1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
|
"""Core definitions of a VASP calculation documents."""
# mypy: ignore-errors
import logging
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from pydantic import BaseModel, Extra, Field
from pymatgen.command_line.bader_caller import bader_analysis_from_path
from pymatgen.command_line.chargemol_caller import ChargemolAnalysis
from pymatgen.core.lattice import Lattice
from pymatgen.core.structure import Structure
from pymatgen.core.trajectory import Trajectory
from pymatgen.electronic_structure.bandstructure import BandStructure
from pymatgen.electronic_structure.core import OrbitalType
from pymatgen.electronic_structure.dos import CompleteDos, Dos
from pymatgen.io.vasp import (
BSVasprun,
Kpoints,
Locpot,
Oszicar,
Outcar,
Poscar,
Potcar,
PotcarSingle,
Vasprun,
VolumetricData,
)
from emmet.core.math import ListMatrix3D, Matrix3D, Vector3D
from emmet.core.utils import ValueEnum
from emmet.core.vasp.calc_types import (
CalcType,
RunType,
TaskType,
calc_type,
run_type,
task_type,
)
from emmet.core.vasp.task_valid import TaskState
logger = logging.getLogger(__name__)
class VaspObject(ValueEnum):
"""Types of VASP data objects."""
BANDSTRUCTURE = "bandstructure"
DOS = "dos"
CHGCAR = "chgcar"
AECCAR0 = "aeccar0"
AECCAR1 = "aeccar1"
AECCAR2 = "aeccar2"
TRAJECTORY = "trajectory"
ELFCAR = "elfcar"
WAVECAR = "wavecar"
LOCPOT = "locpot"
OPTIC = "optic"
PROCAR = "procar"
class StoreTrajectoryOption(ValueEnum):
FULL = "full"
PARTIAL = "partial"
NO = "no"
class CalculationBaseModel(BaseModel):
"""Wrapper around pydantic BaseModel with extra functionality."""
def get(self, key: Any, default_value: Optional[Any] = None) -> Any:
return getattr(self, key, default_value)
class PotcarSpec(BaseModel):
"""Document defining a VASP POTCAR specification."""
titel: Optional[str] = Field(None, description="TITEL field from POTCAR header")
hash: Optional[str] = Field(None, description="md5 hash of POTCAR file")
summary_stats: Optional[dict] = Field(
None, description="summary statistics used to ID POTCARs without hashing"
)
@classmethod
def from_potcar_single(cls, potcar_single: PotcarSingle) -> "PotcarSpec":
"""
Get a PotcarSpec from a PotcarSingle.
Parameters
----------
potcar_single
A potcar single object.
Returns
-------
PotcarSpec
A potcar spec.
"""
return cls(
titel=potcar_single.symbol,
hash=potcar_single.md5_header_hash,
summary_stats=potcar_single._summary_stats,
)
@classmethod
def from_potcar(cls, potcar: Potcar) -> List["PotcarSpec"]:
"""
Get a list of PotcarSpecs from a Potcar.
Parameters
----------
potcar
A potcar object.
Returns
-------
list[PotcarSpec]
A list of potcar specs.
"""
return [cls.from_potcar_single(p) for p in potcar]
class CalculationInput(CalculationBaseModel):
"""Document defining VASP calculation inputs."""
incar: Optional[Dict[str, Any]] = Field(
None, description="INCAR parameters for the calculation"
)
kpoints: Optional[Union[Dict[str, Any], Kpoints]] = Field(
None, description="KPOINTS for the calculation"
)
nkpoints: Optional[int] = Field(None, description="Total number of k-points")
potcar: Optional[List[str]] = Field(
None, description="POTCAR symbols in the calculation"
)
potcar_spec: Optional[List[PotcarSpec]] = Field(
None, description="Title and hash of POTCAR files used in the calculation"
)
potcar_type: Optional[List[str]] = Field(
None, description="List of POTCAR functional types."
)
parameters: Optional[dict] = Field(None, description="Parameters from vasprun")
lattice_rec: Optional[Lattice] = Field(
None, description="Reciprocal lattice of the structure"
)
structure: Optional[Structure] = Field(
None, description="Input structure for the calculation"
)
is_hubbard: bool = Field(
default=False, description="Is this a Hubbard +U calculation"
)
hubbards: Optional[dict] = Field(None, description="The hubbard parameters used")
@classmethod
def from_vasprun(cls, vasprun: Vasprun) -> "CalculationInput":
"""
Create a VASP input document from a Vasprun object.
