File: elasticity.py

package info (click to toggle)
python-emmet-core 0.84.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 77,220 kB
  • sloc: python: 16,355; makefile: 30
file content (712 lines) | stat: -rw-r--r-- 26,204 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
from __future__ import annotations

from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
from pydantic import BaseModel, Field
from pymatgen.analysis.elasticity.elastic import ElasticTensor, ElasticTensorExpansion
from pymatgen.analysis.elasticity.strain import Deformation, Strain
from pymatgen.analysis.elasticity.stress import Stress
from pymatgen.core.structure import Structure
from pymatgen.core.tensors import TensorMapping
from pymatgen.symmetry.analyzer import SpacegroupAnalyzer

from emmet.core.common import Status
from emmet.core.material_property import PropertyDoc
from emmet.core.math import Matrix3D, MatrixVoigt
from emmet.core.mpid import MPID
from emmet.core.settings import EmmetSettings

SETTINGS = EmmetSettings()


class ElasticTensorDoc(BaseModel):
    raw: Optional[MatrixVoigt] = Field(
        None,
        description="Elastic tensor corresponding to structure orientation (GPa)",
    )
    ieee_format: Optional[MatrixVoigt] = Field(
        None,
        description="Elastic tensor corresponding to IEEE orientation (GPa)",
    )


class ComplianceTensorDoc(BaseModel):
    raw: Optional[MatrixVoigt] = Field(
        None,
        description="Compliance tensor corresponding to structure orientation (TPa^-1)",
    )
    ieee_format: Optional[MatrixVoigt] = Field(
        None,
        description="Compliance tensor corresponding to IEEE orientation (TPa^-1)",
    )


class BulkModulus(BaseModel):
    voigt: Optional[float] = Field(None, description="Bulk modulus Voigt average (GPa)")
    reuss: Optional[float] = Field(None, description="Bulk modulus Reuss average (GPa)")
    vrh: Optional[float] = Field(
        None, description="Bulk modulus Voigt-Reuss-Hill average (GPa)"
    )


class ShearModulus(BaseModel):
    voigt: Optional[float] = Field(
        None, description="Shear modulus Voigt average (GPa)"
    )
    reuss: Optional[float] = Field(
        None, description="Shear modulus Reuss average (GPa)"
    )
    vrh: Optional[float] = Field(
        None, description="Shear modulus Voigt-Reuss-Hill average (GPa)"
    )


class SoundVelocity(BaseModel):
    transverse: Optional[float] = Field(
        None, description="Transverse sound velocity (SI units)"
    )
    longitudinal: Optional[float] = Field(
        None, description="Longitudinal sound velocity (SI units)"
    )
    snyder_acoustic: Optional[float] = Field(
        None, description="Snyder's acoustic sound velocity (SI units)"
    )
    snyder_optical: Optional[float] = Field(
        None, description="Snyder's optical sound velocity (SI units)"
    )
    snyder_total: Optional[float] = Field(
        None, description="Snyder's total sound velocity (SI units)"
    )


class ThermalConductivity(BaseModel):
    clarke: Optional[float] = Field(
        None, description="Clarke's thermal conductivity (SI units)"
    )
    cahill: Optional[float] = Field(
        None, description="Cahill's thermal conductivity (SI units)"
    )


class FittingData(BaseModel):
    """
    Data used to fit the elastic tensor.

    Note, this only consists of the explicitly calculated primary data.
    With the data here, one can redo the fitting to regenerate the elastic data,
    e.g. using `ElasticityDoc.from_deformations_and_stresses()`.
    """

    # data of strained structures
    deformations: List[Matrix3D] = Field(
        description="Deformations corresponding to the strained structures"
    )
    strains: List[Matrix3D] = Field(
        description="Lagrangian strain tensors applied to structures"
    )
    cauchy_stresses: List[Matrix3D] = Field(
        description="Cauchy stress tensors on strained structures"
    )
    second_pk_stresses: List[Matrix3D] = Field(
        description="Second Piola-Kirchhoff stress tensors on structures"
    )
    deformation_tasks: Optional[List[MPID]] = Field(
        None,
        description="Deformation task ids corresponding to the strained structures",
    )
    deformation_dir_names: Optional[List[str]] = Field(
        None, description="Paths to the running directories of deformation tasks"
    )

