File: qc_tasks.py

package info (click to toggle)
python-emmet-core 0.84.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 77,220 kB
  • sloc: python: 16,355; makefile: 30
file content (649 lines) | stat: -rw-r--r-- 21,971 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# mypy: ignore-errors

""" Core definition of a Q-Chem Task Document """
from typing import Any, Dict, List, Optional
import logging
import re
from collections import OrderedDict
from pydantic import BaseModel, Field
from custodian.qchem.jobs import QCJob
from pymatgen.core.structure import Molecule
from pymatgen.io.qchem.inputs import QCInput
from monty.serialization import loadfn
from typing import Type, TypeVar, Union
from emmet.core.structure import MoleculeMetadata
from pathlib import Path
from emmet.core.qchem.calc_types import (
    LevelOfTheory,
    CalcType,
    TaskType,
)
from emmet.core.qchem.calculation import Calculation, CalculationInput

from emmet.core.qchem.task import QChemStatus


__author__ = (
    "Evan Spotte-Smith <ewcspottesmith@lbl.gov>, Rishabh D. Guha <rdguha@lbl.gov>"
)

logger = logging.getLogger(__name__)
_T = TypeVar("_T", bound="TaskDoc")
# _DERIVATIVE_FILES = ("GRAD", "HESS")


class OutputDoc(BaseModel):
    initial_molecule: Molecule = Field(None, description="Input Molecule object")
    optimized_molecule: Optional[Molecule] = Field(
        None, description="Optimized Molecule object"
    )

    # TODO: Discuss with Evan if these go here
    # species_hash: str = Field(
    #     None,
    #     description="Weisfeiler Lehman (WL) graph hash using the atom species as the graph node attribute.",
    # )
    # coord_hash: str = Field(
    #     None,
    #     description="Weisfeiler Lehman (WL) graph hash using the atom coordinates as the graph node attribute.",
    # )

    # last_updated: datetime = Field(
    #     None,
    #     description = "Timestamp for the most recent calculation for this QChem task document",
    # )

    final_energy: float = Field(
        None, description="Final electronic energy for the calculation (units: Hartree)"
    )
    enthalpy: Optional[float] = Field(
        None, description="Total enthalpy of the molecule (units: kcal/mol)"
    )
    entropy: Optional[float] = Field(
        None, description="Total entropy of the molecule (units: cal/mol-K"
    )
    dipoles: Optional[Dict[str, Any]] = Field(
        None, description="Dipolar information from the output"
    )
    mulliken: Optional[List[Any]] = Field(
        None, description="Mulliken atomic partial charges and partial spins"
    )
    resp: Optional[Union[List[float], List[Any]]] = Field(
        None,
        description="Restrained Electrostatic Potential (RESP) atomic partial charges",
    )
    nbo: Optional[Dict[str, Any]] = Field(
        None, description="Natural Bonding Orbital (NBO) output"
    )

    frequencies: Optional[Union[Dict[str, Any], List]] = Field(
        None,
        description="The list of calculated frequencies if job type is freq (units: cm^-1)",
    )

    frequency_modes: Optional[Union[List, str]] = Field(
        None,
        description="The list of calculated frequency mode vectors if job type is freq",
    )

    @classmethod
    def from_qchem_calc_doc(cls, calc_doc: Calculation) -> "OutputDoc":
        """
        Create a summary of QChem calculation outputs from a QChem calculation document.

        Parameters
        ----------
        calc_doc
            A QChem calculation document.
        kwargs
            Any other additional keyword arguments