Parameters
----------
vasprun
A vasprun object.
Returns
-------
CalculationInput
The input document.
"""
kpoints_dict = vasprun.kpoints.as_dict()
kpoints_dict["actual_kpoints"] = [
{"abc": list(k), "weight": w}
for k, w in zip(vasprun.actual_kpoints, vasprun.actual_kpoints_weights)
]
parameters = dict(vasprun.parameters).copy()
incar = dict(vasprun.incar)
if metagga := incar.get("METAGGA"):
# Per issue #960, the METAGGA tag is populated in the
# INCAR field of vasprun.xml, and not parameters
parameters.update({"METAGGA": metagga})
return cls(
structure=vasprun.initial_structure,
incar=incar,
kpoints=kpoints_dict,
nkpoints=len(kpoints_dict["actual_kpoints"]),
potcar=[s.split()[0] for s in vasprun.potcar_symbols],
potcar_spec=vasprun.potcar_spec,
potcar_type=[s.split()[0] for s in vasprun.potcar_symbols],
parameters=parameters,
lattice_rec=vasprun.initial_structure.lattice.reciprocal_lattice,
is_hubbard=vasprun.is_hubbard,
hubbards=vasprun.hubbards,
)
class RunStatistics(BaseModel):
"""Summary of the run statistics for a VASP calculation."""
average_memory: float = Field(0, description="The average memory used in kb")
max_memory: float = Field(0, description="The maximum memory used in kb")
elapsed_time: float = Field(0, description="The real time elapsed in seconds")
system_time: float = Field(0, description="The system CPU time in seconds")
user_time: float = Field(
0, description="The user CPU time spent by VASP in seconds"
)
total_time: float = Field(0, description="The total CPU time for this calculation")
cores: int = Field(0, description="The number of cores used by VASP")
@classmethod
def from_outcar(cls, outcar: Outcar) -> "RunStatistics":
"""
Create a run statistics document from an Outcar object.
Parameters
----------
outcar
An Outcar object.
Returns
-------
RunStatistics
The run statistics.
"""
# rename these statistics
mapping = {
"Average memory used (kb)": "average_memory",
"Maximum memory used (kb)": "max_memory",
"Elapsed time (sec)": "elapsed_time",
"System time (sec)": "system_time",
"User time (sec)": "user_time",
"Total CPU time used (sec)": "total_time",
"cores": "cores",
}
run_stats = {}
for k, v in mapping.items():
stat = outcar.run_stats.get(k) or 0
try:
stat = float(stat)
except ValueError:
# sometimes the statistics are misformatted
stat = 0
run_stats[v] = stat
return cls(**run_stats)
class FrequencyDependentDielectric(BaseModel):
"""Frequency-dependent dielectric data."""
real: Optional[List[List[float]]] = Field(
None,
description="Real part of the frequency dependent dielectric constant, given at"
" each energy as 6 components according to XX, YY, ZZ, XY, YZ, ZX",
)
imaginary: Optional[List[List[float]]] = Field(
None,
description="Imaginary part of the frequency dependent dielectric constant, "
"given at each energy as 6 components according to XX, YY, ZZ, XY, "
"YZ, ZX",
)
energy: Optional[List[float]] = Field(
None,
description="Energies at which the real and imaginary parts of the dielectric"
"constant are given",
)
@classmethod
def from_vasprun(cls, vasprun: Vasprun) -> "FrequencyDependentDielectric":
"""
Create a frequency-dependent dielectric calculation document from a vasprun.
Parameters
----------
vasprun : Vasprun
A vasprun object.
Returns
-------
FrequencyDependentDielectric
A frequency-dependent dielectric document.
"""
energy, real, imag = vasprun.dielectric
return cls(real=real, imaginary=imag, energy=energy)
class ElectronPhononDisplacedStructures(BaseModel):
"""Document defining electron phonon displaced structures."""
temperatures: Optional[List[float]] = Field(
None,
description="The temperatures at which the electron phonon displacements "
"were generated.",
)
structures: Optional[List[Structure]] = Field(
None, description="The displaced structures corresponding to each temperature."
)
class ElectronicStep(BaseModel, extra=Extra.allow): # type: ignore
"""Document defining the information at each electronic step.
Note, not all the information will be available at every step.
"""
alphaZ: Optional[float] = Field(None, description="The alpha Z term.")
ewald: Optional[float] = Field(None, description="The ewald energy.")
hartreedc: Optional[float] = Field(None, description="Negative Hartree energy.")
