Query` object from a `dict` using the `from_dict` class method. This will create a new `Update By Query` object and populate it using the data from the dict:

```python
ubq = UpdateByQuery.from_dict({"query": {"match": {"title": "python"}}})
```

If you wish to modify an existing `Update By Query` object, overriding it’s properties, instead use the `update_from_dict` method that alters an instance **in-place**:

```python
ubq = UpdateByQuery(index='i')
ubq.update_from_dict({"query": {"match": {"title": "python"}}, "size": 42})
```


#### Extra properties and parameters [_extra_properties_and_parameters_2]

To set extra properties of the search request, use the `.extra()` method. This can be used to define keys in the body that cannot be defined via a specific API method like `explain`:

```python
ubq = ubq.extra(explain=True)
```

To set query parameters, use the `.params()` method:

```python
ubq = ubq.params(routing="42")
```



### Response [_response_3]

You can execute your search by calling the `.execute()` method that will return a `Response` object. The `Response` object allows you access to any key from the response dictionary via attribute access. It also provides some convenient helpers:

```python
response = ubq.execute()

print(response.success())
# True

print(response.took)
# 12
```

If you want to inspect the contents of the `response` objects, just use its `to_dict` method to get access to the raw data for pretty printing.


## ES|QL Queries

When working with `Document` classes, you can use the ES|QL query language to retrieve documents. For this you can use the `esql_from()` and `esql_execute()` methods available to all sub-classes of `Document`.

Consider the following `Employee` document definition:

```python
from elasticsearch.dsl import Document, InnerDoc, M

class Address(InnerDoc):
    address: M[str]
    city: M[str]
    zip_code: M[str]

class Employee(Document):
    emp_no: M[int]
    first_name: M[str]
    last_name: M[str]
    height: M[float]
    still_hired: M[bool]
    address: M[Address]

    class Index:
        name = 'employees'
```

The `esql_from()` method creates a base ES|QL query for the index associated with the document class. The following example creates a base query for the `Employee` class:

```python
query = Employee.esql_from()
```

This query includes a `FROM` command with the index name, and a `KEEP` command that retrieves all the document attributes.

To execute this query and receive the results, you can pass the query to the `esql_execute()` method:

```python
for emp in Employee.esql_execute(query):
    print(f"{emp.name} from {emp.address.city} is {emp.height:.2f}m tall")
```

In this example, the `esql_execute()` class method runs the query and returns all the documents in the index, up to the maximum of 1000 results allowed by ES|QL. Here is a possible output from this example:

```
Kevin Macias from North Robert is 1.60m tall
Drew Harris from Boltonshire is 1.68m tall
Julie Williams from Maddoxshire is 1.99m tall
Christopher Jones from Stevenbury is 1.98m tall
Anthony Lopez from Port Sarahtown is 2.42m tall
Tricia Stone from North Sueshire is 2.39m tall
Katherine Ramirez from Kimberlyton is 1.83m tall
...
```

To search for specific documents you can extend the base query with additional ES|QL commands that narrow the search criteria. The next example searches for documents that include only employees that are taller than 2 meters, sorted by their last name. It also limits the results to 4 people:

```python
query = (
    Employee.esql_from()
    .where(Employee.height > 2)
    .sort(Employee.last_name)
    .limit(4)
)
```

When running this query with the same for-loop shown above, possible results would be:

```
Michael Adkins from North Stacey is 2.48m tall
Kimberly Allen from Toddside is 2.24m tall
Crystal Austin from East Michaelchester is 2.30m tall
Rebecca Berger from Lake Adrianside is 2.40m tall
```

### Additional fields

ES|QL provides a few ways to add new fields to a query, for example through the `EVAL` command. The following example shows a query that adds an evaluated field:

```python
from elasticsearch.esql import E, functions

query = (
    Employee.esql_from()
    .eval(height_cm=functions.round(Employee.height * 100))
    .where(E("height_cm") >= 200)
    .sort(Employee.last_name)
    .limit(10)
)
```

In this example we are adding the height in centimeters to the query, calculated from the `height` document field, which is in meters. The `height_cm` calculated field is available to use in other query clauses, and in particular is referenced in `where()` in this example. Note how the new field is given as `E("height_cm")` in this clause. The `E()` wrapper tells the query builder that the argument is an ES|QL field name and not a string literal. This is done automatically for document fields that are given as class attributes, such as `Employee.height` in the `eval()`. The `E()` wrapper is only needed for fields that are not in the document.