    # data of equilibrium structure
    equilibrium_cauchy_stress: Optional[Matrix3D] = Field(
        None, description="Cauchy stress tensor of the relaxed structure"
    )
    optimization_task: Optional[MPID] = Field(
        None, description="Optimization task corresponding to the relaxed structure"
    )
    optimization_dir_name: Optional[str] = Field(
        None, description="Path to the running directory of the optimization task"
    )

    # derived strains stresses
    num_total_strain_stress_states: Optional[int] = Field(
        None,
        description="Number of total strain--stress states used for fitting, i.e. the "
        "sum of explicitly calculated deformations and derived deformations from "
        "symmetry.",
    )


class CriticalMessage(BaseModel):
    FITTING: str = "Critical: cannot fit elastic tensor. Error: {}."
    COMPLIANCE: str = (
        "Critical: cannot invert elastic tensor to get compliance tensor. Error: {}."
    )
    STRAIN_RANK: str = (
        "Critical: insufficient number of valid strains. Expect the matrix of all "
        "strains to be of rank 6; got rank {}."
    )
    N_STATES: str = (
        "Critical: Expect 24 total (primary plus derived) strain--stress states "
        "to fit the data; got {}."
    )


class WarningMessage(BaseModel):
    NEGATIVE_EIGVAL: str = (
        "Elastic tensor has negative eigenvalue(s), indicating that the structure is "
        "mechanically unstable."
    )  # https://doi.org/10.1103/PhysRevB.90.224104
    NEGATIVE_MODULUS: str = (
        "Negative modulus: {} {} is {}, indicating that the structure is mechanically "
        "unstable."
    )
    SMALL_MODULUS: str = "Small modulus. {} {} is {}; smaller than {}."
    LARGE_MODULUS: str = "Large modulus. {} {} is {}; larger than {}."
    LARGE_YOUNG_MODULUS: str = "Large Young's modulus {}; larger than {}."
    LARGE_COMPONENT: str = "Elastic tensor has component larger than {}."


class ElasticityDoc(PropertyDoc):
    property_name: str = "elasticity"

    structure: Optional[Structure] = Field(
        None, description="Structure to compute the elasticity"
    )

    order: int = Field(
        default=2, description="Order of the expansion of the elastic tensor"
    )

    elastic_tensor: Optional[ElasticTensorDoc] = Field(
        None, description="Elastic tensor"
    )

    compliance_tensor: Optional[ComplianceTensorDoc] = Field(
        None, description="Compliance tensor"
    )

    # derived properties
    bulk_modulus: Optional[BulkModulus] = Field(None, description="Bulk modulus")
    shear_modulus: Optional[ShearModulus] = Field(None, description="Shear modulus")
    sound_velocity: Optional[SoundVelocity] = Field(None, description="Sound velocity")
    thermal_conductivity: Optional[ThermalConductivity] = Field(
        None, description="Thermal conductivity"
    )
    young_modulus: Optional[float] = Field(
        None, description="Young's modulus (SI units)", alias="youngs_modulus"
    )
    universal_anisotropy: Optional[float] = Field(
        None, description="Universal elastic anisotropy"
    )
    homogeneous_poisson: Optional[float] = Field(
        None, description="Homogeneous Poisson ratio"
    )
    debye_temperature: Optional[float] = Field(
        None, description="Debye temperature (SI units)"
    )

    fitting_data: Optional[FittingData] = Field(
        None, description="Data used to fit the elastic tensor"
    )

    fitting_method: Optional[str] = Field(
        None, description="Method used to fit the elastic tensor"
    )

    state: Optional[Status] = Field(
        None,
        description="State of the fitting/analysis: `successful` or `failed`",
    )

    @classmethod
    def from_deformations_and_stresses(
        cls,
        structure: Structure,
        material_id: MPID,
        deformations: List[Deformation],
        stresses: List[Stress],
        deformation_task_ids: Optional[List[MPID]] = None,
        deformation_dir_names: Optional[List[str]] = None,
        equilibrium_stress: Optional[Stress] = None,
        optimization_task_id: Optional[MPID] = None,
        optimization_dir_name: Optional[str] = None,
        fitting_method: str = "finite_difference",
        **kwargs,
    ):
        """
        Fitting the elastic tensor from deformation and stresses.