XCdc: Optional[float] = Field(None, description="Negative exchange energy.")
pawpsdc: Optional[float] = Field(
None, description="Negative potential energy with exchange-correlation energy."
)
pawaedc: Optional[float] = Field(None, description="The PAW double counting term.")
eentropy: Optional[float] = Field(None, description="The entropy (T * S).")
bandstr: Optional[float] = Field(
None, description="The band energy (from eigenvalues)."
)
atom: Optional[float] = Field(None, description="The atomic energy.")
e_fr_energy: Optional[float] = Field(None, description="The free energy.")
e_wo_entrp: Optional[float] = Field(None, description="The energy without entropy.")
e_0_energy: Optional[float] = Field(None, description="The internal energy.")
class IonicStep(BaseModel, extra=Extra.allow): # type: ignore
"""Document defining the information at each ionic step."""
e_fr_energy: Optional[float] = Field(None, description="The free energy.")
e_wo_entrp: Optional[float] = Field(None, description="The energy without entropy.")
e_0_energy: Optional[float] = Field(None, description="The internal energy.")
forces: Optional[List[Vector3D]] = Field(
None, description="The forces on each atom."
)
stress: Optional[Matrix3D] = Field(None, description="The stress on the lattice.")
electronic_steps: Optional[List[ElectronicStep]] = Field(
None, description="The electronic convergence steps."
)
structure: Optional[Structure] = Field(
None, description="The structure at this step."
)
class CalculationOutput(BaseModel):
"""Document defining VASP calculation outputs."""
energy: Optional[float] = Field(
None, description="The final total DFT energy for the calculation"
)
energy_per_atom: Optional[float] = Field(
None, description="The final DFT energy per atom for the calculation"
)
structure: Optional[Structure] = Field(
None, description="The final structure from the calculation"
)
efermi: Optional[float] = Field(
None, description="The Fermi level from the calculation in eV"
)
is_metal: Optional[bool] = Field(None, description="Whether the system is metallic")
bandgap: Optional[float] = Field(
None, description="The band gap from the calculation in eV"
)
cbm: Optional[float] = Field(
None,
description="The conduction band minimum in eV (if system is not metallic)",
)
vbm: Optional[float] = Field(
None, description="The valence band maximum in eV (if system is not metallic)"
)
is_gap_direct: Optional[bool] = Field(
None, description="Whether the band gap is direct"
)
direct_gap: Optional[float] = Field(
None, description="Direct band gap in eV (if system is not metallic)"
)
transition: Optional[str] = Field(
None, description="Band gap transition given by CBM and VBM k-points"
)
mag_density: Optional[float] = Field(
None,
description="The magnetization density, defined as total_mag/volume "
"(units of A^-3)",
)
dielectric: Optional[dict[str, list]] = Field(
None,
description="Energy of incident photons in ev and real and imaginary parts of the dielectric tensor",
)
optical_absorption_coeff: Optional[list] = Field(
None, description="Optical absorption coefficient in cm^-1"
)
epsilon_static: Optional[ListMatrix3D] = Field(
None, description="The high-frequency dielectric constant"
)
epsilon_static_wolfe: Optional[ListMatrix3D] = Field(
None,
description="The high-frequency dielectric constant w/o local field effects",
)
epsilon_ionic: Optional[ListMatrix3D] = Field(
None, description="The ionic part of the dielectric constant"
)
frequency_dependent_dielectric: Optional[FrequencyDependentDielectric] = Field(
None,
description="Frequency-dependent dielectric information from an LOPTICS "
"calculation",
)
ionic_steps: Optional[List[IonicStep]] = Field(
None, description="Energy, forces, structure, etc. for each ionic step"
)
locpot: Optional[Dict[int, List[float]]] = Field(
None, description="Average of the local potential along the crystal axes"
)
outcar: Optional[Dict[str, Any]] = Field(
None, description="Information extracted from the OUTCAR file"
)
force_constants: Optional[List[List[Matrix3D]]] = Field(
None, description="Force constants between every pair of atoms in the structure"
)
normalmode_frequencies: Optional[List[float]] = Field(
None, description="Frequencies in THz of the normal modes at Gamma"
)
normalmode_eigenvals: Optional[List[float]] = Field(
None,
description="Normal mode eigenvalues of phonon modes at Gamma. "
"Note the unit changed between VASP 5 and 6.",
)
normalmode_eigenvecs: Optional[List[List[Vector3D]]] = Field(
None, description="Normal mode eigenvectors of phonon modes at Gamma"
)
elph_displaced_structures: Optional[ElectronPhononDisplacedStructures] = Field(
None,
description="Electron-phonon displaced structures, generated by setting "
"PHON_LMC = True.",
)
dos_properties: Optional[Dict[str, Dict[str, Dict[str, float]]]] = Field(
None,
description="Element- and orbital-projected band properties (in eV) for the "
"DOS. All properties are with respect to the Fermi level.",
)
run_stats: Optional[RunStatistics] = Field(
None, description="Summary of runtime statistics for this calculation"
)
@classmethod
def from_vasp_outputs(
cls,
vasprun: Vasprun,
outcar: Optional[Outcar],
contcar: Optional[Poscar],
locpot: Optional[Locpot] = None,
elph_poscars: Optional[List[Path]] = None,
store_trajectory: StoreTrajectoryOption = StoreTrajectoryOption.NO,
store_onsite_density_matrices: bool = False,
) -> "CalculationOutput":
"""
Create a VASP output document from VASP outputs.
