1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
from __future__ import annotations
import re
from collections import defaultdict
from datetime import datetime
from typing import Dict, List, Optional, Union
from pydantic import BaseModel, Field, field_validator
from pymatgen.analysis.phase_diagram import PhaseDiagram
from pymatgen.apps.battery.battery_abc import AbstractElectrode
from pymatgen.apps.battery.conversion_battery import ConversionElectrode
from pymatgen.apps.battery.insertion_battery import InsertionElectrode
from pymatgen.core import Composition, Structure
from pymatgen.core.periodic_table import DummySpecies, Element, Species
from pymatgen.entries.computed_entries import ComputedEntry, ComputedStructureEntry
from emmet.core.common import convert_datetime
from emmet.core.mpid import MPID
from emmet.core.utils import ValueEnum
class BatteryType(str, ValueEnum):
"""
Enum for battery type
"""
insertion = "insertion"
conversion = "conversion"
class VoltagePairDoc(BaseModel):
"""
Data for individual voltage steps.
Note: Each voltage step is represented as a sub_electrode (ConversionElectrode/InsertionElectrode)
object to gain access to some basic statistics about the voltage step
"""
formula_charge: Optional[str] = Field(
None, description="The chemical formula of the charged material."
)
formula_discharge: Optional[str] = Field(
None, description="The chemical formula of the discharged material."
)
max_delta_volume: Optional[float] = Field(
None,
description="Volume changes in % for a particular voltage step using: "
"max(charge, discharge) / min(charge, discharge) - 1.",
)
average_voltage: Optional[float] = Field(
None, description="The average voltage in V for a particular voltage step."
)
capacity_grav: Optional[float] = Field(
None, description="Gravimetric capacity in mAh/g."
)
capacity_vol: Optional[float] = Field(
None, description="Volumetric capacity in mAh/cc."
)
energy_grav: Optional[float] = Field(
None, description="Gravimetric energy (Specific energy) in Wh/kg."
)
energy_vol: Optional[float] = Field(
None, description="Volumetric energy (Energy Density) in Wh/l."
)
fracA_charge: Optional[float] = Field(
None, description="Atomic fraction of the working ion in the charged state."
)
fracA_discharge: Optional[float] = Field(
None, description="Atomic fraction of the working ion in the discharged state."
)
@classmethod
def from_sub_electrode(cls, sub_electrode: AbstractElectrode, **kwargs):
"""
Convert a pymatgen electrode object to a document
"""
return cls(**sub_electrode.get_summary_dict(), **kwargs)
class InsertionVoltagePairDoc(VoltagePairDoc):
"""
Features specific to insertion electrode
"""
stability_charge: Optional[float] = Field(
None, description="The energy above hull of the charged material in eV/atom."
)
stability_discharge: Optional[float] = Field(
None, description="The energy above hull of the discharged material in eV/atom."
)
id_charge: Optional[Union[MPID, int, None]] = Field(
None, description="The Materials Project ID of the charged structure."
)
id_discharge: Optional[Union[MPID, int, None]] = Field(
None, description="The Materials Project ID of the discharged structure."
)
class ConversionVoltagePairDoc(VoltagePairDoc):
"""
Features specific to conversion electrode
"""
reaction: Optional[dict] = Field(
None,
description="The reaction that characterizes that particular voltage step.",
)
class EntriesCompositionSummary(BaseModel):
"""
Composition summary data for all material entries associated with this electrode.
Included to enable better searching via the API.
