1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
"""Schemas for OpenMM tasks."""
from __future__ import annotations
import io
from pathlib import Path
from typing import Optional, Union
import pandas as pd # type: ignore[import-untyped]
import openmm
from openmm import XmlSerializer
from openmm.app import Simulation
from openmm.app.pdbfile import PDBFile
from emmet.core.vasp.task_valid import TaskState # type: ignore[import-untyped]
from pydantic import BaseModel, Field
from emmet.core.openff import MDTaskDocument # type: ignore[import-untyped]
from emmet.core.openff.tasks import CompressedStr # type: ignore[import-untyped]
class CalculationInput(BaseModel, extra="allow"): # type: ignore[call-arg]
"""OpenMM input settings for a job, these are the attributes of the OpenMMMaker."""
n_steps: Optional[int] = Field(
None, description="The number of simulation steps to run."
)
step_size: Optional[float] = Field(
None, description="The size of each simulation step (picoseconds)."
)
temperature: Optional[float] = Field(
None, description="The simulation temperature (kelvin)."
)
pressure: Optional[float] = Field(
None, description="The simulation pressure (atmospheres)."
)
friction_coefficient: Optional[float] = Field(
None,
description=(
"The friction coefficient for the integrator (inverse picoseconds)."
),
)
platform_name: Optional[str] = Field(
None,
description=(
"The name of the OpenMM platform to use, passed to "
"Interchange.to_openmm_simulation."
),
)
platform_properties: Optional[dict] = Field(
None,
description=(
"Properties for the OpenMM platform, passed to "
"Interchange.to_openmm_simulation."
),
)
state_interval: Optional[int] = Field(
None,
description=(
"State is saved every `state_interval` timesteps. For no state, set to 0."
),
)
state_file_name: Optional[str] = Field(
None, description="The name of the state file to save."
)
traj_interval: Optional[int] = Field(
None,
description=(
"The trajectory is saved every `traj_interval` timesteps. For no trajectory, set to 0."
),
)
wrap_traj: Optional[bool] = Field(
None, description="Whether to wrap trajectory coordinates."
)
report_velocities: Optional[bool] = Field(
None, description="Whether to report velocities in the trajectory file."
)
traj_file_name: Optional[str] = Field(
None, description="The name of the trajectory file to save."
)
traj_file_type: Optional[str] = Field(
None,
description="The type of trajectory file to save.",
)
embed_traj: Optional[bool] = Field(
None,
description="Whether to embed the trajectory blob in CalculationOutput.",
)
class CalculationOutput(BaseModel):
"""OpenMM calculation output files and extracted data."""
dir_name: Optional[str] = Field(
None, description="The directory for this OpenMM task"
)
traj_file: Optional[str] = Field(
None, description="Path to the trajectory file relative to `dir_name`"
)
traj_blob: Optional[CompressedStr] = Field(
None, description="Trajectory file bytes blob hex encoded to a string"
)
state_file: Optional[str] = Field(
None, description="Path to the state file relative to `dir_name`"
)
steps_reported: Optional[list[int]] = Field(
None, description="Steps where outputs are reported"
)
time: Optional[list[float]] = Field(None, description="List of times")
potential_energy: Optional[list[float]] = Field(
None, description="List of potential energies"
)
kinetic_energy: Optional[list[float]] = Field(
None, description="List of kinetic energies"
)
total_energy: Optional[list[float]] = Field(
None, description="List of total energies"
)
temperature: Optional[list[float]] = Field(None, description="List of temperatures")
volume: Optional[list[float]] = Field(None, description="List of volumes")
density: Optional[list[float]] = Field(None, description="List of densities")
elapsed_time: Optional[float] = Field(
None, description="Elapsed time for the calculation (seconds)."
)
@classmethod
def from_directory(
cls,
dir_name: Union[Path, str],
state_file_name: str,
traj_file_name: str,
elapsed_time: Optional[float] = None,
embed_traj: bool = False,
) -> CalculationOutput:
"""Extract data from the output files in the directory."""
state_file = Path(dir_name) / state_file_name
column_name_map = {
'#"Step"': "steps_reported",
"Potential Energy (kJ/mole)": "potential_energy",
"Kinetic Energy (kJ/mole)": "kinetic_energy",
"Total Energy (kJ/mole)": "total_energy",
"Temperature (K)": "temperature",
"Box Volume (nm^3)": "volume",
"Density (g/mL)": "density",
}
state_is_not_empty = state_file.exists() and state_file.stat().st_size > 0
if state_is_not_empty:
data = pd.read_csv(state_file, header=0)
data = data.rename(columns=column_name_map)
data = data.filter(items=column_name_map.values())
attributes = data.to_dict(orient="list")
else:
attributes = {name: None for name in column_name_map.values()}
state_file_name = None # type: ignore[assignment]
traj_file = Path(dir_name) / traj_file_name
traj_is_not_empty = traj_file.exists() and traj_file.stat().st_size > 0
traj_file_name = traj_file_name if traj_is_not_empty else None # type: ignore
if traj_is_not_empty:
if embed_traj:
with open(traj_file, "rb") as f:
traj_blob = f.read().hex()
else:
traj_blob = None
else:
traj_blob = None
return CalculationOutput(
dir_name=str(dir_name),
elapsed_time=elapsed_time,
traj_file=traj_file_name,
state_file=state_file_name,
traj_blob=traj_blob,
**attributes,
)
class Calculation(BaseModel):
"""All input and output data for an OpenMM calculation."""
dir_name: Optional[str] = Field(
None, description="The directory for this OpenMM calculation"
)
has_openmm_completed: Optional[Union[TaskState, bool]] = Field(
None, description="Whether OpenMM completed the calculation successfully"
)
input: Optional[CalculationInput] = Field(
None, description="OpenMM input settings for the calculation"
)
output: Optional[CalculationOutput] = Field(
None, description="The OpenMM calculation output"
)
completed_at: Optional[str] = Field(
None, description="Timestamp for when the calculation was completed"
)
task_name: Optional[str] = Field(
None, description="Name of task given by custodian (e.g., relax1, relax2)"
)
calc_type: Optional[str] = Field(
None,
description="Return calculation type (run type + task_type). or just new thing",
)
class OpenMMTaskDocument(MDTaskDocument):
"""Definition of the OpenMM task document."""
calcs_reversed: Optional[list[Calculation]] = Field(
None,
title="Calcs reversed data",
description="Detailed data for each OpenMM calculation contributing to the "
"task document.",
)
class OpenMMInterchange(BaseModel):
"""An object to sit in the place of the Interchance object
and serialize the OpenMM system, topology, and state."""
system: Optional[str] = Field(
None, description="An XML file representing the OpenMM system."
)
state: Optional[str] = Field(
None,
description="An XML file representing the OpenMM state.",
)
topology: Optional[str] = Field(
None,
description="An XML file representing an OpenMM topology object."
"This must correspond to the atom ordering in the system.",
)
def to_openmm_simulation(
self,
integrator: openmm.Integrator,
platform: openmm.Platform,
platformProperties: Optional[dict[str, str]] = None,
):
system = XmlSerializer.deserialize(self.system)
state = XmlSerializer.deserialize(self.state)
with io.StringIO(self.topology) as s:
pdb = PDBFile(s)
topology = pdb.getTopology()
simulation = Simulation(
topology,
system,
integrator,
platform,
platformProperties or {},
)
simulation.context.setState(state)
return simulation
|