        Note, the elastic tensor are obtained by fitting to the Lagrangian strains
        and second Piola-Kirchhoff stresses. In continuum mechanics nomenclature,
        it's the `material elasticity tensor`. For more, see Section 6.5 of
        `Continuum Mechanics and Thermodynamics -- From Fundamental Concepts to
        Governing Equations` Tadmor, Miller, and Elliott, Cambridge University Press,
        2012.

        Args:
            structure: relaxed structure.
            material_id: material id.
            deformations: deformations applied to the relaxed structure that generate
                the strained structures.
            stresses: Cauchy stresses on the deformed structures. Expected units: GPa.
            deformation_task_ids: id of the deformation tasks.
            deformation_dir_names: directories where the deformation tasks are run.
            equilibrium_stress: Cauchy stress on the relaxed structure.
            optimization_task_id: id of the optimization task to relax the structure.
            optimization_dir_name: directory where the optimization task run.
            fitting_method: method used to fit the elastic tensor:
                {`finite_difference`, `pseudoinverse`, `independent`}.
        """
        CM = CriticalMessage()

        # primary fitting data
        p_deforms = deformations
        p_stresses = stresses
        (
            p_strains,
            p_2nd_pk_stresses,
            p_task_ids,
            p_dir_names,
        ) = generate_primary_fitting_data(
            p_deforms, p_stresses, deformation_task_ids, deformation_dir_names
        )

        # derived fitting data
        (
            d_deforms,
            d_strains,
            d_stresses,
            d_2nd_pk_stresses,
        ) = generate_derived_fitting_data(structure, p_strains, p_stresses)

        fitting_strains = p_strains + d_strains
        fitting_stresses = p_2nd_pk_stresses + d_2nd_pk_stresses

        # avoid symmop-related strains having non-symmop-related stresses
        fitting_stresses = symmetrize_stresses(
            fitting_stresses, fitting_strains, structure
        )

        # fitting elastic tensor
        try:
            elastic_tensor = fit_elastic_tensor(
                fitting_strains,
                fitting_stresses,
                eq_stress=equilibrium_stress,
                fitting_method=fitting_method,
            )

            # elastic and compliance tensors, only round ieee format ones
            ieee_et = elastic_tensor.voigt_symmetrized.convert_to_ieee(structure)
            et_doc = ElasticTensorDoc(
                raw=elastic_tensor.voigt.tolist(),
                ieee_format=ieee_et.round(0).voigt.tolist(),
            )

        except np.linalg.LinAlgError as e:
            et_doc = None
            ct_doc = None
            derived_props = {}
            state = Status("failed")
            warnings = [CM.FITTING.format(e)]

        else:
            try:
                compliance = elastic_tensor.compliance_tensor
                compliance_ieee = ieee_et.compliance_tensor

                # compliance tensor, *1000 to convert units to TPa^-1, i.e. 10^-12 Pa,
                # assuming elastic tensor in units of GPa
                ct_doc = ComplianceTensorDoc(
                    raw=(compliance * 1000).voigt.tolist(),
                    ieee_format=(compliance_ieee * 1000).round(0).voigt.tolist(),
                )

                # derived properties
                # (should put it here since some derived properties also dependent on
                # compliance tensor)
                derived_props = get_derived_properties(structure, elastic_tensor)

                # check all
                state, warnings = sanity_check(
                    structure, et_doc, fitting_strains, derived_props  # type: ignore
                )

            except np.linalg.LinAlgError as e:
                ct_doc = None
                derived_props = {}
                state = Status("failed")
                warnings = [CM.COMPLIANCE.format(e)]

