File: electronic_structure.py

package info (click to toggle)
python-emmet-core 0.84.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 77,220 kB
  • sloc: python: 16,355; makefile: 30
file content (504 lines) | stat: -rw-r--r-- 18,181 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
""" Core definition of an Electronic Structure """

from __future__ import annotations

from collections import defaultdict
from datetime import datetime
from enum import Enum
from math import isnan
from typing import Dict, List, Optional, Type, TypeVar, Union

import numpy as np
from pydantic import BaseModel, Field
from pymatgen.analysis.magnetism.analyzer import (
    CollinearMagneticStructureAnalyzer,
    Ordering,
)
from pymatgen.core import Structure
from pymatgen.core.periodic_table import Element
from pymatgen.electronic_structure.bandstructure import BandStructureSymmLine
from pymatgen.electronic_structure.core import OrbitalType, Spin
from pymatgen.electronic_structure.dos import CompleteDos
from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
from pymatgen.symmetry.bandstructure import HighSymmKpath
from typing_extensions import Literal

from emmet.core.material_property import PropertyDoc
from emmet.core.mpid import MPID
from emmet.core.settings import EmmetSettings

SETTINGS = EmmetSettings()


class BSPathType(Enum):
    setyawan_curtarolo = "setyawan_curtarolo"
    hinuma = "hinuma"
    latimer_munro = "latimer_munro"


class DOSProjectionType(Enum):
    total = "total"
    elemental = "elemental"
    orbital = "orbital"


class BSObjectDoc(BaseModel):
    """
    Band object document.
    """

    task_id: Optional[MPID] = Field(
        None,
        description="The source calculation (task) ID that this band structure comes from. "
        "This has the same form as a Materials Project ID.",
    )

    last_updated: datetime = Field(
        description="The timestamp when this calculation was last updated",
        default_factory=datetime.utcnow,
    )

    data: Optional[Union[Dict, BandStructureSymmLine]] = Field(
        None, description="The band structure object for the given calculation ID"
    )


class DOSObjectDoc(BaseModel):
    """
    DOS object document.
    """

    task_id: Optional[MPID] = Field(
        None,
        description="The source calculation (task) ID that this density of states comes from. "
        "This has the same form as a Materials Project ID.",
    )

    last_updated: datetime = Field(
        description="The timestamp when this calculation was last updated.",
        default_factory=datetime.utcnow,
    )

    data: Optional[CompleteDos] = Field(
        None, description="The density of states object for the given calculation ID."
    )


class ElectronicStructureBaseData(BaseModel):
    task_id: MPID = Field(
        ...,
        description="The source calculation (task) ID for the electronic structure data. "
        "This has the same form as a Materials Project ID.",
    )

    band_gap: float = Field(..., description="Band gap energy in eV.")

    cbm: Optional[Union[float, Dict]] = Field(
        None, description="Conduction band minimum data."
    )

    vbm: Optional[Union[float, Dict]] = Field(
        None, description="Valence band maximum data."
    )

    efermi: Optional[float] = Field(None, description="Fermi energy in eV.")


class ElectronicStructureSummary(ElectronicStructureBaseData):
    is_gap_direct: bool = Field(..., description="Whether the band gap is direct.")

    is_metal: bool = Field(..., description="Whether the material is a metal.")

    magnetic_ordering: Union[str, Ordering] = Field(
        ..., description="Magnetic ordering of the calculation."
    )


class BandStructureSummaryData(ElectronicStructureSummary):
    nbands: float = Field(..., description="Number of bands.")

    equivalent_labels: Dict = Field(
        ..., description="Equivalent k-point labels in other k-path conventions."
    )

    direct_gap: float = Field(..., description="Direct gap energy in eV.")


