1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Affine transformation classes.
//
//----------------------------------------------------------------------------
#ifndef AGG_TRANS_AFFINE_INCLUDED
#define AGG_TRANS_AFFINE_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
const double affine_epsilon = 1e-14; // About of precision of doubles
//============================================================trans_affine
//
// See Implementation agg_trans_affine.cpp
//
// Affine transformation are linear transformations in Cartesian coordinates
// (strictly speaking not only in Cartesian, but for the beginning we will
// think so). They are rotation, scaling, translation and skewing.
// After any affine transformation a line segment remains a line segment
// and it will never become a curve.
//
// There will be no math about matrix calculations, since it has been
// described many times. Ask yourself a very simple question:
// "why do we need to understand and use some matrix stuff instead of just
// rotating, scaling and so on". The answers are:
//
// 1. Any combination of transformations can be done by only 4 multiplications
// and 4 additions in floating point.
// 2. One matrix transformation is equivalent to the number of consecutive
// discrete transformations, i.e. the matrix "accumulates" all transformations
// in the order of their settings. Suppose we have 4 transformations:
// * rotate by 30 degrees,
// * scale X to 2.0,
// * scale Y to 1.5,
// * move to (100, 100).
// The result will depend on the order of these transformations,
// and the advantage of matrix is that the sequence of discret calls:
// rotate(30), scaleX(2.0), scaleY(1.5), move(100,100)
// will have exactly the same result as the following matrix transformations:
//
// affine_matrix m;
// m *= rotate_matrix(30);
// m *= scaleX_matrix(2.0);
// m *= scaleY_matrix(1.5);
// m *= move_matrix(100,100);
//
// m.transform_my_point_at_last(x, y);
//
// What is the good of it? In real life we will set-up the matrix only once
// and then transform many points, let alone the convenience to set any
// combination of transformations.
//
// So, how to use it? Very easy - literally as it's shown above. Not quite,
// let us write a correct example:
//
// agg::trans_affine m;
// m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0);
// m *= agg::trans_affine_scaling(2.0, 1.5);
// m *= agg::trans_affine_translation(100.0, 100.0);
// m.transform(&x, &y);
//
// The affine matrix is all you need to perform any linear transformation,
// but all transformations have origin point (0,0). It means that we need to
// use 2 translations if we want to rotate someting around (100,100):
//
// m *= agg::trans_affine_translation(-100.0, -100.0); // move to (0,0)
// m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0); // rotate
// m *= agg::trans_affine_translation(100.0, 100.0); // move back to (100,100)
//----------------------------------------------------------------------
class trans_affine
{
public:
//------------------------------------------ Construction
// Construct an identity matrix - it does not transform anything
trans_affine() :
m0(1.0), m1(0.0), m2(0.0), m3(1.0), m4(0.0), m5(0.0)
{}
// Construct a custom matrix. Usually used in derived classes
trans_affine(double v0, double v1, double v2, double v3, double v4, double v5) :
m0(v0), m1(v1), m2(v2), m3(v3), m4(v4), m5(v5)
{}
// Construct a matrix to transform a parallelogram to another one.
trans_affine(const double* rect, const double* parl)
{
parl_to_parl(rect, parl);
}
// Construct a matrix to transform a rectangle to a parallelogram.
trans_affine(double x1, double y1, double x2, double y2,
const double* parl)
{
rect_to_parl(x1, y1, x2, y2, parl);
}
// Construct a matrix to transform a parallelogram to a rectangle.
trans_affine(const double* parl,
double x1, double y1, double x2, double y2)
{
parl_to_rect(parl, x1, y1, x2, y2);
}
//---------------------------------- Parellelogram transformations
// Calculate a matrix to transform a parallelogram to another one.
// src and dst are pointers to arrays of three points
// (double[6], x,y,...) that identify three corners of the
// parallelograms assuming implicit fourth points.
// There are also transformations rectangtle to parallelogram and
// parellelogram to rectangle
const trans_affine& parl_to_parl(const double* src,
const double* dst);
const trans_affine& rect_to_parl(double x1, double y1,
double x2, double y2,
const double* parl);
const trans_affine& parl_to_rect(const double* parl,
double x1, double y1,
double x2, double y2);
//------------------------------------------ Operations
// Reset - actually load an identity matrix
const trans_affine& reset();
// Multiply matrix to another one
const trans_affine& multiply(const trans_affine& m);
// Multiply "m" to "this" and assign the result to "this"
const trans_affine& premultiply(const trans_affine& m);
// Multiply matrix to inverse of another one
const trans_affine& multiply_inv(const trans_affine& m);
// Multiply inverse of "m" to "this" and assign the result to "this"
const trans_affine& premultiply_inv(const trans_affine& m);
// Invert matrix. Do not try to invert degenerate matrices,
// there's no check for validity. If you set scale to 0 and
// then try to invert matrix, expect unpredictable result.
const trans_affine& invert();
// Mirroring around X
const trans_affine& flip_x();
// Mirroring around Y
const trans_affine& flip_y();
//------------------------------------------- Load/Store
// Store matrix to an array [6] of double
void store_to(double* m) const
{
*m++ = m0; *m++ = m1; *m++ = m2; *m++ = m3; *m++ = m4; *m++ = m5;
}
// Load matrix from an array [6] of double
const trans_affine& load_from(const double* m)
{
m0 = *m++; m1 = *m++; m2 = *m++; m3 = *m++; m4 = *m++; m5 = *m++;
return *this;
}
//------------------------------------------- Operators
// Multiply current matrix to another one
const trans_affine& operator *= (const trans_affine& m)
{
return multiply(m);
}
// Multiply current matrix to inverse of another one
const trans_affine& operator /= (const trans_affine& m)
{
return multiply_inv(m);
}
// Multiply current matrix to another one and return
// the result in a separete matrix.