        # fitting data
        eq_stress = None if equilibrium_stress is None else equilibrium_stress.tolist()
        n_states = len(p_deforms) + len(d_deforms)
        if n_states != 24:
            warnings.append(CM.N_STATES.format(n_states))
            state = Status("failed")

        fitting_data = FittingData(
            deformations=[x.tolist() for x in p_deforms],  # type: ignore
            strains=[x.tolist() for x in p_strains],  # type: ignore
            cauchy_stresses=[x.tolist() for x in p_stresses],  # type: ignore
            second_pk_stresses=[x.tolist() for x in p_2nd_pk_stresses],  # type: ignore
            deformation_tasks=p_task_ids,  # type: ignore
            deformation_dir_names=p_dir_names,  # type: ignore
            equilibrium_cauchy_stress=eq_stress,
            optimization_task=optimization_task_id,
            optimization_dir_name=optimization_dir_name,  # type: ignore
            num_total_strain_stress_states=n_states,
        )

        return cls.from_structure(
            structure,
            material_id,
            structure=structure,
            order=2,
            elastic_tensor=et_doc,
            compliance_tensor=ct_doc,
            fitting_data=fitting_data,
            fitting_method=fitting_method,
            warnings=warnings,
            state=state,
            deprecated=state == Status("failed"),
            **derived_props,
            **kwargs,
        )


def generate_primary_fitting_data(
    deforms: List[Deformation],
    stresses: List[Stress],
    task_ids: Optional[List[MPID]] = None,
    dir_names: Optional[List[str]] = None,
) -> Tuple[
    List[Strain],
    List[Stress],
    Union[List[MPID], None],
    Union[List[str], None],
]:
    """
    Get the primary fitting data, i.e. data obtained from a calculation.

    Args:
        deforms: primary deformations
        stresses: primary stresses
        task_ids: ids of the tasks that generate the data
        dir_names: directories where the calculations are performed

    Returns:
        strains: primary strains
        second_pk_stresses: primary second Piola-Kirchhoff stresses
        task_ids: ids of the tasks that generate the data
        dir_names: directories where the calculations are performed
    """
    size = len(deforms)
    assert len(stresses) == size
    if task_ids is not None:
        assert len(task_ids) == size
    if dir_names is not None:
        assert len(dir_names) == size

    strains = [d.green_lagrange_strain for d in deforms]
    second_pk_stresses = [s.piola_kirchoff_2(d) for (s, d) in zip(stresses, deforms)]

    return strains, second_pk_stresses, task_ids, dir_names


def generate_derived_fitting_data(
    structure: Structure,
    strains: List[Strain],
    stresses: List[Stress],
    symprec=SETTINGS.SYMPREC,
) -> Tuple[List[Deformation], List[Strain], List[Stress], List[Stress]]:
    """
    Get the derived fitting data from symmetry operations on the primary fitting data.

    It can happen that multiple primary deformations can be mapped to the same derived
    deformation from different symmetry operations. Ideally, this cannot happen if one
    use the same structure to determine all the symmetry operations.

    However, this is not the case in atomate, where the deformation tasks are determined
    based on the symmetry of the structure before the tight relaxation, which in this
    function the structure is the relaxed structure. The symmetries can be different.

    In atomate2, this is not a problem, because the deformation tasks are determined
    based on the relaxed structure.

    To make it work for all cases, the stress for a derived deformation is the average
    of all derived stresses, each corresponding to a primary calculation.
    In doing so, we also check to ensure that:
    1. only independent derived deformations are used
    2. for a specific derived strain, a primary deformation is only used (mapped)
       once to obtain the average

    Args:
        structure: relaxed structure
        strains: primary strains
        stresses: primary stresses
        symprec: symmetry operation precision

    Returns:
        derived_deforms: derived deformations
        derived_strains: derived strains
        derived_stresses: derived Cauchy stresses
        derived_2nd_pk_stresses: derived second Piola-Kirchhoff stresses
    """
    sga = SpacegroupAnalyzer(structure, symprec=symprec)
    symmops = sga.get_symmetry_operations(cartesian=True)

    # primary strain mapping (used only for checking purpose below)
    p_mapping = TensorMapping(strains, strains)

    # generated derived deforms
    mapping = TensorMapping()
    for i, p_strain in enumerate(strains):
        for op in symmops:
            d_strain = p_strain.transform(op)

            # sym op generates another primary strain
            if d_strain in p_mapping:
                continue

            # seen this derived deform before
            if d_strain in mapping:
                # all the existing `i`
                current = [t[1] for t in mapping[d_strain]]

                if i not in current:
                    mapping[d_strain].append((op, i))