"""
all_formulas: Optional[List[str]] = Field(
None,
description="Reduced formulas for material entries across all voltage pairs.",
)
all_chemsys: Optional[List[str]] = Field(
None,
description="Chemical systems for material entries across all voltage pairs.",
)
all_formula_anonymous: Optional[List[str]] = Field(
None,
description="Anonymous formulas for material entries across all voltage pairs.",
)
all_elements: Optional[List[Union[Element, Species, DummySpecies]]] = Field(
None,
description="Elements in material entries across all voltage pairs.",
)
all_composition_reduced: Optional[Dict] = Field(
None,
description="Composition reduced data for entries across all voltage pairs.",
)
@classmethod
def from_compositions(cls, compositions: List[Composition]):
all_formulas = list({comp.reduced_formula for comp in compositions})
all_chemsys = list({comp.chemical_system for comp in compositions})
all_formula_anonymous = list({comp.anonymized_formula for comp in compositions})
all_elements = sorted(compositions)[-1].elements
all_composition_reduced = defaultdict(set)
for comp in compositions:
comp_red = comp.get_reduced_composition_and_factor()[0].as_dict()
for ele, num in comp_red.items():
all_composition_reduced[ele].add(num)
return cls(
all_formulas=all_formulas,
all_chemsys=all_chemsys,
all_formula_anonymous=all_formula_anonymous,
all_elements=all_elements,
all_composition_reduced={
k: sorted(list(v)) for k, v in all_composition_reduced.items()
},
)
class BaseElectrode(BaseModel):
battery_type: Optional[BatteryType] = Field(
None, description="The type of battery (insertion or conversion)."
)
battery_id: Optional[str] = Field(
None,
description="The id for this battery document is the numerically smallest material_id followed by "
"the working ion.",
)
thermo_type: Optional[str] = Field(
None,
description="The functional type used to compute the thermodynamics of this electrode document.",
)
battery_formula: Optional[str] = Field(
None,
description="Reduced formula with working ion range produced by combining the charge and discharge formulas.",
)
working_ion: Optional[Element] = Field(
None, description="The working ion as an Element object."
)
num_steps: Optional[int] = Field(
None,
description="The number of distinct voltage steps in from fully charge to "
"discharge based on the stable intermediate states.",
)
max_voltage_step: Optional[float] = Field(
None, description="Maximum absolute difference in adjacent voltage steps."
)
last_updated: Optional[datetime] = Field(
None,
description="Timestamp for the most recent calculation for this Material document.",
)
framework: Optional[Composition] = Field(
None, description="The chemical compositions of the host framework."
)
framework_formula: Optional[str] = Field(
None, description="The id for this battery document."
)
elements: Optional[List[Element]] = Field(
None,
description="The atomic species contained in this electrode (not including the working ion).",
)
nelements: Optional[int] = Field(
None,
description="The number of elements in the material (not including the working ion).",
)
chemsys: Optional[str] = Field(
None,
description="The chemical system this electrode belongs to (not including the working ion).",
)
formula_anonymous: Optional[str] = Field(
None,
title="Anonymous Formula",
description="Anonymized representation of the formula (not including the working ion).",
)
warnings: List[str] = Field(
[], description="Any warnings related to this electrode data."
)
# Make sure that the datetime field is properly formatted
@field_validator("last_updated", mode="before")
@classmethod
def handle_datetime(cls, v):
return convert_datetime(cls, v)
class InsertionElectrodeDoc(InsertionVoltagePairDoc, BaseElectrode):
"""
Insertion electrode
"""
host_structure: Optional[Structure] = Field(
None, description="Host structure (structure without the working ion)."
)
adj_pairs: Optional[List[InsertionVoltagePairDoc]] = Field(
None, description="Returns all of the voltage steps material pairs."
)
material_ids: Optional[List[MPID]] = Field(
None,
description="The ids of all structures that matched to the present host lattice, regardless of stability. "
"The stable entries can be found in the adjacent pairs.",
)
entries_composition_summary: Optional[EntriesCompositionSummary] = Field(
None,
description="Composition summary data for all material in entries across all voltage pairs.",
)
electrode_object: Optional[InsertionElectrode] = Field(
None, description="The Pymatgen electrode object."
