1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
from typing import List, Optional, Dict, Any
from hashlib import blake2b
from pydantic import Field
from monty.json import MSONable
from emmet.core.mpid import MPculeID
from emmet.core.material import PropertyOrigin
from emmet.core.qchem.task import TaskDocument
from emmet.core.molecules.molecule_property import PropertyDoc
__author__ = "Evan Spotte-Smith <ewcspottesmith@lbl.gov>"
class NaturalPopulation(MSONable):
def __init__(
self,
atom_index: int,
core_electrons: float,
valence_electrons: float,
rydberg_electrons: float,
total_electrons: float,
):
"""
Basic description of an atomic electron population.
:param atom_index (int):
:param core_electrons (float): Number of core electrons on this atom
:param valence_electrons (float): Number of valence electrons on this atom
:param rydberg_electrons (float): Number of Rydberg electrons on this atom
:param total_electrons (float): Total number of electrons on this atom
"""
self.atom_index = int(atom_index)
self.core_electrons = float(core_electrons)
self.valence_electrons = float(valence_electrons)
self.rydberg_electrons = float(rydberg_electrons)
self.total_electrons = float(total_electrons)
class LonePair(MSONable):
def __init__(
self,
index: int,
number: int,
atom_index: int,
s_character: float,
p_character: float,
d_character: float,
f_character: float,
occupancy: float,
type_code: str,
):
"""
Basic description of a lone pair (LP) natural bonding orbital.
:param index (int): Lone pair index from NBO. 1-indexed
:param number (int): Another index, for cases where there are multiple lone
pairs on an atom. 1-indexed
:param atom_index (int): 0-indexed
:param s_character (float): What fraction of this orbital is s-like in nature.
:param p_character (float): What fraction of this orbital is p-like in nature.
:param d_character (float): What fraction of this orbital is d-like in nature.
:param f_character (float): What fraction of this orbital is f-like in nature.
:param occupancy (float): Total electron occupancy of this lone pair
:param type_code (str): Description of this lone pair (ex: "LV" for "lone valence")
"""
self.index = int(index)
self.number = int(number)
self.atom_index = int(atom_index)
self.s_character = float(s_character)
self.p_character = float(p_character)
self.d_character = float(d_character)
self.f_character = float(f_character)
self.occupancy = float(occupancy)
self.type_code = type_code
class Bond(MSONable):
def __init__(
self,
index: int,
number: int,
atom1_index: int,
atom2_index: int,
atom1_s_character: float,
atom2_s_character: float,
atom1_p_character: float,
atom2_p_character: float,
atom1_d_character: float,
atom2_d_character: float,
atom1_f_character: float,
atom2_f_character: float,
atom1_polarization: float,
atom2_polarization: float,
atom1_polarization_coeff: float,
atom2_polarization_coeff: float,
occupancy: float,
type_code: str,
):
"""
Basic description of a bond (BD) natural bonding orbital.
:param index: Bond orbital index from NBO. 1-indexed.
