File: quotes.py

package info (click to toggle)
python-elasticsearch 9.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,552 kB
  • sloc: python: 108,433; makefile: 149; javascript: 97
file content (179 lines) | stat: -rw-r--r-- 4,892 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import asyncio
import csv
import os
from time import time
from typing import Annotated

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, Field, ValidationError
from sentence_transformers import SentenceTransformer

from elasticsearch import NotFoundError
from elasticsearch.dsl.pydantic import AsyncBaseESModel
from elasticsearch import dsl

model = SentenceTransformer("all-MiniLM-L6-v2")
dsl.async_connections.create_connection(hosts=[os.environ['ELASTICSEARCH_URL']])


class Quote(AsyncBaseESModel):
    quote: str
    author: Annotated[str, dsl.Keyword()]
    tags: Annotated[list[str], dsl.Keyword()]
    embedding: Annotated[list[float], dsl.DenseVector()] = Field(init=False, default=[])

    class Index:
        name = 'quotes'


class Tag(BaseModel):
    tag: str
    count: int


class SearchRequest(BaseModel):
    query: str
    filters: list[str]
    knn: bool
    start: int


class SearchResponse(BaseModel):
    quotes: list[Quote]
    tags: list[Tag]
    start: int
    total: int


app = FastAPI(
    title="Quotes API",
    version="1.0.0",
)


@app.get("/api/quotes/{id}")
async def get_quote(id: str) -> Quote:
    doc = None
    try:
        doc = await Quote._doc.get(id)
    except NotFoundError:
        pass
    if not doc:
        raise HTTPException(status_code=404, detail="Item not found")
    return Quote.from_doc(doc)


@app.post("/api/quotes", status_code=201)
async def create_quote(req: Quote) -> Quote:
    embed_quotes([req])
    doc = req.to_doc()
    doc.meta.id = ""
    await doc.save(refresh=True)
    return Quote.from_doc(doc)


@app.put("/api/quotes/{id}")
async def update_quote(id: str, quote: Quote) -> Quote:
    doc = None
    try:
        doc = await Quote._doc.get(id)
    except NotFoundError:
        pass
    if not doc:
        raise HTTPException(status_code=404, detail="Item not found")
    if quote.quote:
        embed_quotes([quote])
        doc.quote = quote.quote
        doc.embedding = quote.embedding
    if quote.author:
        doc.author = quote.author
    if quote.tags:
        doc.tags = quote.tags
    await doc.save(refresh=True)
    return Quote.from_doc(doc)


@app.delete("/api/quotes/{id}", status_code=204)
async def delete_quote(id: str) -> None:
    doc = None
    try:
        doc = await Quote._doc.get(id)
    except NotFoundError:
        pass
    if not doc:
        raise HTTPException(status_code=404, detail="Item not found")
    await doc.delete(refresh=True)


@app.post('/api/search')
async def search_quotes(req: SearchRequest) -> SearchResponse:
    s = Quote._doc.search()
    if req.query == '':
        s = s.query(dsl.query.MatchAll())
    elif req.knn:
        query_vector = model.encode(req.query).tolist()
        s = s.query(dsl.query.Knn(field=Quote._doc.embedding, query_vector=query_vector))
    else:
        s = s.query(dsl.query.Match(quote=req.query))
    for tag in req.filters:
        s = s.filter(dsl.query.Terms(tags=[tag]))
    s.aggs.bucket('tags', dsl.aggs.Terms(field=Quote._doc.tags, size=100))

    r = await s[req.start:req.start + 25].execute()
    tags = [(tag.key, tag.doc_count) for tag in r.aggs.tags.buckets]
    quotes = [Quote.from_doc(hit) for hit in r.hits]
    total = r['hits'].total.value
    
    return SearchResponse(
        quotes=quotes,
        tags=[Tag(tag=t[0], count=t[1]) for t in tags],
        start=req.start,
        total=total
    )


def embed_quotes(quotes):
    embeddings = model.encode([q.quote for q in quotes])
    for q, e in zip(quotes, embeddings):
        q.embedding = e.tolist()


async def ingest_quotes():
    if await Quote._doc._index.exists():
        await Quote._doc._index.delete()
    await Quote._doc.init()

    def ingest_progress(count, start):
        elapsed = time() - start
        print(f'\rIngested {count} quotes. ({count / elapsed:.0f}/sec)', end='')

    async def get_next_quote():
        quotes: list[Quote] = []
        with open('quotes.csv') as f:
            reader = csv.DictReader(f)
            count = 0
            start = time()
            for row in reader:
                q = Quote(quote=row['quote'], author=row['author'],
                             tags=row['tags'].split(','))
                quotes.append(q)
                if len(quotes) == 512:
                    embed_quotes(quotes)
                    for q in quotes:
                        yield q.to_doc()
                    count += len(quotes)
                    ingest_progress(count, start)
                    quotes = []
            if len(quotes) > 0:
                embed_quotes(quotes)
                for q in quotes:
                    yield q.to_doc()
                count += len(quotes)
                ingest_progress(count, start)

    await Quote._doc.bulk(get_next_quote())
    print("\nIngest complete.")


if __name__ == "__main__":
    asyncio.run(ingest_quotes())