File: migrationgraph.py

package info (click to toggle)
python-emmet-core 0.84.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 77,220 kB
  • sloc: python: 16,355; makefile: 30
file content (391 lines) | stat: -rw-r--r-- 14,770 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
from datetime import datetime
from typing import List, Union, Dict, Tuple, Sequence, Optional

from pydantic import Field
import numpy as np
from emmet.core.base import EmmetBaseModel
from pymatgen.core import Structure
from pymatgen.analysis.structure_matcher import StructureMatcher
from pymatgen.entries.computed_entries import ComputedEntry, ComputedStructureEntry

try:
    from pymatgen.analysis.diffusion.neb.full_path_mapper import MigrationGraph
    from pymatgen.analysis.diffusion.utils.supercells import get_sc_fromstruct
except ImportError:
    raise ImportError("Install pymatgen-analysis-diffusion to use MigrationGraphDoc")


class MigrationGraphDoc(EmmetBaseModel):
    """
    MigrationGraph Doc.
    Stores MigrationGraph and info such as ComputedStructureEntries (ComputedEntry can be used for working ion)
    and cutoff distance that are used to generated the object.

    Note: this doc is not self-contained within pymatgen, as it has dependence on pymatgen.analysis.diffusion,
    a namespace package aka pymatgen-diffusion.
    """

    battery_id: str = Field(
        ..., description="The battery id for this MigrationGraphDoc"
    )

    last_updated: Optional[datetime] = Field(
        None,
        description="Timestamp for the most recent calculation for this MigrationGraph document.",
    )

    warnings: Sequence[str] = Field(
        [], description="Any warnings related to this property."
    )

    deprecated: bool = Field(
        False,
        description="Indicates whether a migration graph fails to be constructed from the provided entries. Defaults to False, indicating mg can be constructed from entries.",  # noqa: E501
    )

    hop_cutoff: Optional[float] = Field(
        None,
        description="The numerical value in angstroms used to cap the maximum length of a hop.",
    )

    entries_for_generation: Optional[List[ComputedStructureEntry]] = Field(
        None,
        description="A list of ComputedStructureEntries used to generate the structure with all working ion sites.",
    )

    working_ion_entry: Optional[Union[ComputedEntry, ComputedStructureEntry]] = Field(
        None, description="The ComputedStructureEntry of the working ion."
    )

    migration_graph: Optional[MigrationGraph] = Field(
        None,
        description="The MigrationGraph object as defined in pymatgen.analysis.diffusion.",
    )

    populate_sc_fields: bool = Field(
        True,
        description="Flag indicating whether this document has populated the supercell fields",
    )

    min_length_sc: Optional[float] = Field(
        None,
        description="The minimum length used to generate supercell using pymatgen.",
    )

    minmax_num_atoms: Optional[Tuple[int, int]] = Field(
        None,
        description="The min/max number of atoms used to genreate supercell using pymatgen.",
    )

    matrix_supercell_structure: Optional[Structure] = Field(
        None,
        description="The matrix suprcell structure that does not contain the mobile ions for the purpose of migration analysis.",  # noqa: E501
    )

    conversion_matrix: Optional[List[List[Union[int, float]]]] = Field(
        None,
        description="The conversion matrix used to convert unit cell to supercell.",
    )

    inserted_ion_coords: Optional[
        List[Dict[str, Union[List[float], str, int]]]
    ] = Field(
        None,
        description="A dictionary containing all mobile ion fractional coordinates in terms of supercell.",
    )

    insert_coords_combo: Optional[List[str]] = Field(
        None,
        description="A list of combinations 'a+b' to designate hops in the supercell. Each combo should correspond to one unique hop in MigrationGraph.",  # noqa: E501
    )

    @classmethod
    def from_entries_and_distance(
        cls,
        battery_id: str,
        grouped_entries: List[ComputedStructureEntry],
        working_ion_entry: Union[ComputedEntry, ComputedStructureEntry],
        hop_cutoff: float,
        populate_sc_fields: bool = True,
        ltol: float = 0.2,
        stol: float = 0.3,
        angle_tol: float = 5,
        **kwargs,
    ) -> Union["MigrationGraphDoc", None]:
        """
        This classmethod takes a group of ComputedStructureEntries (can also use ComputedEntry for wi) and generates
        a full sites structure.
        Then a MigrationGraph object is generated with with_distance() method with a designated cutoff.
        If populate_sc_fields set to True, this method will populate the supercell related fields. Required kwargs are
        min_length_sc and minmax_num_atoms.
        """

        ranked_structures = MigrationGraph.get_structure_from_entries(
            entries=grouped_entries, migrating_ion_entry=working_ion_entry
        )
        max_sites_struct = ranked_structures[0]

        migration_graph = MigrationGraph.with_distance(
            structure=max_sites_struct,
            migrating_specie=working_ion_entry.composition.chemical_system,
            max_distance=hop_cutoff,
        )