:param number: Another index, for cases where there are multiple bonds
between two atoms. 1-indexed
:param atom1_index: Index of first atom involved in this orbital. 0-indexed
:param atom2_index: Index of second atom involved in this orbital. 0-indexed
:param atom1_s_character: What fraction of this orbital comes from atom 1 s electrons
:param atom2_s_character: What fraction of this orbital comes from atom 2 s electrons
:param atom1_p_character: What fraction of this orbital comes from atom 1 p electrons
:param atom2_p_character: What fraction of this orbital comes from atom 2 p electrons
:param atom1_d_character: What fraction of this orbital comes from atom 1 d electrons
:param atom2_d_character: What fraction of this orbital comes from atom 2 d electrons
:param atom1_f_character: What fraction of this orbital comes from atom 1 f electrons
:param atom2_f_character: What fraction of this orbital comes from atom 2 f electrons
:param atom1_polarization: Percentage of polarization from atom 1
:param atom2_polarization: Percentage of polarization from atom 2
:param atom1_polarization_coeff: Polarization coefficient of atom 1
:param atom2_polarization_coeff: Polarization coefficient of atom 2
:param occupancy: Total electron occupancy of this orbital
:param type_code: Description of this bonding orbital (ex: BD for bonding,
BD* for anti-bonding)
"""
self.index = int(index)
self.number = int(number)
self.atom1_index = int(atom1_index)
self.atom2_index = int(atom2_index)
self.atom1_s_character = float(atom1_s_character)
self.atom2_s_character = float(atom2_s_character)
self.atom1_p_character = float(atom1_p_character)
self.atom2_p_character = float(atom2_p_character)
self.atom1_d_character = float(atom1_d_character)
self.atom2_d_character = float(atom2_d_character)
self.atom1_f_character = float(atom1_f_character)
self.atom2_f_character = float(atom2_f_character)
self.atom1_polarization = float(atom1_polarization)
self.atom2_polarization = float(atom2_polarization)
self.atom1_polarization_coeff = float(atom1_polarization_coeff)
self.atom2_polarization_coeff = float(atom2_polarization_coeff)
self.occupancy = float(occupancy)
self.type_code = type_code
class Interaction(MSONable):
def __init__(
self,
perturbation_energy: float,
energy_difference: float,
fock_element: float,
donor_index: int,
acceptor_index: int,
donor_type: str,
acceptor_type: str,
donor_atom1_index: int,
acceptor_atom1_index: int,
donor_atom2_index: Optional[int] = None,
acceptor_atom2_index: Optional[int] = None,
):
self.donor_index = int(donor_index)
self.acceptor_index = int(acceptor_index)
self.donor_type = donor_type
self.acceptor_type = acceptor_type
if isinstance(donor_atom2_index, int):
donor2 = int(donor_atom2_index)
else:
donor2 = None
if isinstance(acceptor_atom2_index, int):
acceptor2 = int(acceptor_atom2_index)
else:
acceptor2 = None
self.donor_atom_indices = (int(donor_atom1_index), donor2)
self.acceptor_atom_indices = (int(acceptor_atom1_index), acceptor2)
self.perturbation_energy = float(perturbation_energy)
self.energy_difference = float(energy_difference)
self.fock_element = float(fock_element)
def as_dict(self):
return {
"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
"donor_index": self.donor_index,
"acceptor_index": self.acceptor_index,
"donor_type": self.donor_type,
"acceptor_type": self.acceptor_type,
"donor_atom_indices": self.donor_atom_indices,
"acceptor_atom_indices": self.acceptor_atom_indices,
"perturbation_energy": self.perturbation_energy,
"energy_difference": self.energy_difference,
"fock_element": self.fock_element,
}
@classmethod
def from_dict(cls, d):
return cls(
d["perturbation_energy"],
d["energy_difference"],
d["fock_element"],
d["donor_index"],
d["acceptor_index"],
d["donor_type"],
d["acceptor_type"],
d["donor_atom_indices"][0],
d["acceptor_atom_indices"][0],
d["donor_atom_indices"][1],
d["acceptor_atom_indices"][1],
)
class OrbitalDoc(PropertyDoc):
property_name: str = "natural bonding orbitals"
# Always populated - closed-shell and open-shell
open_shell: bool = Field(
..., description="Is this molecule open-shell (spin multiplicity != 1)?"
