1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
""" Core definition of a Thermo Document """
from collections import defaultdict
from datetime import datetime
from typing import Dict, List, Optional, Union
from pydantic import BaseModel, Field
from pymatgen.analysis.phase_diagram import PhaseDiagram
from pymatgen.entries.computed_entries import ComputedEntry, ComputedStructureEntry
from emmet.core.base import EmmetMeta
from emmet.core.material import PropertyOrigin
from emmet.core.material_property import PropertyDoc
from emmet.core.mpid import MPID
from emmet.core.utils import ValueEnum
from emmet.core.vasp.calc_types.enums import RunType
class DecompositionProduct(BaseModel):
"""
Entry metadata for a decomposition process
"""
material_id: Optional[MPID] = Field(
None,
description="The Materials Project ID for the material this decomposition points to.",
)
formula: Optional[str] = Field(
None,
description="The formula of the decomposed material this material decomposes to.",
)
amount: Optional[float] = Field(
None,
description="The amount of the decomposed material by formula units this this material decomposes to.",
)
class ThermoType(ValueEnum):
GGA_GGA_U = "GGA_GGA+U"
GGA_GGA_U_R2SCAN = "GGA_GGA+U_R2SCAN"
R2SCAN = "R2SCAN"
UNKNOWN = "UNKNOWN"
class ThermoDoc(PropertyDoc):
"""
A thermo entry document
"""
property_name: str = "thermo"
thermo_type: Union[ThermoType, RunType] = Field(
...,
description="Functional types of calculations involved in the energy mixing scheme.",
)
thermo_id: str = Field(
...,
description="Unique document ID which is composed of the Material ID and thermo data type.",
)
uncorrected_energy_per_atom: float = Field(
..., description="The total DFT energy of this material per atom in eV/atom."
)
energy_per_atom: float = Field(
...,
description="The total corrected DFT energy of this material per atom in eV/atom.",
)
energy_uncertainy_per_atom: Optional[float] = Field(None, description="")
formation_energy_per_atom: Optional[float] = Field(
None, description="The formation energy per atom in eV/atom."
)
energy_above_hull: float = Field(
..., description="The energy above the hull in eV/Atom."
)
is_stable: bool = Field(
False,
description="Flag for whether this material is on the hull and therefore stable.",
)
equilibrium_reaction_energy_per_atom: Optional[float] = Field(
None,
description="The reaction energy of a stable entry from the neighboring equilibrium stable materials in eV."
" Also known as the inverse distance to hull.",
)
decomposes_to: Optional[List[DecompositionProduct]] = Field(
None,
description="List of decomposition data for this material. Only valid for metastable or unstable material.",
)
decomposition_enthalpy: Optional[float] = Field(
None,
description="Decomposition enthalpy as defined by `get_decomp_and_phase_separation_energy` in pymatgen.",
)
decomposition_enthalpy_decomposes_to: Optional[List[DecompositionProduct]] = Field(
None,
description="List of decomposition data associated with the decomposition_enthalpy quantity.",
)
energy_type: str = Field(
...,
description="The type of calculation this energy evaluation comes from.",
)
entry_types: List[str] = Field(
description="List of available energy types computed for this material."
)
entries: Dict[str, Union[ComputedEntry, ComputedStructureEntry]] = Field(
...,
description="List of all entries that are valid for this material."
" The keys for this dictionary are names of various calculation types.",
)
@classmethod
def from_entries(
cls,
entries: List[Union[ComputedEntry, ComputedStructureEntry]],
thermo_type: Union[ThermoType, RunType],
phase_diagram: Optional[PhaseDiagram] = None,
use_max_chemsys: bool = False,
**kwargs
):
"""Produce a list of ThermoDocs from a list of Entry objects
Args:
entries (List[Union[ComputedEntry, ComputedStructureEntry]]): List of Entry objects
thermo_type (Union[ThermoType, RunType]): Thermo type
phase_diagram (Optional[PhaseDiagram], optional): Already built phase diagram. Defaults to None.
use_max_chemsys (bool, optional): Whether to only produce thermo docs for materials
that match the largest chemsys represented in the list. Defaults to False.
Returns:
List[ThermoDoc]: List of built thermo doc objects.
