File: pydantic.py

package info (click to toggle)
python-elasticsearch 9.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,732 kB
  • sloc: python: 111,452; makefile: 151; javascript: 97
file content (152 lines) | stat: -rw-r--r-- 5,686 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#  Licensed to Elasticsearch B.V. under one or more contributor
#  license agreements. See the NOTICE file distributed with
#  this work for additional information regarding copyright
#  ownership. Elasticsearch B.V. licenses this file to you under
#  the Apache License, Version 2.0 (the "License"); you may
#  not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
# 	http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing,
#  software distributed under the License is distributed on an
#  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#  KIND, either express or implied.  See the License for the
#  specific language governing permissions and limitations
#  under the License.

from typing import Any, ClassVar, Dict, List, Optional, Tuple, Type

from pydantic import BaseModel, Field, PrivateAttr
from typing_extensions import Annotated, Self, dataclass_transform

from .. import dsl


class ESMeta(BaseModel):
    """Metadata items associated with Elasticsearch documents."""

    id: str = ""
    index: str = ""
    primary_term: int = 0
    seq_no: int = 0
    version: int = 0
    score: float = 0


class _BaseModel(BaseModel):
    meta: Annotated[ESMeta, dsl.mapped_field(exclude=True)] = Field(
        default=ESMeta(),
        init=False,
    )


class _BaseESModelMetaclass(type(BaseModel)):  # type: ignore[misc]
    """Generic metaclass methods for BaseEsModel and AsyncBaseESModel."""

    @staticmethod
    def process_annotations(
        metacls: Type["_BaseESModelMetaclass"], annotations: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Process Pydantic typing annotations and adapt them so that they can
        be used to create the Elasticsearch document.
        """
        updated_annotations = {}
        for var, ann in annotations.items():
            if isinstance(ann, type(BaseModel)):
                # an inner Pydantic model is transformed into an Object field
                updated_annotations[var] = metacls.make_dsl_class(
                    metacls, dsl.InnerDoc, ann
                )
            elif (
                hasattr(ann, "__origin__")
                and ann.__origin__ in [list, List]
                and isinstance(ann.__args__[0], type(BaseModel))
            ):
                # an inner list of Pydantic models is transformed into a Nested field
                updated_annotations[var] = List[  # type: ignore[assignment,misc]
                    metacls.make_dsl_class(metacls, dsl.InnerDoc, ann.__args__[0])
                ]
            else:
                updated_annotations[var] = ann
        return updated_annotations

    @staticmethod
    def make_dsl_class(
        metacls: Type["_BaseESModelMetaclass"],
        dsl_class: type,
        pydantic_model: type,
        pydantic_attrs: Optional[Dict[str, Any]] = None,
    ) -> type:
        """Create a DSL document class dynamically, using the structure of a
        Pydantic model."""
        dsl_attrs = {
            attr: value
            for attr, value in dsl_class.__dict__.items()
            if not attr.startswith("__")
        }
        pydantic_attrs = {
            **(pydantic_attrs or {}),
            "__annotations__": metacls.process_annotations(
                metacls, pydantic_model.__annotations__
            ),
        }
        return type(dsl_class)(
            f"_ES{pydantic_model.__name__}",
            (dsl_class,),
            {
                **pydantic_attrs,
                **dsl_attrs,
                "__qualname__": f"_ES{pydantic_model.__name__}",
            },
        )


class BaseESModelMetaclass(_BaseESModelMetaclass):
    """Metaclass for the BaseESModel class."""

    def __new__(cls, name: str, bases: Tuple[type, ...], attrs: Dict[str, Any]) -> Any:
        model = super().__new__(cls, name, bases, attrs)
        model._doc = cls.make_dsl_class(cls, dsl.Document, model, attrs)
        return model


class AsyncBaseESModelMetaclass(_BaseESModelMetaclass):
    """Metaclass for the AsyncBaseESModel class."""

    def __new__(cls, name: str, bases: Tuple[type, ...], attrs: Dict[str, Any]) -> Any:
        model = super().__new__(cls, name, bases, attrs)
        model._doc = cls.make_dsl_class(cls, dsl.AsyncDocument, model, attrs)
        return model


@dataclass_transform(kw_only_default=True, field_specifiers=(Field, PrivateAttr))
class BaseESModel(_BaseModel, metaclass=BaseESModelMetaclass):
    _doc: ClassVar[Type[dsl.Document]]

    def to_doc(self) -> dsl.Document:
        """Convert this model to an Elasticsearch document."""
        data = self.model_dump()
        meta = {f"_{k}": v for k, v in data.pop("meta", {}).items() if v}
        return self._doc(**meta, **data)

    @classmethod
    def from_doc(cls, dsl_obj: dsl.Document) -> Self:
        """Create a model from the given Elasticsearch document."""
        return cls(meta=ESMeta(**dsl_obj.meta.to_dict()), **dsl_obj.to_dict())


@dataclass_transform(kw_only_default=True, field_specifiers=(Field, PrivateAttr))
class AsyncBaseESModel(_BaseModel, metaclass=AsyncBaseESModelMetaclass):
    _doc: ClassVar[Type[dsl.AsyncDocument]]

    def to_doc(self) -> dsl.AsyncDocument:
        """Convert this model to an Elasticsearch document."""
        data = self.model_dump()
        meta = {f"_{k}": v for k, v in data.pop("meta", {}).items() if v}
        return self._doc(**meta, **data)

    @classmethod
    def from_doc(cls, dsl_obj: dsl.AsyncDocument) -> Self:
        """Create a model from the given Elasticsearch document."""
        return cls(meta=ESMeta(**dsl_obj.meta.to_dict()), **dsl_obj.to_dict())