By default, the `esql_execute()` method returns only document instances. To receive any additional fields that are not part of the document in the query results, the `return_additional=True` argument can be passed to it, and then the results are returned as tuples with the document as first element, and a dictionary with the additional fields as second element:

```python
for emp, additional in Employee.esql_execute(query, return_additional=True):
    print(emp.name, additional)
```

Example output from the query given above:

```
Michael Adkins {'height_cm': 248.0}
Kimberly Allen {'height_cm': 224.0}
Crystal Austin {'height_cm': 230.0}
Rebecca Berger {'height_cm': 240.0}
Katherine Blake {'height_cm': 214.0}
Edward Butler {'height_cm': 246.0}
Steven Carlson {'height_cm': 242.0}
Mark Carter {'height_cm': 240.0}
Joseph Castillo {'height_cm': 229.0}
Alexander Cohen {'height_cm': 245.0}
```

### Missing fields

The base query returned by the `esql_from()` method includes a `KEEP` command with the complete list of fields that are part of the document. If any subsequent clauses added to the query remove fields that are part of the document, then the `esql_execute()` method will raise an exception, because it will not be able construct complete document instances to return as results.

To prevent errors, it is recommended that the `keep()` and `drop()` clauses are not used when working with `Document` instances.

If a query has missing fields, it can be forced to execute without errors by passing the `ignore_missing_fields=True` argument to `esql_execute()`. When this option is used, returned documents will have any missing fields set to `None`.

## Using asyncio with Elasticsearch Python DSL [asyncio]

The DSL module supports async/await with [asyncio](https://docs.python.org/3/library/asyncio.html). To ensure that you have all the required dependencies, install the `[async]` extra:

```bash
$ python -m pip install "elasticsearch[async]"
```

The DSL module also supports [Trio](https://trio.readthedocs.io/en/stable/) when using the Async HTTPX client. You do need to install Trio and HTTPX separately:

```bash
$ python -m pip install "elasticsearch trio httpx"
```

### Connections [_connections]

Use the `async_connections` module to manage your asynchronous connections.

```python
from elasticsearch.dsl import async_connections

async_connections.create_connection(hosts=['localhost'], timeout=20)
```

If you're using Trio, you need to explicitly request the Async HTTP client:

```python
from elasticsearch.dsl import async_connections

async_connections.create_connection(hosts=['localhost'], node_class="httpxasync")
```

All the options available in the `connections` module can be used with `async_connections`.

#### How to avoid *Unclosed client session / connector* warnings on exit [_how_to_avoid_unclosed_client_session_connector_warnings_on_exit]

These warnings come from the `aiohttp` package, which is used internally by the `AsyncElasticsearch` client. They appear often when the application exits and are caused by HTTP connections that are open when they are garbage collected. To avoid these warnings, make sure that you close your connections.

```python
es = async_connections.get_connection()
await es.close()
```

### Search DSL [_search_dsl]

Use the `AsyncSearch` class to perform asynchronous searches.

```python
from elasticsearch.dsl import AsyncSearch
from elasticsearch.dsl.query import Match

s = AsyncSearch().query(Match("title", "python"))
async for hit in s:
    print(hit.title)
```

Instead of using the `AsyncSearch` object as an asynchronous iterator, you can explicitly call the `execute()` method to get a `Response` object.

```python
s = AsyncSearch().query(Match("title", "python"))
response = await s.execute()
for hit in response:
    print(hit.title)
```

An `AsyncMultiSearch` is available as well.

```python
from elasticsearch.dsl import AsyncMultiSearch
from elasticsearch.dsl.query import Term

ms = AsyncMultiSearch(index='blogs')

ms = ms.add(AsyncSearch().filter(Term("tags", "python")))
ms = ms.add(AsyncSearch().filter(Term("tags", "elasticsearch")))

responses = await ms.execute()

for response in responses:
    print("Results for query %r." % response.search.query)
    for hit in response:
        print(hit.title)
```


### Asynchronous Documents, Indexes, and more [_asynchronous_documents_indexes_and_more]

The `Document`, `BaseESModel`, `Index`, `IndexTemplate`, `Mapping`, `UpdateByQuery` and `FacetedSearch` classes all have asynchronous versions that use the same name with an `Async` prefix. These classes expose the same interfaces as the synchronous versions, but any methods that perform I/O are defined as coroutines.

Auxiliary classes that do not perform I/O do not have asynchronous versions. The same classes can be used in synchronous and asynchronous applications.

When using a custom analyzer in an asynchronous application, use the `async_simulate()` method to invoke the Analyze API on it.

Consult the `api` section for details about each specific method.