1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
import os
from pathlib import Path
import pytest
from tempfile import mkdtemp
from shutil import rmtree
from pymatgen.core import SETTINGS
@pytest.fixture(scope="session")
def test_dir():
try:
TEST_FILES_DIR = Path(SETTINGS["PMG_TEST_FILES_DIR"])
except KeyError:
import warnings
warnings.warn(
"It is recommended that you set the PMG_TEST_FILES_DIR environment variable explicitly. "
"Now using a fallback location based on relative path from this module."
)
TEST_FILES_DIR = Path(__file__).parent.parent.parent.joinpath("test_files").resolve()
return TEST_FILES_DIR
@pytest.fixture
def tmp_dir():
"""Make temporary directory for tests."""
old_cwd = os.getcwd()
new_path = mkdtemp()
os.chdir(new_path)
yield
os.chdir(old_cwd)
rmtree(new_path)
def assert_schemas_equal(test_schema, valid_schema):
"""
Recursively test all items in valid_schema are present and equal in test_schema.
While test_schema can be a pydantic schema or dictionary, the valid schema must
be a (nested) dictionary. This function automatically handles accessing the
attributes of classes in the test_schema.
Args:
test_schema: A pydantic schema or dictionary of the schema.
valid_schema: A (nested) dictionary specifying the key and values that must be
present in test_schema.
"""
from pydantic import BaseModel
if isinstance(valid_schema, dict):
for key, sub_valid_schema in valid_schema.items():
if isinstance(key, str) and hasattr(test_schema, key):
sub_test_schema = getattr(test_schema, key)
elif not isinstance(test_schema, BaseModel):
sub_test_schema = test_schema[key]
else:
raise ValueError(f"{type(test_schema)} does not have field: {key}")
return assert_schemas_equal(sub_test_schema, sub_valid_schema)
elif isinstance(valid_schema, list):
for i, sub_valid_schema in enumerate(valid_schema):
return assert_schemas_equal(test_schema[i], sub_valid_schema)
elif isinstance(valid_schema, float):
assert test_schema == pytest.approx(valid_schema)
else:
assert test_schema == valid_schema
class SchemaTestData:
"""Dummy class to be used to contain all test data information."""
class SiOptimizeDouble(SchemaTestData):
folder = "Si_old_double_relax"
task_files = {
"relax2": {
"vasprun_file": "vasprun.xml.relax2.gz",
"outcar_file": "OUTCAR.relax2.gz",
"volumetric_files": ["CHGCAR.relax2.gz"],
"contcar_file": "CONTCAR.relax2.gz",
},
"relax1": {
"vasprun_file": "vasprun.xml.relax1.gz",
"outcar_file": "OUTCAR.relax1.gz",
"volumetric_files": ["CHGCAR.relax1.gz"],
"contcar_file": "CONTCAR.relax1.gz",
},
}
objects = {"relax2": []}
task_doc = {
"calcs_reversed": [
{
"output": {
"vbm": 5.6147,
"cbm": 6.2652,
"bandgap": 0.6505,
"is_gap_direct": False,
"is_metal": False,
"transition": "(0.000,0.000,0.000)-(0.375,0.375,0.000)",
"direct_gap": 2.5561,
"run_stats": {
"average_memory": 0,
"max_memory": 28096.0,
"cores": 16,
},
},
"input": {
"incar": {"NSW": 99},
"nkpoints": 29,
"potcar_spec": [{"titel": "PAW_PBE Si 05Jan2001"}],
"structure": {"volume": 40.036816205493494},
"is_hubbard": False,
"hubbards": None,
},
}
],
"analysis": {"delta_volume": 0.8638191769757384, "max_force": 0},
"input": {
"structure": {"volume": 40.036816205493494},
"potcar_spec": [{"titel": "PAW_PBE Si 05Jan2001"}],
"parameters": {"NSW": 99},
"is_hubbard": False,