            # not seen this derived deform before
            else:
                mapping[d_strain] = [(op, i)]

    # get average stress from derived deforms
    derived_strains = []
    derived_stresses = []
    derived_deforms = []
    derived_2nd_pk_stresses = []

    for d_strain, op_set in mapping.items():
        symmops, p_indices = zip(*op_set)  # type: ignore[assignment]

        p_stresses = [stresses[i] for i in p_indices]
        d_stresses = [s.transform(op) for s, op in zip(p_stresses, symmops)]
        d_stress = Stress(np.average(d_stresses, axis=0))

        derived_strains.append(d_strain)
        derived_stresses.append(d_stress)

        deform = d_strain.get_deformation_matrix()
        derived_deforms.append(deform)
        derived_2nd_pk_stresses.append(d_stress.piola_kirchoff_2(deform))

    return derived_deforms, derived_strains, derived_stresses, derived_2nd_pk_stresses


def symmetrize_stresses(
    stresses: List[Stress],
    strains: List[Strain],
    structure: Structure,
    symprec=SETTINGS.SYMPREC,
    tol: float = 0.002,
) -> List[Stress]:
    """
    Symmetrize stresses by averaging over all symmetry operations.

    Args:
        stresses: stresses to be symmetrized
        strains: strains corresponding to the stresses
        structure: materials structure
        symprec: symmetry operation precision
        tol: tolerance for comparing strains and also for determining whether the
            deformation corresponds to the train is independent. The elastic workflow
            use a minimum strain of 0.005, so the default tolerance of 0.002 should be
            able to distinguish different strain states.

    Returns: symmetrized stresses
    """
    sga = SpacegroupAnalyzer(structure, symprec=symprec)
    symmops = sga.get_symmetry_operations(cartesian=True)

    # for each strain, get the stresses from other strain states related by symmetry
    symmmetrized_stresses = []  # type: List[Stress]
    for strain, _stress in zip(strains, stresses):
        mapping = TensorMapping([strain], [[]], tol=tol)
        for strain2, stress2 in zip(strains, stresses):
            for op in symmops:
                if strain2.transform(op) in mapping:
                    mapping[strain].append(stress2.transform(op))
        sym_stress = np.average(mapping[strain], axis=0)
        symmmetrized_stresses.append(Stress(sym_stress))

    return symmmetrized_stresses


def fit_elastic_tensor(
    strains: List[Strain],
    stresses: List[Stress],
    eq_stress: Stress | None,
    fitting_method: str = "finite_difference",
    order: int = 2,
) -> ElasticTensor:
    """
    Fitting the elastic tensor.

    Args:
        strains: strains (primary and derived) to fit the elastic tensor
        stresses: stresses (primary and derived) to fit the elastic tensor
        eq_stress: equilibrium stress, i.e. stress on the relaxed structure
        fitting_method: method used to fit the elastic tensor:
            {`finite_difference`, `pseudoinverse`, `independent`}
        order: expansion order of the elastic tensor, 2 or 3

    Returns:
        fitted elastic tensor
    """
    if order > 2 or fitting_method == "finite_difference":
        # force finite diff if order > 2
        result = ElasticTensorExpansion.from_diff_fit(
            strains, stresses, eq_stress=eq_stress, order=order
        )
        if order == 2:
            result: ElasticTensor = ElasticTensor(result[0])  # type: ignore[no-redef]
    elif fitting_method == "pseudoinverse":
        result: ElasticTensor = ElasticTensor.from_pseudoinverse(strains, stresses)  # type: ignore[no-redef]
    elif fitting_method == "independent":
        result: ElasticTensor = ElasticTensor.from_independent_strains(  # type: ignore[no-redef]
            strains, stresses, eq_stress=eq_stress
        )
    else:
        raise ValueError(f"Unsupported elastic fitting method {fitting_method}")

    return result  # type: ignore[return-value]


def get_derived_properties(
    structure: Structure, tensor: ElasticTensor
) -> Dict[str, Any]:
    """
    Get derived elasticity properties.