        if not populate_sc_fields:
            return cls(
                battery_id=battery_id,
                hop_cutoff=hop_cutoff,
                entries_for_generation=grouped_entries,
                working_ion_entry=working_ion_entry,
                migration_graph=migration_graph,
                **kwargs,
            )

        else:
            if all(arg in kwargs for arg in ["min_length_sc", "minmax_num_atoms"]):
                sm = StructureMatcher(ltol, stol, angle_tol)
                (
                    host_sc,
                    sc_mat,
                    min_length_sc,
                    minmax_num_atoms,
                    coords_list,
                    combo,
                ) = MigrationGraphDoc.generate_sc_fields(
                    mg=migration_graph,
                    min_length_sc=kwargs["min_length_sc"],
                    minmax_num_atoms=kwargs["minmax_num_atoms"],
                    sm=sm,
                )

                return cls(
                    battery_id=battery_id,
                    hop_cutoff=hop_cutoff,
                    entries_for_generation=grouped_entries,
                    working_ion_entry=working_ion_entry,
                    migration_graph=migration_graph,
                    matrix_supercell_structure=host_sc,
                    conversion_matrix=sc_mat,
                    inserted_ion_coords=coords_list,
                    insert_coords_combo=combo,
                    **kwargs,
                )

            else:
                raise TypeError(
                    "Please make sure to have kwargs min_length_sc and minmax_num_atoms if populate_sc_fields is set to True."  # noqa: E501
                )

    @staticmethod
    def generate_sc_fields(
        mg: MigrationGraph,
        min_length_sc: float,
        minmax_num_atoms: Tuple[int, int],
        sm: StructureMatcher,
    ):
        min_length_sc = min_length_sc
        minmax_num_atoms = minmax_num_atoms

        sc_mat = get_sc_fromstruct(
            base_struct=mg.structure,
            min_atoms=minmax_num_atoms[0],
            max_atoms=minmax_num_atoms[1],
            min_length=min_length_sc,
        )

        sc_mat = sc_mat.tolist()  # type: ignore[attr-defined]
        host_sc = mg.host_structure * sc_mat
        working_ion = mg.only_sites[0].species_string

        coords_list = MigrationGraphDoc.ordered_sc_site_list(mg.only_sites, sc_mat)
        combo, coords_list = MigrationGraphDoc.get_hop_sc_combo(
            mg.unique_hops, sc_mat, sm, host_sc, working_ion, coords_list
        )

        return host_sc, sc_mat, min_length_sc, minmax_num_atoms, coords_list, combo

    @staticmethod
    def ordered_sc_site_list(uc_sites_only: Structure, sc_mat: List[List[int]]):
        uc_no_site = uc_sites_only.copy()
        uc_no_site.remove_sites(range(len(uc_sites_only)))
        working_ion = uc_sites_only[0].species_string
        sc_site_dict = {}  # type: dict

        for i, e in enumerate(uc_sites_only):
            uc_one_set = uc_no_site.copy()
            uc_one_set.insert(0, working_ion, e.frac_coords)
            sc_one_set = uc_one_set * sc_mat
            for index in range(len(sc_one_set)):
                sc_site_dict[len(sc_site_dict) + 1] = {
                    "uc_site_type": i,
                    "site_frac_coords": list(sc_one_set[index].frac_coords),
                    # "extra_site": False
                }

        ordered_site_list = [
            e
            for i, e in enumerate(
                sorted(
                    sc_site_dict.values(),
                    key=lambda v: float(np.linalg.norm(v["site_frac_coords"])),
                )
            )
        ]
        return ordered_site_list

    @staticmethod
    def get_hop_sc_combo(
        unique_hops: Dict,
        sc_mat: List[List[int]],
        sm: StructureMatcher,
        host_sc: Structure,
        working_ion: str,
        ordered_sc_site_list: list,
    ):
        combo = []

        unique_hops = {k: v for k, v in sorted(unique_hops.items())}
        for one_hop in unique_hops.values():
            added = False
            sc_isite_set = {
                k: v
                for k, v in enumerate(ordered_sc_site_list)
                if v["uc_site_type"] == one_hop["iindex"]
            }
            sc_esite_set = {
                k: v
                for k, v in enumerate(ordered_sc_site_list)
                if v["uc_site_type"] == one_hop["eindex"]
            }
            for sc_iindex, sc_isite in sc_isite_set.items():
                for sc_eindex, sc_esite in sc_esite_set.items():
                    sc_check = host_sc.copy()
                    sc_check.insert(0, working_ion, sc_isite["site_frac_coords"])
                    sc_check.insert(1, working_ion, sc_esite["site_frac_coords"])
                    if MigrationGraphDoc.compare_sc_one_hop(
                        one_hop,
                        sc_mat,
                        sm,
                        host_sc,
                        sc_check,
                        working_ion,
                        (sc_isite["uc_site_type"], sc_esite["uc_site_type"]),
                    ):
                        combo.append(f"{sc_iindex}+{sc_eindex}")
                        added = True
                        break
                if added:
                    break