"""
pd = phase_diagram or cls.construct_phase_diagram(entries)
chemsys = "-".join(sorted([str(e) for e in pd.elements]))
docs = []
entries_by_mpid = defaultdict(list)
for e in entries:
entries_by_mpid[e.data["material_id"]].append(e)
entry_quality_scores = {"GGA": 1, "GGA+U": 2, "SCAN": 3, "R2SCAN": 4}
def _energy_eval(entry: Union[ComputedStructureEntry, ComputedEntry]):
"""
Helper function to order entries for thermo energy data selection
- Run type
- LASPH
- Energy
"""
return (
-1 * entry_quality_scores.get(entry.data["run_type"], 0),
-1 * int(entry.data.get("aspherical", False)),
entry.energy,
)
for material_id, entry_group in entries_by_mpid.items():
if (
use_max_chemsys
and entry_group[0].composition.chemical_system != chemsys
):
continue
sorted_entries = sorted(entry_group, key=_energy_eval)
blessed_entry = sorted_entries[0]
(decomp, ehull) = pd.get_decomp_and_e_above_hull(blessed_entry) # type: ignore[arg-type]
builder_meta = EmmetMeta(license=blessed_entry.data.get("license"))
d = {
"thermo_id": "{}_{}".format(material_id, str(thermo_type)),
"material_id": material_id,
"thermo_type": thermo_type,
"uncorrected_energy_per_atom": blessed_entry.uncorrected_energy
/ blessed_entry.composition.num_atoms,
"energy_per_atom": blessed_entry.energy
/ blessed_entry.composition.num_atoms,
"formation_energy_per_atom": pd.get_form_energy_per_atom(blessed_entry), # type: ignore[arg-type]
"energy_above_hull": ehull,
"is_stable": blessed_entry in pd.stable_entries,
"builder_meta": builder_meta.model_dump(),
}
# Uncomment to make last_updated line up with materials.
# if "last_updated" in blessed_entry.data:
# d["last_updated"] = blessed_entry.data["last_updated"]
# Store different info if stable vs decomposes
if d["is_stable"]:
d[
"equilibrium_reaction_energy_per_atom"
] = pd.get_equilibrium_reaction_energy(
blessed_entry # type: ignore[arg-type]
)
else:
d["decomposes_to"] = [
{
"material_id": de.data["material_id"], # type: ignore[union-attr]
"formula": de.composition.formula,
"amount": amt,
}
for de, amt in decomp.items() # type: ignore[union-attr]
]
try:
decomp, energy = pd.get_decomp_and_phase_separation_energy(
blessed_entry # type: ignore[arg-type]
)
d["decomposition_enthalpy"] = energy
d["decomposition_enthalpy_decomposes_to"] = [
{
"material_id": de.data["material_id"], # type: ignore[union-attr]
"formula": de.composition.formula,
"amount": amt,
}
for de, amt in decomp.items() # type: ignore[union-attr]
]
except ValueError:
# try/except so this quantity does not take down the builder if it fails:
# it includes an optimization step that can be fragile in some instances,
# most likely failure is ValueError, "invalid value encountered in true_divide"
d["warnings"] = [
"Could not calculate decomposition enthalpy for this entry."
]
d["energy_type"] = blessed_entry.parameters.get("run_type", "Unknown")
d["entry_types"] = []
d["entries"] = {}
# Currently, each entry group contains a single entry due to how the compatibility scheme works
for entry in entry_group:
d["entry_types"].append(entry.parameters.get("run_type", "Unknown"))
d["entries"][entry.parameters.get("run_type", "Unknown")] = entry
d["origins"] = [
PropertyOrigin(
name="energy",
task_id=blessed_entry.data["task_id"],
last_updated=d.get("last_updated", datetime.utcnow()),
)
]
docs.append(
ThermoDoc.from_structure(
meta_structure=blessed_entry.structure, **d, **kwargs # type: ignore[attr-defined]
)
)
return docs
@staticmethod
def construct_phase_diagram(entries) -> PhaseDiagram:
"""
Efficienty construct a phase diagram using only the lowest entries at every composition
represented in the entry data passed.
Args:
entries (List[ComputedStructureEntry]): List of corrected pymatgen entry objects.
Returns:
PhaseDiagram: Pymatgen PhaseDiagram object
"""
entries_by_comp = defaultdict(list)
for e in entries:
entries_by_comp[e.composition.reduced_formula].append(e)
# Only use lowest entry per composition to speed up QHull in Phase Diagram
reduced_entries = [
sorted(comp_entries, key=lambda e: e.energy_per_atom)[0]
for comp_entries in entries_by_comp.values()
]
pd = PhaseDiagram(reduced_entries)
# Add back all entries, not just those on the hull
pd_computed_data = pd.computed_data
pd_computed_data["all_entries"] = entries
new_pd = PhaseDiagram(
entries, elements=pd.elements, computed_data=pd_computed_data
)
return new_pd
class PhaseDiagramDoc(BaseModel):
"""
A phase diagram document
"""
property_name: str = "phase_diagram"
phase_diagram_id: str = Field(
...,
description="Phase diagram ID consisting of the chemical system and thermo type",
)
chemsys: str = Field(
...,
description="Dash-delimited string of elements in the material",
)
thermo_type: Union[ThermoType, RunType] = Field(
...,
description="Functional types of calculations involved in the energy mixing scheme.",
)
phase_diagram: PhaseDiagram = Field(
...,
description="Phase diagram for the chemical system.",
)
last_updated: datetime = Field(
description="Timestamp for the most recent calculation update for this property",
default_factory=datetime.utcnow,
)
|