Parameters
----------
vasprun
A Vasprun object.
outcar
An Outcar object.
contcar
A Poscar object.
locpot
A Locpot object.
elph_poscars
Path to displaced electron-phonon coupling POSCAR files generated using
``PHON_LMC = True``.
store_trajectory
Whether to store ionic steps as a pymatgen Trajectory object.
Different value tune the amount of data from the ionic_steps
stored in the Trajectory.
If not NO, the `ionic_steps` field is left as None.
store_onsite_density_matrices
Whether to store the onsite density matrices from the OUTCAR.
Returns
-------
The VASP calculation output document.
"""
try:
bandstructure = vasprun.get_band_structure(efermi="smart")
bandgap_info = bandstructure.get_band_gap()
electronic_output = dict(
efermi=bandstructure.efermi,
vbm=bandstructure.get_vbm()["energy"],
cbm=bandstructure.get_cbm()["energy"],
bandgap=bandgap_info["energy"],
is_gap_direct=bandgap_info["direct"],
is_metal=bandstructure.is_metal(),
direct_gap=bandstructure.get_direct_band_gap(),
transition=bandgap_info["transition"],
)
except Exception:
logger.warning("Error in parsing bandstructure")
if vasprun.incar["IBRION"] == 1:
logger.warning("VASP doesn't properly output efermi for IBRION == 1")
electronic_output = {}
freq_dependent_diel: Union[dict, FrequencyDependentDielectric] = {}
try:
freq_dependent_diel = FrequencyDependentDielectric.from_vasprun(vasprun)
except KeyError:
pass
locpot_avg = None
if locpot:
locpot_avg = {
i: locpot.get_average_along_axis(i).tolist() for i in range(3)
}
# parse force constants
phonon_output = {}
if hasattr(vasprun, "force_constants"):
# convert eigenvalues to frequency
eigs = -vasprun.normalmode_eigenvals
frequencies = np.sqrt(np.abs(eigs)) * np.sign(eigs)
# convert to THz in VASP 5 and lower; VASP 6 uses THz internally
major_version = int(vasprun.vasp_version.split(".")[0])
if major_version < 6:
frequencies *= 15.633302
phonon_output = dict(
force_constants=vasprun.force_constants.tolist(),
normalmode_frequencies=frequencies.tolist(),
normalmode_eigenvals=vasprun.normalmode_eigenvals.tolist(),
normalmode_eigenvecs=vasprun.normalmode_eigenvecs.tolist(),
)
if outcar and contcar:
outcar_dict = outcar.as_dict()
outcar_dict.pop("run_stats")
if not store_onsite_density_matrices and outcar.has_onsite_density_matrices:
outcar_dict.pop("onsite_density_matrices")
# use structure from CONTCAR as it is written to
# greater precision than in the vasprun
# but still need to copy the charge over
structure = contcar.structure
structure._charge = vasprun.final_structure._charge
mag_density = (
outcar.total_mag / structure.volume if outcar.total_mag else None
)
if len(outcar.magnetization) != 0:
# patch calculated magnetic moments into final structure
magmoms = [m["tot"] for m in outcar.magnetization]
structure.add_site_property("magmom", magmoms)
else:
logger.warning(
"No OUTCAR/CONTCAR available, some information will be missing from TaskDoc."