            if not added:
                new_combo, ordered_sc_site_list = MigrationGraphDoc.append_new_site(
                    host_sc, ordered_sc_site_list, one_hop, sc_mat, working_ion
                )
                combo.append(new_combo)

        return combo, ordered_sc_site_list

    @staticmethod
    def compare_sc_one_hop(
        one_hop: Dict,
        sc_mat: List,
        sm: StructureMatcher,
        host_sc: Structure,
        sc_check: Structure,
        working_ion: str,
        uc_site_types: Tuple[int, int],
    ):
        sc_mat_inv = np.linalg.inv(sc_mat)
        convert_sc_icoords = np.dot(one_hop["ipos"], sc_mat_inv)
        convert_sc_ecoords = np.dot(one_hop["epos"], sc_mat_inv)
        convert_sc = host_sc.copy()
        convert_sc.insert(0, working_ion, convert_sc_icoords)
        convert_sc.insert(1, working_ion, convert_sc_ecoords)

        if sm.fit(convert_sc, sc_check):
            one_hop_dis = one_hop["hop"].length
            sc_check_hop_dis = np.linalg.norm(sc_check[0].coords - sc_check[1].coords)
            if np.isclose(one_hop_dis, sc_check_hop_dis, atol=1e-5):
                if (
                    one_hop["iindex"] == uc_site_types[0]
                    and one_hop["eindex"] == uc_site_types[1]
                ):
                    return True

        return False

    @staticmethod
    def append_new_site(
        host_sc: Structure,
        ordered_sc_site_list: list,
        one_hop: Dict,
        sc_mat: List[List[int]],
        working_ion: str,
    ):
        sc_mat_inv = np.linalg.inv(sc_mat)
        sc_ipos = np.dot(one_hop["ipos"], sc_mat_inv)
        sc_epos = np.dot(one_hop["epos"], sc_mat_inv)
        sc_iindex, sc_eindex = None, None
        host_sc_insert = host_sc.copy()

        for k, v in enumerate(ordered_sc_site_list):
            if np.allclose(sc_ipos, v["site_frac_coords"], rtol=0.1, atol=0.1):
                sc_iindex = k
            if np.allclose(sc_epos, v["site_frac_coords"], rtol=0.1, atol=0.1):
                sc_eindex = k

        if sc_iindex is None:
            host_sc_insert.insert(0, working_ion, sc_ipos)
            ordered_sc_site_list.append(
                {
                    "uc_site_type": one_hop["iindex"],
                    "site_frac_coords": list(host_sc_insert[0].frac_coords),
                    "extra_site": True,
                }
            )
            sc_iindex = len(ordered_sc_site_list) - 1
        if sc_eindex is None:
            host_sc_insert.insert(0, working_ion, sc_epos)
            ordered_sc_site_list.append(
                {
                    "uc_site_type": one_hop["eindex"],
                    "site_frac_coords": list(host_sc_insert[0].frac_coords),
                    "extra_site": True,
                }
            )
            sc_eindex = len(ordered_sc_site_list) - 1

        return f"{sc_iindex}+{sc_eindex}", ordered_sc_site_list

    def get_distinct_hop_sites(
        inserted_ion_coords: List[str], insert_coords_combo: List
    ) -> Tuple[List, List[str], Dict]:
        """
        This is a utils function that converts the site dict and combo into a site list and combo that contain only distince endpoints used the combos. # noqa: E501
        """
        dis_sites_list = []
        dis_combo_list = []
        mgdoc_sites_mapping = {}  # type: dict
        combo_mapping = {}

        for one_combo in insert_coords_combo:
            ini, end = list(map(int, one_combo.split("+")))

            if ini in mgdoc_sites_mapping.keys():
                dis_ini = mgdoc_sites_mapping[ini]
            else:
                dis_sites_list.append(list(inserted_ion_coords[ini]["site_frac_coords"]))  # type: ignore
                dis_ini = len(dis_sites_list) - 1
                mgdoc_sites_mapping[ini] = dis_ini
            if end in mgdoc_sites_mapping.keys():
                dis_end = mgdoc_sites_mapping[end]
            else:
                dis_sites_list.append(list(inserted_ion_coords[end]["site_frac_coords"]))  # type: ignore
                dis_end = len(dis_sites_list) - 1
                mgdoc_sites_mapping[end] = dis_end

            dis_combo = f"{dis_ini}+{dis_end}"
            dis_combo_list.append(dis_combo)
            combo_mapping[dis_combo] = one_combo

        return dis_sites_list, dis_combo_list, combo_mapping