"hubbards": None,
},
"output": {
"structure": {"volume": 40.90063538246923},
"energy": -10.84687704,
"bandgap": 0.6505,
},
"custodian": [{"job": {"settings_override": None, "suffix": ".relax1"}}],
"included_objects": (),
}
class SiNonSCFUniform(SchemaTestData):
from emmet.core.vasp.calculation import VaspObject
folder = "Si_uniform"
task_files = {
"standard": {
"vasprun_file": "vasprun.xml.gz",
"outcar_file": "OUTCAR.gz",
"volumetric_files": ["CHGCAR.gz"],
"contcar_file": "CONTCAR.gz",
}
}
objects = {"standard": []}
task_doc = {
"calcs_reversed": [
{
"output": {
"vbm": 5.6162,
"cbm": 6.2243,
"bandgap": 0.6103,
"is_gap_direct": False,
"is_metal": False,
"transition": "(0.000,0.000,0.000)-(0.000,0.421,0.000)",
"direct_gap": 2.5563,
"run_stats": {
"average_memory": 0,
"max_memory": 31004.0,
"cores": 16,
},
},
"input": {
"incar": {"NSW": 0},
"nkpoints": 220,
"potcar_spec": [{"titel": "PAW_PBE Si 05Jan2001"}],
"structure": {"volume": 40.88829843008916},
"is_hubbard": False,
"hubbards": None,
},
}
],
"analysis": {"delta_volume": 0, "max_force": 0.5350159115036506},
"input": {
"structure": {"volume": 40.88829843008916},
"potcar_spec": [{"titel": "PAW_PBE Si 05Jan2001"}],
"parameters": {"NSW": 0},
"is_hubbard": False,
"hubbards": None,
},
"output": {
"structure": {"volume": 40.88829843008916},
"energy": -10.85064059,
"bandgap": 0.6103,
},
"custodian": [{"job": {"settings_override": None, "suffix": ""}}],
"included_objects": (VaspObject.DOS, VaspObject.BANDSTRUCTURE),
}
class SiStatic(SchemaTestData):
from emmet.core.vasp.calculation import VaspObject
folder = "Si_static"
task_files = {
"standard": {
"vasprun_file": "vasprun.xml.gz",
"outcar_file": "OUTCAR.gz",
"volumetric_files": ["CHGCAR.gz"],
"contcar_file": "CONTCAR.gz",
}
}
objects = {"standard": []}
task_doc = {
"calcs_reversed": [
{
"output": {
"vbm": 5.6163,
"cbm": 6.2644,
"bandgap": 0.6506,
"is_gap_direct": False,
"is_metal": False,
"transition": "(0.000,0.000,0.000)-(0.000,0.375,0.000)",
"direct_gap": 2.5563,
"run_stats": {
"average_memory": 0,
"max_memory": 28124.0,
"cores": 16,
},
},
"input": {
"incar": {"NSW": 1},
"nkpoints": 29,
"potcar_spec": [{"titel": "PAW_PBE Si 05Jan2001"}],
"structure": {"volume": 40.88829843008916},
},
}
],
"analysis": {"delta_volume": 0, "max_force": 0.0},
"input": {
"structure": {"volume": 40.88829843008916},
"potcar_spec": [{"titel": "PAW_PBE Si 05Jan2001"}],
"parameters": {"NSW": 0},
"is_hubbard": False,
"hubbards": None,
},
"output": {
"structure": {"volume": 40.88829843008916},
"energy": -10.84678256,
"bandgap": 0.6506,
"dos_properties": {
"Si": {
"s": {
"filling": 0.624669545020562,
"center": -2.5151284433409815,
"bandwidth": 7.338662205126851,
"skewness": 0.6261990748648925,
"kurtosis": 2.0074877073276904,
"upper_edge": -8.105469079999999,
},
"p": {
"filling": 0.3911927710592045,
"center": 3.339269798287516,
"bandwidth": 5.999449671419663,
"skewness": 0.0173776678056677,
"kurtosis": 1.907790411890831,
"upper_edge": -0.7536690799999999,
},
}
},
},
"custodian": [{"job": {"settings_override": None, "suffix": ""}}],
"included_objects": (),
}
objects = {cls.__name__: cls for cls in SchemaTestData.__subclasses__()}
def get_test_object(object_name):
"""Get the schema test data object from the class name."""
return objects[object_name]
|