)
outcar_dict = {}
structure = vasprun.final_structure
mag_density = None
# Parse DOS properties
dosprop_dict = (
_get_band_props(vasprun.complete_dos, structure)
if hasattr(vasprun, "complete_dos") and vasprun.parameters["LORBIT"] >= 11
else {}
)
elph_structures: Dict[str, List[Any]] = {}
if elph_poscars is not None:
elph_structures.update({"temperatures": [], "structures": []})
for elph_poscar in elph_poscars:
temp = str(elph_poscar.name).replace("POSCAR.T=", "").replace(".gz", "")
elph_structures["temperatures"].append(temp)
elph_structures["structures"].append(Structure.from_file(elph_poscar))
return cls(
structure=structure,
energy=vasprun.final_energy,
energy_per_atom=vasprun.final_energy / len(structure),
mag_density=mag_density,
epsilon_static=vasprun.epsilon_static or None,
epsilon_static_wolfe=vasprun.epsilon_static_wolfe or None,
epsilon_ionic=vasprun.epsilon_ionic or None,
frequency_dependent_dielectric=freq_dependent_diel,
elph_displaced_structures=elph_structures,
dos_properties=dosprop_dict,
ionic_steps=vasprun.ionic_steps
if store_trajectory == StoreTrajectoryOption.NO
else None,
locpot=locpot_avg,
outcar=outcar_dict,
run_stats=RunStatistics.from_outcar(outcar) if outcar else None,
**electronic_output,
**phonon_output,
)
class Calculation(CalculationBaseModel):
"""Full VASP calculation inputs and outputs."""
dir_name: Optional[str] = Field(
None, description="The directory for this VASP calculation"
)
vasp_version: Optional[str] = Field(
None, description="VASP version used to perform the calculation"
)
has_vasp_completed: Optional[Union[TaskState, bool]] = Field(
None, description="Whether VASP completed the calculation successfully"
)
input: Optional[CalculationInput] = Field(
None, description="VASP input settings for the calculation"
)
output: Optional[CalculationOutput] = Field(
None, description="The VASP calculation output"
)
completed_at: Optional[str] = Field(
None, description="Timestamp for when the calculation was completed"
)
task_name: Optional[str] = Field(
None, description="Name of task given by custodian (e.g., relax1, relax2)"
)
output_file_paths: Optional[Dict[str, str]] = Field(
None,
description="Paths (relative to dir_name) of the VASP output files "
"associated with this calculation",
)
bader: Optional[dict] = Field(None, description="Output from bader charge analysis")
ddec6: Optional[dict] = Field(None, description="Output from DDEC6 charge analysis")
run_type: Optional[RunType] = Field(
None, description="Calculation run type (e.g., HF, HSE06, PBE)"
)
task_type: Optional[TaskType] = Field(
None, description="Calculation task type (e.g., Structure Optimization)."
)
calc_type: Optional[CalcType] = Field(
None, description="Return calculation type (run type + task_type)."
)
@classmethod
def from_vasp_files(
cls,
dir_name: Union[Path, str],
task_name: str,
vasprun_file: Union[Path, str],
outcar_file: Union[Path, str],
contcar_file: Union[Path, str],
volumetric_files: List[str] = None,
elph_poscars: List[Path] = None,
oszicar_file: Optional[Union[Path, str]] = None,
parse_dos: Union[str, bool] = False,
parse_bandstructure: Union[str, bool] = False,
average_locpot: bool = True,
run_bader: bool = False,
run_ddec6: Union[bool, str] = False,
strip_bandstructure_projections: bool = False,
strip_dos_projections: bool = False,
store_volumetric_data: Optional[Tuple[str]] = None,
store_trajectory: StoreTrajectoryOption = StoreTrajectoryOption.NO,
store_onsite_density_matrices: bool = False,
vasprun_kwargs: Optional[Dict] = None,
) -> Tuple["Calculation", Dict[VaspObject, Dict]]:
"""
Create a VASP calculation document from a directory and file paths.
Parameters
----------
dir_name
The directory containing the calculation outputs.
task_name
The task name.
vasprun_file
Path to the vasprun.xml file, relative to dir_name.
outcar_file
Path to the OUTCAR file, relative to dir_name.
contcar_file
Path to the CONTCAR file, relative to dir_name
volumetric_files
Path to volumetric files, relative to dir_name.
elph_poscars
Path to displaced electron-phonon coupling POSCAR files generated using
``PHON_LMC = True``, given relative to dir_name.
oszicar_file
Path to the OSZICAR file, relative to dir_name
parse_dos
Whether to parse the DOS. Can be:
- "auto": Only parse DOS if there are no ionic steps (NSW = 0).