        Returns
        --------
        OutputDoc
            The calculation output summary
        """
        return cls(
            initial_molecule=calc_doc.input.initial_molecule,
            optimized_molecule=calc_doc.output.optimized_molecule,
            # species_hash = self.species_hash, #The three entries post this needs to be checked again
            # coord_hash = self.coord_hash,
            # last_updated = self.last_updated,
            final_energy=calc_doc.output.final_energy,
            dipoles=calc_doc.output.dipoles,
            enthalpy=calc_doc.output.enthalpy,
            entropy=calc_doc.output.entropy,
            mulliken=calc_doc.output.mulliken,
            resp=calc_doc.output.resp,
            nbo=calc_doc.output.nbo_data,
            frequencies=calc_doc.output.frequencies,
            frequency_modes=calc_doc.output.frequency_modes,
        )


class InputDoc(BaseModel):
    initial_molecule: Molecule = Field(
        None,
        title="Input Structure",
        description="Input molecule and calc details for the QChem calculation",
    )

    prev_rem_params: Optional[Dict[str, Any]] = Field(
        None,
        description="Parameters from a previous qchem calculation in the series",
    )

    rem: Dict[str, Any] = Field(
        None,
        description="Parameters from the rem section of the current QChem calculation",
    )

    level_of_theory: Optional[Union[str, LevelOfTheory]] = Field(
        None, description="Level of theory used in the qchem calculation"
    )

    task_type: Optional[Union[str, TaskType]] = Field(
        None,
        description="The type of the QChem calculation : optimization, single point ... etc.",
    )

    tags: Union[List[str], None] = Field(
        [], title="tag", description="Metadata tagged to a given task."
    )

    solvation_lot_info: Optional[Union[Dict[str, Any], str]] = Field(
        None,
        description="Str or Dict representation of the solvent method used for the calculation",
    )

    special_run_type: Optional[str] = Field(
        None, description="Special workflow name (if applicable)"
    )

    smiles: Optional[str] = Field(
        None,
        description="Simplified molecular-input line-entry system (SMILES) string for the molecule involved "
        "in this calculation.",
    )

    calc_type: Optional[Union[str, CalcType]] = Field(
        None,
        description="A combined dictionary representation of the task type along with the level of theory used",
    )

    @classmethod
    def from_qchem_calc_doc(cls, calc_doc: Calculation) -> "InputDoc":
        """
        Create qchem calculation input summary from a qchem calculation document.

        Parameters
        ----------
        calc_doc
            A QChem calculation document.

        Returns
        --------
        InputDoc
            A summary of the input molecule and corresponding calculation parameters
        """
        try:
            lot_val = calc_doc.level_of_theory.value
        except AttributeError:
            lot_val = calc_doc.level_of_theory

        try:
            ct_val = calc_doc.calc_type.value
        except AttributeError:
            ct_val = calc_doc.calc_type
        # TODO : modify this to get the different variables from the task doc.
        return cls(
            initial_molecule=calc_doc.input.initial_molecule,
            rem=calc_doc.input.rem,
            level_of_theory=lot_val,
            task_type=calc_doc.task_type.value,
            tags=calc_doc.input.tags,
            solvation_lot_info=calc_doc.solvation_lot_info,
            # special_run_type = calc_doc.input.special_run_type,
            # smiles = calc_doc.input.smiles,
            calc_type=ct_val,
        )


class CustodianDoc(BaseModel):
    corrections: Optional[List[Any]] = Field(
        None,
        title="Custodian Corrections",
        description="List of custodian correction data for calculation.",
    )

    job: Optional[Union[Dict[str, Any], QCJob]] = Field(
        None,
        title="Custodian Job Data",
        description="Job data logged by custodian.",
    )


# AnalysisDoc? Is there a scope for AnalysisDoc in QChem?


class TaskDoc(MoleculeMetadata):
    """
    Calculation-level details about QChem calculations that would eventually take over the TaskDocument implementation
    """

    dir_name: Optional[Union[str, Path]] = Field(
        None, description="The directory for this QChem task"
    )

    state: Optional[QChemStatus] = Field(
        None, description="State of this QChem calculation"
    )

    calcs_reversed: Optional[List[Calculation]] = Field(
        None,
        title="Calcs reversed data",
        description="Detailed data for each QChem calculation contributing to the task document.",
    )

    task_type: Optional[Union[CalcType, TaskType]] = Field(
        None, description="the type of QChem calculation"
    )

    orig_inputs: Optional[Union[CalculationInput, Dict[str, Any]]] = Field(
        {}, description="Summary of the original Q-Chem inputs"
    )

    input: Optional[InputDoc] = Field(
        None,
        description="The input molecule and calc parameters used to generate the current task document.",
    )

    output: Optional[OutputDoc] = Field(
        None,
        description="The exact set of output parameters used to generate the current task document.",
    )