    Args:
        structure: relaxed structure
        tensor: elastic tensor corresponding to the structure

    Returns:
        a dict of derived elasticity properties
    """
    try:
        prop_dict = tensor.get_structure_property_dict(structure)
        prop_dict.pop("structure")
        structure_prop_computed = True

    except ValueError:
        prop_dict = tensor.property_dict
        structure_prop_computed = False

    decimals = 3
    derived_prop = {
        "bulk_modulus": BulkModulus(
            voigt=np.round(prop_dict["k_voigt"], decimals),  # type: ignore[arg-type]
            reuss=np.round(prop_dict["k_reuss"], decimals),  # type: ignore[arg-type]
            vrh=np.round(prop_dict["k_vrh"], decimals),  # type: ignore[arg-type]
        ),
        "shear_modulus": ShearModulus(
            voigt=np.round(prop_dict["g_voigt"], decimals),  # type: ignore[arg-type]
            reuss=np.round(prop_dict["g_reuss"], decimals),  # type: ignore[arg-type]
            vrh=np.round(prop_dict["g_vrh"], decimals),  # type: ignore[arg-type]
        ),
        "young_modulus": np.round(prop_dict["y_mod"], 0),  # type: ignore[arg-type]
        "homogeneous_poisson": np.round(prop_dict["homogeneous_poisson"], decimals),  # type: ignore[arg-type]
        "universal_anisotropy": np.round(prop_dict["universal_anisotropy"], decimals),  # type: ignore[arg-type]
    }

    if structure_prop_computed:
        derived_prop.update(
            {
                "sound_velocity": SoundVelocity(
                    transverse=prop_dict["trans_v"],  # type: ignore[arg-type]
                    longitudinal=prop_dict["long_v"],  # type: ignore[arg-type]
                    snyder_acoustic=prop_dict["snyder_ac"],  # type: ignore[arg-type]
                    snyder_optical=prop_dict["snyder_opt"],  # type: ignore[arg-type]
                    snyder_total=prop_dict["snyder_total"],  # type: ignore[arg-type]
                ),
                "thermal_conductivity": ThermalConductivity(
                    clarke=prop_dict["clarke_thermalcond"],  # type: ignore[arg-type]
                    cahill=prop_dict["cahill_thermalcond"],  # type: ignore[arg-type]
                ),
                "debye_temperature": prop_dict["debye_temperature"],  # type: ignore[arg-type]
            }
        )

    return derived_prop


def sanity_check(
    structure: Structure,
    elastic_doc: ElasticTensorDoc,
    strains: List[Strain],
    derived_props: Dict[str, Any],
) -> Tuple[Status, List[str]]:
    """
    Post analysis to generate warnings if any.

    Returns:
        state: state of the calculation
        warnings: all warning messages. Messages starting with `Critical` are the
            ones resulting in a `failed` state.
    """
    failed = False
    warnings = []
    CM = CriticalMessage()
    WM = WarningMessage()

    # rank of all strains < 6?
    voigt_strains = [s.voigt for s in strains]
    rank = np.linalg.matrix_rank(voigt_strains)
    if rank != 6:
        failed = True
        warnings.append(CM.STRAIN_RANK.format(rank))

    # elastic tensor eigenvalues
    eig_vals, _ = np.linalg.eig(elastic_doc.raw)  # type: ignore
    if np.any(eig_vals < 0.0):
        warnings.append(WM.NEGATIVE_EIGVAL)

    # elastic tensor individual components
    et = np.asarray(elastic_doc.ieee_format)

    tol = 1e6
    if np.any(et > tol):
        warnings.append(WM.LARGE_COMPONENT.format(tol))

    # modulus
    low = 2.0
    high = 1000.0
    for p in ["bulk_modulus", "shear_modulus"]:
        doc = derived_props[p]
        doc = doc.model_dump()
        p = p.replace("_", " ")
        for name in ["voigt", "reuss", "vrh"]:
            v = doc[name]
            if v < 0:
                failed = True
                warnings.append(WM.NEGATIVE_MODULUS.format(name, p, v))
            elif v < low:
                warnings.append(WM.SMALL_MODULUS.format(name, p, v, low))
            elif v > high:
                warnings.append(WM.LARGE_MODULUS.format(name, p, v, high))

    # young's modulus (note it is in Pa, not GPa)
    high = 1e12
    v = derived_props["young_modulus"]
    if v > high:
        warnings.append(WM.LARGE_YOUNG_MODULUS.format(v, high))

    state = Status("failed") if failed else Status("successful")

    return state, warnings