- True: Always parse DOS.
- False: Never parse DOS.
parse_bandstructure
How to parse the bandstructure. Can be:
- "auto": Parse the bandstructure with projections for NSCF calculations
and decide automatically if it's line or uniform mode.
- "line": Parse the bandstructure as a line mode calculation with
projections
- True: Parse the bandstructure as a uniform calculation with
projections .
- False: Parse the band structure without projects and just store
vbm, cbm, band_gap, is_metal and efermi rather than the full
band structure object.
average_locpot
Whether to store the average of the LOCPOT along the crystal axes.
run_bader : bool = False
Whether to run bader on the charge density.
run_ddec6 : Union[bool , str] = False
Whether to run DDEC6 on the charge density. If a string, it's interpreted
as the path to the atomic densities directory. Can also be set via the
DDEC6_ATOMIC_DENSITIES_DIR environment variable. The files are available at
https://sourceforge.net/projects/ddec/files.
strip_dos_projections
Whether to strip the element and site projections from the density of
states. This can help reduce the size of DOS objects in systems with many
atoms.
strip_bandstructure_projections
Whether to strip the element and site projections from the band structure.
This can help reduce the size of DOS objects in systems with many atoms.
store_volumetric_data
Which volumetric files to store.
store_trajectory
Whether to store the ionic steps in a pymatgen Trajectory object and the
amount of data to store from the ionic_steps. Can be:
- FULL: Store the Trajectory. All the properties from the ionic_steps
are stored in the frame_properties except for the Structure, to
avoid redundancy.
- PARTIAL: Store the Trajectory. All the properties from the ionic_steps
are stored in the frame_properties except from Structure and
ElectronicStep.
- NO: Trajectory is not Stored.
If not NO, :obj:'.CalculationOutput.ionic_steps' is set to None
to reduce duplicating information.
store_onsite_density_matrices
Whether to store the onsite density matrices from the OUTCAR.
vasprun_kwargs
Additional keyword arguments that will be passed to the Vasprun init.
Returns
-------
Calculation
A VASP calculation document.
"""
dir_name = Path(dir_name)
vasprun_file = dir_name / vasprun_file
outcar_file = dir_name / outcar_file
contcar_file = dir_name / contcar_file
vasprun_kwargs = vasprun_kwargs if vasprun_kwargs else {}
volumetric_files = [] if volumetric_files is None else volumetric_files
vasprun = Vasprun(vasprun_file, **vasprun_kwargs)
outcar = Outcar(outcar_file)
contcar = Poscar.from_file(contcar_file)
completed_at = str(datetime.fromtimestamp(vasprun_file.stat().st_mtime))
output_file_paths = _get_output_file_paths(volumetric_files)
vasp_objects: Dict[VaspObject, Any] = _get_volumetric_data(
dir_name, output_file_paths, store_volumetric_data
)
dos = _parse_dos(parse_dos, vasprun)
if dos is not None:
if strip_dos_projections:
dos = Dos(dos.efermi, dos.energies, dos.densities)
vasp_objects[VaspObject.DOS] = dos # type: ignore
bandstructure = _parse_bandstructure(parse_bandstructure, vasprun)
if bandstructure is not None:
if strip_bandstructure_projections:
bandstructure.projections = {}
vasp_objects[VaspObject.BANDSTRUCTURE] = bandstructure # type: ignore
bader = None
if run_bader and VaspObject.CHGCAR in output_file_paths:
suffix = "" if task_name == "standard" else f".{task_name}"
bader = bader_analysis_from_path(dir_name, suffix=suffix)
ddec6 = None
if run_ddec6 and VaspObject.CHGCAR in output_file_paths:
densities_path = run_ddec6 if isinstance(run_ddec6, (str, Path)) else None
ddec6 = ChargemolAnalysis(
path=dir_name, atomic_densities_path=densities_path
).summary
locpot = None
if average_locpot:
if VaspObject.LOCPOT in vasp_objects:
locpot = vasp_objects[VaspObject.LOCPOT] # type: ignore
elif VaspObject.LOCPOT in output_file_paths:
locpot_file = output_file_paths[VaspObject.LOCPOT] # type: ignore
locpot = Locpot.from_file(dir_name / locpot_file)
input_doc = CalculationInput.from_vasprun(vasprun)
output_doc = CalculationOutput.from_vasp_outputs(