    # TODO: Implement entry dict

    custodian: Optional[List[CustodianDoc]] = Field(
        None,
        title="Calcs reversed data",
        description="Detailed custodian data for each QChem calculation contributing to the task document.",
    )

    critic2: Optional[Dict[str, Any]] = Field(
        None, description="Outputs from the critic2 calculation if performed"
    )

    custom_smd: Optional[Union[str, Dict[str, Any]]] = Field(
        None,
        description="The seven solvent parameters necessary to define a custom_smd model",
    )

    additional_fields: Optional[Dict[str, Any]] = Field(
        None, description="Any miscellaneous fields passed to the pydantic model"
    )

    # TODO some sort of @validator s if necessary

    @classmethod
    def from_directory(
        cls: Type[_T],
        dir_name: Union[Path, str],
        validate_lot: bool = True,
        store_additional_json: bool = True,
        additional_fields: Dict[str, Any] = None,
        **qchem_calculation_kwargs,
    ) -> _T:
        """
        Create a task document from a directory containing QChem files.

        Parameters
        ----------
        dir_name
            The path to the folder containing the calculation outputs.
        validate_lot
            Flag for matching the basis and functional with the list of functionals consistent with MPCules.
            Defaults to True. Change to False if you want to create a TaskDoc with other basis sets and functionals.
        store_additional_json
            Whether to store additional json files in the calculation directory.
        additional_fields
            Dictionary of additional fields to add to output document.
        **qchem_calculation_kwargs
            Additional parsing options that will be passed to the
            :obj:`.Calculation.from_qchem_files` function.

        Returns
        -------
        QChemTaskDoc
            A task document for the calculation
        """
        logger.info(f"Getting task doc in: {dir_name}")

        additional_fields = {} if additional_fields is None else additional_fields
        dir_name = Path(dir_name)
        task_files = _find_qchem_files(dir_name)

        if len(task_files) == 0:
            raise FileNotFoundError("No QChem files found!")

        critic2 = {}
        custom_smd = {}
        calcs_reversed = []
        for task_name, files in task_files.items():
            if task_name == "orig":
                continue
            else:
                calc_doc = Calculation.from_qchem_files(
                    dir_name,
                    task_name,
                    **files,
                    **qchem_calculation_kwargs,
                    validate_lot=validate_lot,
                )
                calcs_reversed.append(calc_doc)
                # all_qchem_objects.append(qchem_objects)

        # Lists need to be reversed so that newest calc is the first calc, all_qchem_objects are also reversed to match
        calcs_reversed.reverse()

        # all_qchem_objects.reverse()
        custodian = _parse_custodian(dir_name)
        additional_json = None
        if store_additional_json:
            additional_json = _parse_additional_json(dir_name)
            for key, _ in additional_json.items():
                if key == "processed_critic2":
                    critic2["processed"] = additional_json["processed_critic2"]
                elif key == "cpreport":
                    critic2["cp"] = additional_json["cpreport"]
                elif key == "YT":
                    critic2["yt"] = additional_json["yt"]
                elif key == "bonding":
                    critic2["bonding"] = additional_json["bonding"]
                elif key == "solvent_data":
                    custom_smd = additional_json["solvent_data"]

        orig_inputs = (
            CalculationInput.from_qcinput(_parse_orig_inputs(dir_name))
            if _parse_orig_inputs(dir_name)
            else {}
        )

        dir_name = get_uri(dir_name)  # convert to full path

        # only store objects from last calculation
        # TODO: If vasp implementation makes this an option, change here as well
        qchem_objects = None
        included_objects = None
        if qchem_objects:
            included_objects = list(qchem_objects.keys())