)
@classmethod
def from_entries(
cls,
grouped_entries: List[ComputedStructureEntry],
working_ion_entry: ComputedEntry,
battery_id: str,
strip_structures: bool = False,
) -> Union["InsertionElectrodeDoc", None]:
try:
ie = InsertionElectrode.from_entries(
entries=grouped_entries,
working_ion_entry=working_ion_entry,
strip_structures=strip_structures,
)
except IndexError:
return None
d = cls.get_elec_doc(ie)
d["last_updated"] = datetime.utcnow()
stripped_host = ie.fully_charged_entry.structure.copy()
stripped_host.remove_species([d["working_ion"]])
elements = stripped_host.composition.elements
chemsys = stripped_host.composition.chemical_system
framework = Composition(d["framework_formula"])
dchg_comp = Composition(d["formula_discharge"])
battery_formula = get_battery_formula(
Composition(d["formula_charge"]),
dchg_comp,
ie.working_ion,
)
compositions = []
for doc in d["adj_pairs"]:
compositions.append(Composition(doc["formula_charge"]))
compositions.append(Composition(doc["formula_discharge"]))
entries_composition_summary = EntriesCompositionSummary.from_compositions(
compositions
)
# Check if more than one working ion per transition metal and warn
warnings = []
if any([element.is_transition_metal for element in dchg_comp]):
transition_metal_fraction = sum(
[
dchg_comp.get_atomic_fraction(elem)
for elem in dchg_comp
if elem.is_transition_metal
]
)
if (
dchg_comp.get_atomic_fraction(ie.working_ion)
/ transition_metal_fraction
> 1.0
):
warnings.append("More than one working ion per transition metal")
else:
warnings.append("Transition metal not found")
return cls(
battery_type="insertion", # type: ignore
battery_id=battery_id,
host_structure=stripped_host.as_dict(),
framework=framework,
battery_formula=battery_formula,
electrode_object=ie,
elements=elements,
nelements=len(elements),
chemsys=chemsys,
formula_anonymous=framework.anonymized_formula,
entries_composition_summary=entries_composition_summary,
warnings=warnings,
**d,
)
@staticmethod
def get_elec_doc(ie: InsertionElectrode) -> dict:
"""
Gets a summary doc for an InsertionElectrode object.
Similar to InsertionElectrode.get_summary_dict() with modifications specific
to the Materials Project.
Args:
ie (pymatgen InsertionElectrode): electrode_object
Returns:
summary doc
"""
entries = ie.get_all_entries()
def get_dict_from_elec(ie):
d = {
"average_voltage": ie.get_average_voltage(),
"max_voltage": ie.max_voltage,
"min_voltage": ie.min_voltage,
"max_delta_volume": ie.max_delta_volume,
"max_voltage_step": ie.max_voltage_step,
"capacity_grav": ie.get_capacity_grav(),
"capacity_vol": ie.get_capacity_vol(),
"energy_grav": ie.get_specific_energy(),
"energy_vol": ie.get_energy_density(),
"working_ion": ie.working_ion.symbol,
"num_steps": ie.num_steps,
"fracA_charge": ie.voltage_pairs[0].frac_charge,
"fracA_discharge": ie.voltage_pairs[-1].frac_discharge,
"framework_formula": ie.framework_formula,
"id_charge": ie.fully_charged_entry.data["material_id"],
"formula_charge": ie.fully_charged_entry.composition.reduced_formula,
"id_discharge": ie.fully_discharged_entry.data["material_id"],
"formula_discharge": ie.fully_discharged_entry.composition.reduced_formula,
"max_instability": ie.get_max_instability(),
"min_instability": ie.get_min_instability(),
"material_ids": [itr_ent.data["material_id"] for itr_ent in entries],
"stable_material_ids": [
itr_ent.data["material_id"] for itr_ent in ie.get_stable_entries()
],
"unstable_material_ids": [
itr_ent.data["material_id"] for itr_ent in ie.get_unstable_entries()
],
}
if all("decomposition_energy" in e.data for e in entries):
thermo_data = {
"stability_charge": ie.fully_charged_entry.data[
"decomposition_energy"
],
"stability_discharge": ie.fully_discharged_entry.data[
"decomposition_energy"
],
"stability_data": {
e.entry_id: e.data["decomposition_energy"] for e in entries
},
}
else:
thermo_data = {
"stability_charge": None,
"stability_discharge": None,
"stability_data": {},
}
d.update(thermo_data)
return d
d = get_dict_from_elec(ie)
d["adj_pairs"] = list(
map(get_dict_from_elec, ie.get_sub_electrodes(adjacent_only=True))
)
return d
class ConversionElectrodeDoc(ConversionVoltagePairDoc, BaseElectrode):
"""
Conversion electrode
"""
initial_comp_formula: Optional[str] = Field(
None,
description="The starting composition for the ConversionElectrode represented as a string/formula.",
)
adj_pairs: Optional[List[ConversionVoltagePairDoc]] = Field(
None, description="Returns all of the voltage steps material pairs."
)
electrode_object: Optional[ConversionElectrode] = Field(
None, description="The Pymatgen conversion electrode object."