vasprun,
outcar,
contcar,
locpot=locpot,
elph_poscars=elph_poscars,
store_trajectory=store_trajectory,
store_onsite_density_matrices=store_onsite_density_matrices,
)
if store_trajectory != StoreTrajectoryOption.NO:
exclude_from_trajectory = ["structure"]
if store_trajectory == StoreTrajectoryOption.PARTIAL:
exclude_from_trajectory.append("electronic_steps")
frame_properties = [
IonicStep(**x).model_dump(exclude=exclude_from_trajectory)
for x in vasprun.ionic_steps
]
if oszicar_file:
try:
oszicar = Oszicar(oszicar_file)
if "T" in oszicar.ionic_steps[0]:
for frame_property, oszicar_is in zip(
frame_properties, oszicar.ionic_steps
):
frame_property["temperature"] = oszicar_is.get("T")
except ValueError:
# there can be errors in parsing the floats from OSZICAR
pass
traj = Trajectory.from_structures(
[d["structure"] for d in vasprun.ionic_steps],
frame_properties=frame_properties,
constant_lattice=False,
)
vasp_objects[VaspObject.TRAJECTORY] = traj # type: ignore
# MD run
if vasprun.parameters.get("IBRION", -1) == 0:
if vasprun.parameters.get("NSW", 0) == vasprun.md_n_steps:
has_vasp_completed = TaskState.SUCCESS
else:
has_vasp_completed = TaskState.FAILED
# others
else:
has_vasp_completed = (
TaskState.SUCCESS if vasprun.converged else TaskState.FAILED
)
return (
cls(
dir_name=str(dir_name),
task_name=task_name,
vasp_version=vasprun.vasp_version,
has_vasp_completed=has_vasp_completed,
completed_at=completed_at,
input=input_doc,
output=output_doc,
output_file_paths={
k.name.lower(): v for k, v in output_file_paths.items()
},
bader=bader,
ddec6=ddec6,
run_type=run_type(input_doc.parameters),
task_type=task_type(input_doc.model_dump()),
calc_type=calc_type(input_doc.model_dump(), input_doc.parameters),
),
vasp_objects,
)
@classmethod
def from_vasprun(
cls,
path: Union[Path, str],
task_name: str = "Unknown vapsrun.xml",
vasprun_kwargs: Optional[Dict] = None,
) -> Tuple["Calculation", Dict[VaspObject, Dict]]:
"""
Create a VASP calculation document from a directory and file paths.
Parameters
----------
path
Path to the vasprun.xml file.
task_name
The task name.
vasprun_kwargs
Additional keyword arguments that will be passed to the Vasprun init.
Returns
-------
Calculation
A VASP calculation document.
"""
path = Path(path)
vasprun_kwargs = vasprun_kwargs if vasprun_kwargs else {}
vasprun = Vasprun(path, **vasprun_kwargs)
completed_at = str(datetime.fromtimestamp(path.stat().st_mtime))
input_doc = CalculationInput.from_vasprun(vasprun)
output_doc = CalculationOutput.from_vasp_outputs(
vasprun,
outcar=None,
contcar=None,
)
# MD run
if vasprun.parameters.get("IBRION", -1) == 0:
if vasprun.parameters.get("NSW", 0) == vasprun.nionic_steps:
has_vasp_completed = TaskState.SUCCESS
else:
has_vasp_completed = TaskState.FAILED
# others
else:
has_vasp_completed = (
TaskState.SUCCESS if vasprun.converged else TaskState.FAILED
)
return cls(
dir_name=str(path.resolve().parent),
task_name=task_name,
vasp_version=vasprun.vasp_version,
has_vasp_completed=has_vasp_completed,
completed_at=completed_at,
input=input_doc,
output=output_doc,
output_file_paths={},
run_type=run_type(input_doc.parameters),
task_type=task_type(input_doc.model_dump()),
calc_type=calc_type(input_doc.model_dump(), input_doc.parameters),
)
def _get_output_file_paths(volumetric_files: List[str]) -> Dict[VaspObject, str]:
"""
Get the output file paths for VASP output files from the list of volumetric files.
Parameters
----------
volumetric_files
A list of volumetric files associated with the calculation.
Returns
-------
Dict[VaspObject, str]
A mapping between the VASP object type and the file path.
"""
output_file_paths = {}
for vasp_object in VaspObject: # type: ignore
for volumetric_file in volumetric_files:
if vasp_object.name in str(volumetric_file):
output_file_paths[vasp_object] = str(volumetric_file)
return output_file_paths
def _get_volumetric_data(
dir_name: Path,
output_file_paths: Dict[VaspObject, str],
store_volumetric_data: Optional[Tuple[str]],
) -> Dict[VaspObject, VolumetricData]:
"""
Load volumetric data files from a directory.