)
nbo_population: List[NaturalPopulation] = Field(
..., description="Natural electron populations of the molecule"
)
# Populated for closed-shell molecules
nbo_lone_pairs: Optional[List[LonePair]] = Field(
None, description="Lone pair orbitals of a closed-shell molecule"
)
nbo_bonds: Optional[List[Bond]] = Field(
None, description="Bond-like orbitals of a closed-shell molecule"
)
nbo_interactions: Optional[List[Interaction]] = Field(
None, description="Orbital-orbital interactions of a closed-shell molecule"
)
# Populated for open-shell molecules
alpha_population: Optional[List[NaturalPopulation]] = Field(
None,
description="Natural electron populations of the alpha electrons of an "
"open-shell molecule",
)
beta_population: Optional[List[NaturalPopulation]] = Field(
None,
description="Natural electron populations of the beta electrons of an "
"open-shell molecule",
)
alpha_lone_pairs: Optional[List[LonePair]] = Field(
None, description="Alpha electron lone pair orbitals of an open-shell molecule"
)
beta_lone_pairs: Optional[List[LonePair]] = Field(
None, description="Beta electron lone pair orbitals of an open-shell molecule"
)
alpha_bonds: Optional[List[Bond]] = Field(
None, description="Alpha electron bond-like orbitals of an open-shell molecule"
)
beta_bonds: Optional[List[Bond]] = Field(
None, description="Beta electron bond-like orbitals of an open-shell molecule"
)
alpha_interactions: Optional[List[Interaction]] = Field(
None,
description="Alpha electron orbital-orbital interactions of an open-shell molecule",
)
beta_interactions: Optional[List[Interaction]] = Field(
None,
description="Beta electron orbital-orbital interactions of an open-shell molecule",
)
@staticmethod
def get_populations(nbo: Dict[str, Any], indices: List[int]):
"""
Helper function to extract natural population information
from NBO output
:param nbo: Dictionary of NBO output data
:param indices: Data subsets from which to extract natural populations
:return: population_sets (list of lists of NaturalPopulation)
"""
population_sets = list()
for pop_ind in indices:
pops = nbo["natural_populations"][pop_ind]
population = list()
for ind, atom_num in pops["No"].items():
population.append(
NaturalPopulation(
atom_num - 1,
pops["Core"][ind],
pops["Valence"][ind],
pops["Rydberg"][ind],
pops["Total"][ind],
)
)
population_sets.append(population)
return population_sets
@staticmethod
def get_lone_pairs(nbo: Dict[str, Any], indices: List[int]):
"""
Helper function to extract lone pair information from NBO output
:param nbo: Dictionary of NBO output data
:param indices: Data subsets from which to extract lone pair information
:return: lone_pairs (list of LonePairs)
"""
lone_pair_sets = list()
for lp_ind in indices:
lps = nbo["hybridization_character"][lp_ind]
lone_pairs = list()
for ind, orb_ind in lps.get("bond index", dict()).items():
this_lp = LonePair(
orb_ind,
lps["orbital index"][ind],
int(lps["atom number"][ind]) - 1,
lps["s"][ind],
lps["p"][ind],
lps["d"][ind],
lps["f"][ind],
lps["occupancy"][ind],
lps["type"][ind],
)
lone_pairs.append(this_lp)
lone_pair_sets.append(lone_pairs)
return lone_pair_sets
@staticmethod
def get_bonds(nbo: Dict[str, Any], indices: List[int]):
"""
Helper function to extract bonding information from NBO output
:param nbo: Dictionary of NBO output data
:param indices: Data subsets from which to extract bonds
:return: bonds (list of Bonds)
"""
bond_sets = list()
for bd_ind in indices:
bds = nbo["hybridization_character"][bd_ind]
bonds = list()
for ind, orb_ind in bds.get("bond index", dict()).items():
this_bond = Bond(
orb_ind,
bds["orbital index"][ind],
int(bds["atom 1 number"][ind]) - 1,
int(bds["atom 2 number"][ind]) - 1,
bds["atom 1 s"][ind],
bds["atom 2 s"][ind],
bds["atom 1 p"][ind],
bds["atom 2 p"][ind],
bds["atom 1 d"][ind],
bds["atom 2 d"][ind],
bds["atom 1 f"][ind],
bds["atom 2 f"][ind],
bds["atom 1 polarization"][ind],
bds["atom 2 polarization"][ind],
bds["atom 1 pol coeff"][ind],
bds["atom 2 pol coeff"][ind],
bds["occupancy"][ind],
bds["type"][ind],
)
bonds.append(this_bond)
bond_sets.append(bonds)
return bond_sets
@staticmethod
def get_interactions(nbo: Dict[str, Any], indices: List[int]):
"""
Helper function to extract orbital interaction information
from NBO output
:param nbo: Dictionary of NBO output data
:param indices: Data subsets from which to extract interactions
:return: interactions (list of Interactions)
"""
interaction_sets = list()
for pert_ind in indices:
perts = nbo["perturbation_energy"][pert_ind]
interactions = list()
for ind in perts.get("donor bond index", list()):
if perts["donor atom 2 number"].get(ind) is None:
donor_atom2_number = None
else:
donor_atom2_number = int(perts["donor atom 2 number"][ind]) - 1
if perts["acceptor atom 2 number"].get(ind) is None:
acceptor_atom2_number = None
else:
acceptor_atom2_number = (
int(perts["acceptor atom 2 number"][ind]) - 1
)
this_inter = Interaction(
perts["perturbation energy"][ind],
perts["energy difference"][ind],
perts["fock matrix element"][ind],
int(perts["donor bond index"][ind]),
int(perts["acceptor bond index"][ind]),
perts["donor type"][ind],
perts["acceptor type"][ind],
int(perts["donor atom 1 number"][ind]) - 1,
int(perts["acceptor atom 1 number"][ind]) - 1,
donor_atom2_number,
acceptor_atom2_number,
)
interactions.append(this_inter)
interaction_sets.append(interactions)
return interaction_sets
@classmethod
def from_task(
cls,
task: TaskDocument,
molecule_id: MPculeID,
deprecated: bool = False,
**kwargs,
): # type: ignore[override]
"""
Construct an orbital document from a task
:param task: document from which vibrational properties can be extracted
:param molecule_id: MPculeID
:param deprecated: bool. Is this document deprecated?