)
@classmethod
def from_composition_and_entries(
cls,
composition: Composition,
entries: List[ComputedEntry],
working_ion_symbol: str,
battery_id: str,
thermo_type: str,
):
ce = ConversionElectrode.from_composition_and_entries(
comp=composition,
entries_in_chemsys=entries,
working_ion_symbol=working_ion_symbol,
)
d = cls.get_conversion_elec_doc(ce) # type: ignore[arg-type]
return cls(battery_id=battery_id, thermo_type=thermo_type, **d)
@classmethod
def from_composition_and_pd(
cls,
comp: Composition,
pd: PhaseDiagram,
working_ion_symbol: str,
battery_id: str,
thermo_type: str,
):
ce = ConversionElectrode.from_composition_and_pd(
comp=comp, pd=pd, working_ion_symbol=working_ion_symbol
)
d = cls.get_conversion_elec_doc(ce) # type: ignore[arg-type]
return cls(battery_id=battery_id, thermo_type=thermo_type, **d)
@staticmethod
def get_conversion_elec_doc(ce: ConversionElectrode) -> dict:
"""
Gets a summary doc for a ConversionElectrode object.
Args:
ie (pymatgen ConversionElectrode): electrode_object
Returns:
summary doc
"""
def get_dict_from_conversion_elec(ce):
fracA_charge = ce.voltage_pairs[0].frac_charge
fracA_discharge = ce.voltage_pairs[-1].frac_discharge
x_charge = fracA_charge * ce.framework.num_atoms / (1 - fracA_charge)
x_discharge = (
fracA_discharge * ce.framework.num_atoms / (1 - fracA_discharge)
)
comp_charge = ce.framework + {ce.working_ion.symbol: x_charge}
comp_discharge = ce.framework + {ce.working_ion.symbol: x_discharge}
battery_formula = get_battery_formula(
comp_charge,
comp_discharge,
ce.working_ion,
)
d = {
"battery_type": "conversion",
"battery_formula": battery_formula,
"framework": ce.framework,
"framework_formula": ce.framework_formula,
"initial_comp_formula": ce.initial_comp_formula,
"chemsys": ce.framework.chemical_system,
"elements": ce.framework.elements,
"nelements": len(ce.framework.elements),
"formula_anonymous": ce.framework.anonymized_formula,
"electrode_object": ce.as_dict(),
"average_voltage": ce.get_average_voltage(),
"max_voltage": ce.max_voltage,
"min_voltage": ce.min_voltage,
"max_delta_volume": ce.max_delta_volume,
"max_voltage_step": ce.max_voltage_step,
"capacity_grav": ce.get_capacity_grav(),
"capacity_vol": ce.get_capacity_vol(),
"energy_grav": ce.get_specific_energy(),
"energy_vol": ce.get_energy_density(),
"working_ion": ce.working_ion.symbol,
"num_steps": ce.num_steps,
"fracA_charge": fracA_charge,
"fracA_discharge": fracA_discharge,
"formula_charge": comp_charge.reduced_formula,
"formula_discharge": comp_discharge.reduced_formula,
"reaction": ce.voltage_pairs[0].rxn.as_dict(),
"last_updated": datetime.utcnow(),
}
return d
d = get_dict_from_conversion_elec(ce)
d["adj_pairs"] = list(
map(
get_dict_from_conversion_elec, ce.get_sub_electrodes(adjacent_only=True)
)
)
return d
def get_battery_formula(
charge_comp: Composition, discharge_comp: Composition, working_ion: Element
):
working_ion_subscripts = []
for comp in [charge_comp, discharge_comp]:
comp_dict = comp.get_el_amt_dict()
working_ion_num = (
comp_dict.pop(working_ion.value) if working_ion.value in comp_dict else 0
)
temp_comp = Composition.from_dict(comp_dict)
(temp_reduced, n) = temp_comp.get_reduced_composition_and_factor()
new_subscript = re.sub(".00$", "", "{:.2f}".format(working_ion_num / n))
if new_subscript != "0":
new_subscript = new_subscript.rstrip("0")
working_ion_subscripts.append(new_subscript)
return (
working_ion.value
+ "-".join(working_ion_subscripts)
+ temp_reduced.reduced_formula
)
|