class DosSummaryData(ElectronicStructureBaseData):
    spin_polarization: Optional[float] = Field(
        None, description="Spin polarization at the fermi level."
    )


class BandstructureData(BaseModel):
    setyawan_curtarolo: Optional[BandStructureSummaryData] = Field(
        None,
        description="Band structure summary data using the Setyawan-Curtarolo path convention.",
    )

    hinuma: Optional[BandStructureSummaryData] = Field(
        None,
        description="Band structure summary data using the Hinuma et al. path convention.",
    )

    latimer_munro: Optional[BandStructureSummaryData] = Field(
        None,
        description="Band structure summary data using the Latimer-Munro path convention.",
    )


class DosData(BaseModel):
    total: Optional[Dict[Union[Spin, str], DosSummaryData]] = Field(
        None, description="Total DOS summary data."
    )

    elemental: Optional[
        Dict[
            Element,
            Dict[
                Union[Literal["total", "s", "p", "d", "f"], OrbitalType],
                Dict[Union[Literal["1", "-1"], Spin], DosSummaryData],
            ],
        ]
    ] = Field(
        None,
        description="Band structure summary data using the Hinuma et al. path convention.",
    )

    orbital: Optional[
        Dict[
            Union[Literal["total", "s", "p", "d", "f"], OrbitalType],
            Dict[Union[Literal["1", "-1"], Spin], DosSummaryData],
        ]
    ] = Field(
        None,
        description="Band structure summary data using the Latimer-Munro path convention.",
    )

    magnetic_ordering: Optional[Union[Ordering, str]] = Field(
        None, description="Magnetic ordering of the calculation."
    )


T = TypeVar("T", bound="ElectronicStructureDoc")


class ElectronicStructureDoc(PropertyDoc, ElectronicStructureSummary):
    """
    Definition for a core Electronic Structure Document
    """

    property_name: str = "electronic_structure"

    bandstructure: Optional[BandstructureData] = Field(
        None, description="Band structure data for the material."
    )

    dos: Optional[DosData] = Field(
        None, description="Density of states data for the material."
    )

    last_updated: datetime = Field(
        description="Timestamp for when this document was last updated.",
        default_factory=datetime.utcnow,
    )

    @classmethod
    def from_bsdos(  # type: ignore[override]
        cls: Type[T],
        material_id: MPID,
        dos: Dict[MPID, CompleteDos],
        is_gap_direct: bool,
        is_metal: bool,
        origins: List[dict] = [],
        structures: Optional[Dict[MPID, Structure]] = None,
        setyawan_curtarolo: Optional[Dict[MPID, BandStructureSymmLine]] = None,
        hinuma: Optional[Dict[MPID, BandStructureSymmLine]] = None,
        latimer_munro: Optional[Dict[MPID, BandStructureSymmLine]] = None,
        **kwargs,
    ) -> T:
        """
        Builds a electronic structure document using band structure and density of states data.

        Args:
            material_id (MPID): A material ID.
            dos (Dict[MPID, CompleteDos]): Dictionary mapping a calculation (task) ID to a CompleteDos object.
            is_gap_direct (bool): Direct gap indicator included at root level of document.
            is_metal (bool): Metallic indicator included at root level of document.
            structures (Dict[MPID, Structure]) = Dictionary mapping a calculation (task) ID to the structures used
                as inputs. This is to ensures correct magnetic moment information is included.
            setyawan_curtarolo (Dict[MPID, BandStructureSymmLine]): Dictionary mapping a calculation (task) ID to a
                BandStructureSymmLine object from a calculation run using the Setyawan-Curtarolo k-path convention.
            hinuma (Dict[MPID, BandStructureSymmLine]): Dictionary mapping a calculation (task) ID to a
                BandStructureSymmLine object from a calculation run using the Hinuma et al. k-path convention.
            latimer_munro (Dict[MPID, BandStructureSymmLine]): Dictionary mapping a calculation (task) ID to a
                BandStructureSymmLine object from a calculation run using the Latimer-Munro k-path convention.
            origins (List[dict]): Optional origins information for final doc

        """

        # -- Process density of states data

        dos_task, dos_obj = list(dos.items())[0]

        orbitals = [OrbitalType.s, OrbitalType.p, OrbitalType.d]
        spins = list(dos_obj.densities.keys())

        ele_dos = dos_obj.get_element_dos()
        tot_orb_dos = dos_obj.get_spd_dos()

        elements = ele_dos.keys()

        dos_efermi = dos_obj.efermi

        is_gap_direct = is_gap_direct
        is_metal = is_metal

        structure = dos_obj.structure

        if structures is not None and structures[dos_task]:
            structure = structures[dos_task]