:param kwargs: to pass to PropertyDoc
:return:
"""
if task.output.nbo is None:
raise ValueError("No NBO output in task {}!".format(task.task_id))
elif not (
task.orig["rem"].get("run_nbo6", False)
or task.orig["rem"].get("nbo_external", False)
):
raise ValueError("Only NBO7 is allowed!")
nbo = task.output.nbo
if task.output.optimized_molecule is not None:
mol = task.output.optimized_molecule
else:
mol = task.output.initial_molecule
spin = mol.spin_multiplicity
# Closed-shell
if int(spin) == 1:
pops_inds = [0]
lps_inds = [0]
bds_inds = [1]
perts_inds = [0]
# Open-shell
else:
pops_inds = [0, 1, 2]
lps_inds = [0, 2]
bds_inds = [1, 3]
perts_inds = [0, 1]
for dset, inds in [
("natural_populations", pops_inds),
("hybridization_character", bds_inds),
("perturbation_energy", perts_inds),
]:
if len(nbo[dset]) < inds[-1]:
return
population_sets = cls.get_populations(nbo, pops_inds)
lone_pair_sets = cls.get_lone_pairs(nbo, lps_inds)
bond_sets = cls.get_bonds(nbo, bds_inds)
interaction_sets = cls.get_interactions(nbo, perts_inds)
if not (
task.orig["rem"].get("run_nbo6")
or task.orig["rem"].get("nbo_external", False)
):
warnings = ["Using NBO5"]
else:
warnings = list()
id_string = (
f"natural_bonding_orbitals-{molecule_id}-{task.task_id}-{task.lot_solvent}"
)
h = blake2b()
h.update(id_string.encode("utf-8"))
property_id = h.hexdigest()
if int(spin) == 1:
return super().from_molecule(
meta_molecule=mol,
property_id=property_id,
molecule_id=molecule_id,
level_of_theory=task.level_of_theory,
solvent=task.solvent,
lot_solvent=task.lot_solvent,
open_shell=False,
nbo_population=population_sets[0],
nbo_lone_pairs=lone_pair_sets[0],
nbo_bonds=bond_sets[0],
nbo_interactions=interaction_sets[0],
origins=[
PropertyOrigin(
name="natural_bonding_orbitals", task_id=task.task_id
)
],
warnings=warnings,
deprecated=deprecated,
**kwargs,
)
else:
return super().from_molecule(
meta_molecule=mol,
property_id=property_id,
molecule_id=molecule_id,
level_of_theory=task.level_of_theory,
solvent=task.solvent,
lot_solvent=task.lot_solvent,
open_shell=True,
nbo_population=population_sets[0],
alpha_population=population_sets[1],
beta_population=population_sets[2],
alpha_lone_pairs=lone_pair_sets[0],
beta_lone_pairs=lone_pair_sets[1],
alpha_bonds=bond_sets[0],
beta_bonds=bond_sets[1],
alpha_interactions=interaction_sets[0],
beta_interactions=interaction_sets[1],
origins=[
PropertyOrigin(
name="natural bonding orbitals", task_id=task.task_id
)
],
warnings=warnings,
deprecated=deprecated,
**kwargs,
)
|