        # run_stats = _get_run_stats(calcs_reversed), Discuss whether this is something which is necessary in terms of QChem calcs
        doc = cls.from_molecule(
            meta_molecule=calcs_reversed[-1].input.initial_molecule,
            dir_name=dir_name,
            calcs_reversed=calcs_reversed,
            custodian=custodian,
            additional_json=additional_json,
            additional_fields=additional_fields,
            completed_at=calcs_reversed[0].completed_at,
            orig_inputs=orig_inputs,
            input=InputDoc.from_qchem_calc_doc(calcs_reversed[0]),
            output=OutputDoc.from_qchem_calc_doc(calcs_reversed[0]),
            state=_get_state(calcs_reversed),
            qchem_objects=qchem_objects,
            included_objects=included_objects,
            critic2=critic2,
            custom_smd=custom_smd,
            task_type=calcs_reversed[0].task_type,
        )

        # doc = doc.copy(update=additional_fields)
        doc = doc.model_copy(update=additional_fields)
        return doc

    @staticmethod
    def get_entry(
        calcs_reversed: List[Calculation], task_id: Optional[str] = None
    ) -> Dict:
        """
        Get a computed entry from a list of QChem calculation documents.

        Parameters
        ----------
        calcs_reversed
            A list of QChem calculation documents in reverse order.
        task_id
            The job identifier

        Returns
        --------
        Dict
            A dict of computed entries
        """

        entry_dict = {
            "entry_id": task_id,
            "task_id": task_id,
            "charge": calcs_reversed[0].output.molecule.charge,
            "spin_multiplicity": calcs_reversed[0].output.molecule.spin_multiplicity,
            "level_of_theory": calcs_reversed[-1].input.level_of_theory,
            "solvent": calcs_reversed[-1].input.solv_spec,
            "lot_solvent": calcs_reversed[-1].input.lot_solv_combo,
            "custom_smd": calcs_reversed[-1].input.custom_smd,
            "task_type": calcs_reversed[-1].input.task_spec,
            "calc_type": calcs_reversed[-1].input.calc_spec,
            "tags": calcs_reversed[-1].input.tags,
            "molecule": calcs_reversed[0].output.molecule,
            "composition": calcs_reversed[0].output.molecule.composition,
            "formula": calcs_reversed[
                0
            ].output.formula.composition.aplhabetical_formula,
            "energy": calcs_reversed[0].output.final_energy,
            "output": calcs_reversed[0].output.as_dict(),
            "critic2": calcs_reversed[
                0
            ].output.critic,  # TODO: Unclear about orig_inputs
            "last_updated": calcs_reversed[0].output.last_updated,
        }

        return entry_dict


def get_uri(dir_name: Union[str, Path]) -> str:
    """
    Return the URI path for a directory.

    This allows files hosted on different file servers to have distinct locations.

    Parameters
    ----------
    dir_name : str or Path
        A directory name.

    Returns
    -------
    str
        Full URI path, e.g., "fileserver.host.com:/full/payj/of/fir_name".
    """
    import socket

    fullpath = Path(dir_name).absolute()
    hostname = socket.gethostname()
    try:
        hostname = socket.gethostbyaddr(hostname)[0]
    except (socket.gaierror, socket.herror):
        pass
    return f"{hostname}:{fullpath}"


def _parse_custodian(dir_name: Path) -> Optional[Dict]:
    """
    Parse custodian.json file.

    Calculations done using custodian have a custodian.json file which tracks the makers
    performed and any errors detected and fixed.

    Parameters
    ----------
    dir_name
        Path to calculation directory.

    Returns
    --------
    Optional[Dict]
        The information parsed from custodian.json file.
    """
    filenames = tuple(dir_name.glob("custodian.json*"))
    if len(filenames) >= 1:
        return loadfn(filenames[0], cls=None)
    return None


def _parse_orig_inputs(
    dir_name: Path,
) -> Dict[str, Any]:
    """
    Parse original input files.

    Calculations using custodian generate a *.orig file for the inputs. This is useful
    to know how the calculation originally started.