        dos_mag_ordering = CollinearMagneticStructureAnalyzer(structure).ordering

        dos_data = {
            "total": defaultdict(dict),
            "elemental": {element: defaultdict(dict) for element in elements},
            "orbital": defaultdict(dict),
            "magnetic_ordering": dos_mag_ordering,
        }

        for spin in spins:
            # - Process total DOS data
            band_gap = dos_obj.get_gap(spin=spin)
            (cbm, vbm) = dos_obj.get_cbm_vbm(spin=spin)

            try:
                spin_polarization = dos_obj.spin_polarization
                if spin_polarization is None or isnan(spin_polarization):
                    spin_polarization = None
            except KeyError:
                spin_polarization = None

            dos_data["total"][spin] = DosSummaryData(  # type: ignore[index]
                task_id=dos_task,
                band_gap=band_gap,
                cbm=cbm,
                vbm=vbm,
                efermi=dos_efermi,
                spin_polarization=spin_polarization,
            )

            # - Process total orbital projection data
            for orbital in orbitals:
                band_gap = tot_orb_dos[orbital].get_gap(spin=spin)

                (cbm, vbm) = tot_orb_dos[orbital].get_cbm_vbm(spin=spin)

                spin_polarization = None

                dos_data["orbital"][orbital][spin] = DosSummaryData(  # type: ignore[index]
                    task_id=dos_task,
                    band_gap=band_gap,
                    cbm=cbm,
                    vbm=vbm,
                    efermi=dos_efermi,
                    spin_polarization=spin_polarization,
                )

        # - Process element and element orbital projection data
        for ele in ele_dos:
            orb_dos = dos_obj.get_element_spd_dos(ele)

            for orbital in ["total"] + list(orb_dos.keys()):  # type: ignore[assignment]
                if orbital == "total":
                    proj_dos = ele_dos
                    label = ele
                else:
                    proj_dos = orb_dos
                    label = orbital

                for spin in spins:
                    band_gap = proj_dos[label].get_gap(spin=spin)
                    (cbm, vbm) = proj_dos[label].get_cbm_vbm(spin=spin)

                    spin_polarization = None

                    dos_data["elemental"][ele][orbital][spin] = DosSummaryData(  # type: ignore[index]
                        task_id=dos_task,
                        band_gap=band_gap,
                        cbm=cbm,
                        vbm=vbm,
                        efermi=dos_efermi,
                        spin_polarization=spin_polarization,
                    )

        #  -- Process band structure data
        bs_data = {  # type: ignore
            "setyawan_curtarolo": setyawan_curtarolo,
            "hinuma": hinuma,
            "latimer_munro": latimer_munro,
        }

        for bs_type, bs_input in bs_data.items():
            if bs_input is not None:
                bs_task, bs = list(bs_input.items())[0]

                if structures is not None and structures[bs_task]:
                    bs_mag_ordering = CollinearMagneticStructureAnalyzer(
                        structures[bs_task]
                    ).ordering
                else:
                    bs_mag_ordering = CollinearMagneticStructureAnalyzer(
                        bs.structure  # type: ignore[arg-type]
                    ).ordering

                gap_dict = bs.get_band_gap()
                is_metal = bs.is_metal()
                direct_gap = bs.get_direct_band_gap()

                if is_metal:
                    band_gap = 0.0
                    cbm = None  # type: ignore[assignment]
                    vbm = None  # type: ignore[assignment]
                    is_gap_direct = False
                else:
                    band_gap = gap_dict["energy"]
                    cbm = bs.get_cbm()  # type: ignore[assignment]
                    vbm = bs.get_vbm()  # type: ignore[assignment]
                    is_gap_direct = gap_dict["direct"]

                bs_efermi = bs.efermi
                nbands = bs.nb_bands

                # - Get equivalent labels between different conventions
                hskp = HighSymmKpath(
                    bs.structure,
                    path_type="all",
                    symprec=0.1,
                    angle_tolerance=5,
                    atol=1e-5,
                )
                equivalent_labels = hskp.equiv_labels

                if bs_type == "latimer_munro":
                    gen_labels = set(
                        [
                            label
                            for label in equivalent_labels["latimer_munro"][
                                "setyawan_curtarolo"
                            ]
                        ]
                    )
                    kpath_labels = set(
                        [
                            kpoint.label
                            for kpoint in bs.kpoints
                            if kpoint.label is not None
                        ]
                    )

                    if not gen_labels.issubset(kpath_labels):
                        new_structure = SpacegroupAnalyzer(
                            bs.structure  # type: ignore[arg-type]
                        ).get_primitive_standard_structure(
                            international_monoclinic=False
                        )