Parameters
----------
dir_name
The directory containing the files.
output_file_paths
A dictionary mapping the data type to file path relative to dir_name.
store_volumetric_data
The volumetric data files to load. E.g., `("chgcar", "locpot")`.
Provided as a list of strings note you can use either the keys or the
values available in the `VaspObject` enum (e.g., "locpot" or "LOCPOT")
are both valid.
Returns
-------
Dict[VaspObject, VolumetricData]
A dictionary mapping the VASP object data type (`VaspObject.LOCPOT`,
`VaspObject.CHGCAR`, etc) to the volumetric data object.
"""
from pymatgen.io.vasp import Chgcar
if store_volumetric_data is None or len(store_volumetric_data) == 0:
return {}
volumetric_data = {}
for file_type, file in output_file_paths.items():
if (
file_type.name not in store_volumetric_data
and file_type.value not in store_volumetric_data
):
continue
try:
# assume volumetric data is all in CHGCAR format
volumetric_data[file_type] = Chgcar.from_file(dir_name / file)
except Exception:
raise ValueError(f"Failed to parse {file_type} at {file}.")
return volumetric_data
def _parse_dos(parse_mode: Union[str, bool], vasprun: Vasprun) -> Optional[Dos]:
"""Parse DOS. See Calculation.from_vasp_files for supported arguments."""
nsw = vasprun.incar.get("NSW", 0)
dos = None
if parse_mode is True or (parse_mode == "auto" and nsw < 1):
dos = vasprun.complete_dos
return dos
def _parse_bandstructure(
parse_mode: Union[str, bool], vasprun: Vasprun
) -> Optional[BandStructure]:
"""Parse band structure. See Calculation.from_vasp_files for supported arguments."""
vasprun_file = vasprun.filename
if parse_mode == "auto":
if vasprun.incar.get("ICHARG", 0) > 10:
# NSCF calculation
bs_vrun = BSVasprun(vasprun_file, parse_projected_eigen=True)
try:
# try parsing line mode
bs = bs_vrun.get_band_structure(line_mode=True, efermi="smart")
except Exception:
# treat as a regular calculation
bs = bs_vrun.get_band_structure(efermi="smart")
else:
# Not a NSCF calculation
bs_vrun = BSVasprun(vasprun_file, parse_projected_eigen=False)
bs = bs_vrun.get_band_structure(efermi="smart")
# only save the bandstructure if not moving ions
if vasprun.incar.get("NSW", 0) <= 1:
return bs
elif parse_mode:
# legacy line/True behavior for bandstructure_mode
bs_vrun = BSVasprun(vasprun_file, parse_projected_eigen=True)
bs = bs_vrun.get_band_structure(line_mode=parse_mode == "line", efermi="smart")
return bs
return None
def _get_band_props(
complete_dos: CompleteDos, structure: Structure
) -> Dict[str, Dict[str, Dict[str, float]]]:
"""
Calculate band properties from a CompleteDos object and Structure.
Parameters
----------
complete_dos
A CompleteDos object.
structure
a pymatgen Structure object.
Returns
-------
Dict
A dictionary of element and orbital-projected DOS properties.
"""
dosprop_dict: Dict[str, Dict[str, Dict[str, float]]] = {}
for el in structure.composition.elements:
el_name = el.name
dosprop_dict[el_name] = {}
for orb_type in [
OrbitalType.s,
OrbitalType.p,
OrbitalType.d,
]:
orb_name = orb_type.name
if (
(el.block == "s" and orb_name in ["p", "d", "f"])
or (el.block == "p" and orb_name in ["d", "f"])
or (el.block == "d" and orb_name == "f")
):
continue
dosprops = {
"filling": complete_dos.get_band_filling(band=orb_type, elements=[el]),
"center": complete_dos.get_band_center(band=orb_type, elements=[el]),
"bandwidth": complete_dos.get_band_width(band=orb_type, elements=[el]),
"skewness": complete_dos.get_band_skewness(
band=orb_type, elements=[el]
),
"kurtosis": complete_dos.get_band_kurtosis(
band=orb_type, elements=[el]
),
"upper_edge": complete_dos.get_upper_band_edge(
band=orb_type, elements=[el]
),
}
dosprop_dict[el_name][orb_name] = dosprops
return dosprop_dict
|