    Parameters
    ----------
    dir_name
        Path to calculation directory.

    Returns
    -------
    Dict[str, Any]
        The original molecule, rem, solvent and other data.
    """
    orig_inputs = {}
    orig_file_path = next(dir_name.glob("*.orig*"), None)

    if orig_file_path:
        orig_inputs = QCInput.from_file(orig_file_path)

    return orig_inputs


def _parse_additional_json(dir_name: Path) -> Dict[str, Any]:
    """Parse additional json files in the directory."""
    additional_json = {}
    for filename in dir_name.glob("*.json*"):
        key = filename.name.split(".")[0]
        if key not in ("custodian", "transformations"):
            if key not in additional_json:
                additional_json[key] = loadfn(filename, cls=None)
    return additional_json


def _get_state(calcs_reversed: List[Calculation]) -> QChemStatus:
    """Get state from calculation documents of QChem tasks."""
    all_calcs_completed = all(
        [c.has_qchem_completed == QChemStatus.SUCCESS for c in calcs_reversed]
    )
    if all_calcs_completed:
        return QChemStatus.SUCCESS
    return QChemStatus.FAILED


# def _get_run_stats(calcs_reversed: List[Calculation]) -> Dict[str, RunStatistics]:
#     """Get summary of runtime statistics for each calculation in this task."""

#     run_stats = {}
#     total = dict(
#         average_memory=0.0,
#         max_memory=0.0,
#         elapsed_time=0.0,
#         system_time=0.0,
#         user_time=0.0,
#         total_time=0.0,
#         cores=0,
#     )


def _find_qchem_files(
    path: Union[str, Path],
) -> Dict[str, Any]:
    """
    Find QChem files in a directory.

    Only the mol.qout file (or alternatively files
    with the task name as an extension, e.g., mol.qout.opt_0.gz, mol.qout.freq_1.gz, or something like this...)
    will be returned.

    Parameters
    ----------
    path
        Path to a directory to search.

    Returns
    -------
    Dict[str, Any]
        The filenames of the calculation outputs for each QChem task, given as a ordered dictionary of::

            {
                task_name:{
                    "qchem_out_file": qcrun_filename,
                },
                ...
            }
    If there is only 1 qout file task_name will be "standard" otherwise it will be the extension name like "opt_0"
    """
    path = Path(path)
    task_files = OrderedDict()

    in_file_pattern = re.compile(r"^(?P<in_task_name>mol\.(qin|in)(?:\..+)?)(\.gz)?$")

    for file in path.iterdir():
        if file.is_file():
            in_match = in_file_pattern.match(file.name)

            # This block is for generalizing outputs coming from both atomate and manual qchem calculations
            if in_match:
                in_task_name = re.sub(
                    r"(\.gz|gz)$",
                    "",
                    in_match.group("in_task_name").replace("mol.qin.", ""),
                )
                in_task_name = in_task_name or "mol.qin"
                if in_task_name == "orig":
                    task_files[in_task_name] = {"orig_input_file": file.name}
                elif in_task_name == "last":
                    continue
                elif in_task_name == "mol.qin" or in_task_name == "mol.in":
                    if in_task_name == "mol.qin":
                        out_file = (
                            path / "mol.qout.gz"
                            if (path / "mol.qout.gz").exists()
                            else path / "mol.qout"
                        )
                    else:
                        out_file = (
                            path / "mol.out.gz"
                            if (path / "mol.out.gz").exists()
                            else path / "mol.out"
                        )
                    task_files["standard"] = {
                        "qcinput_file": file.name,
                        "qcoutput_file": out_file.name,
                    }
                # This block will exist only if calcs were run through atomate
                else:
                    try:
                        task_files[in_task_name] = {
                            "qcinput_file": file.name,
                            "qcoutput_file": Path(
                                "mol.qout." + in_task_name + ".gz"
                            ).name,
                        }
                    except FileNotFoundError:
                        task_files[in_task_name] = {
                            "qcinput_file": file.name,
                            "qcoutput_file": "No qout files exist for this in file",
                        }

    return task_files