                        hskp = HighSymmKpath(
                            new_structure,
                            path_type="all",
                            symprec=SETTINGS.SYMPREC,
                            angle_tolerance=SETTINGS.ANGLE_TOL,
                            atol=1e-5,
                        )
                        equivalent_labels = hskp.equiv_labels

                bs_data[bs_type] = BandStructureSummaryData(  # type: ignore
                    task_id=bs_task,
                    band_gap=band_gap,
                    direct_gap=direct_gap,
                    cbm=cbm,
                    vbm=vbm,
                    is_gap_direct=is_gap_direct,
                    is_metal=is_metal,
                    efermi=bs_efermi,
                    nbands=nbands,
                    equivalent_labels=equivalent_labels,
                    magnetic_ordering=bs_mag_ordering,
                )

        bs_entry = BandstructureData(**bs_data)  # type: ignore
        dos_entry = DosData(**dos_data)  # type: ignore[arg-type]

        # Obtain summary data

        bs_gap = (
            bs_entry.setyawan_curtarolo.band_gap
            if bs_entry.setyawan_curtarolo is not None
            else None
        )
        dos_cbm, dos_vbm = dos_obj.get_cbm_vbm()
        dos_gap = max(dos_cbm - dos_vbm, 0.0)

        new_origin_last_updated = None
        new_origin_task_id = None

        if bs_gap is not None and bs_gap <= dos_gap + 0.2:
            summary_task = bs_entry.setyawan_curtarolo.task_id  # type: ignore
            summary_band_gap = bs_gap
            summary_cbm = (
                bs_entry.setyawan_curtarolo.cbm.get("energy", None)  # type: ignore
                if bs_entry.setyawan_curtarolo.cbm is not None  # type: ignore
                else None
            )
            summary_vbm = (
                bs_entry.setyawan_curtarolo.vbm.get("energy", None)  # type: ignore
                if bs_entry.setyawan_curtarolo.cbm is not None  # type: ignore
                else None
            )  # type: ignore
            summary_efermi = bs_entry.setyawan_curtarolo.efermi  # type: ignore
            is_gap_direct = bs_entry.setyawan_curtarolo.is_gap_direct  # type: ignore
            is_metal = bs_entry.setyawan_curtarolo.is_metal  # type: ignore
            summary_magnetic_ordering = bs_entry.setyawan_curtarolo.magnetic_ordering  # type: ignore

            for origin in origins:
                if origin["name"] == "setyawan_curtarolo":
                    new_origin_last_updated = origin["last_updated"]
                    new_origin_task_id = origin["task_id"]

        else:
            summary_task = dos_entry.model_dump()["total"][Spin.up]["task_id"]
            summary_band_gap = dos_gap
            summary_cbm = dos_cbm
            summary_vbm = dos_vbm
            summary_efermi = dos_efermi
            summary_magnetic_ordering = dos_mag_ordering
            is_metal = True if np.isclose(dos_gap, 0.0, atol=0.01, rtol=0) else False

            for origin in origins:
                if origin["name"] == "dos":
                    new_origin_last_updated = origin["last_updated"]
                    new_origin_task_id = origin["task_id"]

        if new_origin_task_id is not None:
            for origin in origins:
                if origin["name"] == "electronic_structure":
                    origin["last_updated"] = new_origin_last_updated
                    origin["task_id"] = new_origin_task_id

        return cls.from_structure(
            material_id=MPID(material_id),
            task_id=summary_task,
            meta_structure=structure,
            band_gap=summary_band_gap,
            cbm=summary_cbm,
            vbm=summary_vbm,
            efermi=summary_efermi,
            is_gap_direct=is_gap_direct,
            is_metal=is_metal,
            magnetic_ordering=summary_magnetic_ordering,
            bandstructure=bs_entry,
            dos=dos_entry,
            **kwargs,
        )