trans_affine operator * (const trans_affine& m)
{
return trans_affine(*this).multiply(m);
}
// Multiply current matrix to inverse of another one
// and return the result in a separete matrix.
trans_affine operator / (const trans_affine& m)
{
return trans_affine(*this).multiply_inv(m);
}
// Calculate and return the inverse matrix
trans_affine operator ~ () const
{
trans_affine ret = *this;
return ret.invert();
}
// Equal operator with default epsilon
bool operator == (const trans_affine& m) const
{
return is_equal(m, affine_epsilon);
}
// Not Equal operator with default epsilon
bool operator != (const trans_affine& m) const
{
return !is_equal(m, affine_epsilon);
}
//-------------------------------------------- Transformations
// Direct transformation x and y
void transform(double* x, double* y) const;
// Direct transformation x and y, 2x2 matrix only, no translation
void transform_2x2(double* x, double* y) const;
// Inverse transformation x and y. It works slower than the
// direct transformation, so if the performance is critical
// it's better to invert() the matrix and then use transform()
void inverse_transform(double* x, double* y) const;
//-------------------------------------------- Auxiliary
// Calculate the determinant of matrix
double determinant() const
{
return 1.0 / (m0 * m3 - m1 * m2);
}
// Get the average scale (by X and Y).
// Basically used to calculate the approximation_scale when
// decomposinting curves into line segments.
double scale() const;
// Check to see if it's an identity matrix
bool is_identity(double epsilon = affine_epsilon) const;
// Check to see if two matrices are equal
bool is_equal(const trans_affine& m, double epsilon = affine_epsilon) const;
// Determine the major parameters. Use carefully considering degenerate matrices
double rotation() const;
void translation(double* dx, double* dy) const;
void scaling(double* sx, double* sy) const;
void scaling_abs(double* sx, double* sy) const
{
*sx = sqrt(m0*m0 + m2*m2);
*sy = sqrt(m1*m1 + m3*m3);
}
public:
double m0;
double m1;
double m2;
double m3;
double m4;
double m5;
};
//------------------------------------------------------------------------
inline void trans_affine::transform(double* x, double* y) const
{
register double tx = *x;
*x = tx * m0 + *y * m2 + m4;
*y = tx * m1 + *y * m3 + m5;
}
//------------------------------------------------------------------------
inline void trans_affine::transform_2x2(double* x, double* y) const
{
register double tx = *x;
*x = tx * m0 + *y * m2;
*y = tx * m1 + *y * m3;
}
//------------------------------------------------------------------------
inline void trans_affine::inverse_transform(double* x, double* y) const
{
register double d = determinant();
register double a = (*x - m4) * d;
register double b = (*y - m5) * d;
*x = a * m3 - b * m2;
*y = b * m0 - a * m1;
}
//------------------------------------------------------------------------
inline double trans_affine::scale() const
{
double x = 0.707106781 * m0 + 0.707106781 * m2;
double y = 0.707106781 * m1 + 0.707106781 * m3;
return sqrt(x*x + y*y);
}
//------------------------------------------------------------------------
inline const trans_affine& trans_affine::premultiply(const trans_affine& m)
{
trans_affine t = m;
return *this = t.multiply(*this);
}
//------------------------------------------------------------------------
inline const trans_affine& trans_affine::multiply_inv(const trans_affine& m)
{
trans_affine t = m;
t.invert();
multiply(t);
return *this;
}
//------------------------------------------------------------------------
inline const trans_affine& trans_affine::premultiply_inv(const trans_affine& m)
{
trans_affine t = m;
t.invert();
return *this = t.multiply(*this);
}
//====================================================trans_affine_rotation
// Rotation matrix. sin() and cos() are calculated twice for the same angle.
// There's no harm because the performance of sin()/cos() is very good on all
// modern processors. Besides, this operation is not going to be invoked too
// often.
class trans_affine_rotation : public trans_affine
{
public:
trans_affine_rotation(double a) :
trans_affine(cos(a), sin(a), -sin(a), cos(a), 0.0, 0.0)
{}
};
//====================================================trans_affine_scaling
// Scaling matrix. sx, sy - scale coefficients by X and Y respectively
class trans_affine_scaling : public trans_affine
{
public:
trans_affine_scaling(double sx, double sy) :
trans_affine(sx, 0.0, 0.0, sy, 0.0, 0.0)
{}
trans_affine_scaling(double s) :
trans_affine(s, 0.0, 0.0, s, 0.0, 0.0)
{}
};
//================================================trans_affine_translation
// Translation matrix
class trans_affine_translation : public trans_affine
{
public:
trans_affine_translation(double tx, double ty) :
trans_affine(1.0, 0.0, 0.0, 1.0, tx, ty)
{}
};
//====================================================trans_affine_skewing
// Sckewing (shear) matrix
class trans_affine_skewing : public trans_affine
{
public:
trans_affine_skewing(double sx, double sy) :
trans_affine(1.0, tan(sy), tan(sx), 1.0, 0.0, 0.0)
{}
};
//===============================================trans_affine_line_segment
// Rotate, Scale and Translate, associating 0...dist with line segment
// x1,y1,x2,y2
class trans_affine_line_segment : public trans_affine
{
public:
trans_affine_line_segment(double x1, double y1, double x2, double y2,
double dist)
{
double dx = x2 - x1;
double dy = y2 - y1;
if(dist > 0.0)
{
multiply(trans_affine_scaling(sqrt(dx * dx + dy * dy) / dist));
}
multiply(trans_affine_rotation(atan2(dy, dx)));
multiply(trans_affine_translation(x1, y1));
}
};
}
#endif
|