1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
"""
Benchmarks Agg rendering times.
"""
from __future__ import with_statement
import time
from scipy import stats, array, shape, arange, transpose, sin, cos
from kiva import agg
import kiva
def benchmark_real_time(cycles=10,n_pts=1000,sz=(1000,1000)):
""" Render a sin wave to the screen repeatedly. Clears
the screen between each rendering.
"""
print 'realtime:',
width,height = sz
pts = zeros((n_pts,2),Float)
x = pts[:,0]
y = pts[:,1]
interval = width / float(n_pts)
x[:] = arange(0,width,interval)
t1 = time.clock()
gc = agg.GraphicsContextBitmap(sz)
for i in range(cycles):
y[:] = height/2. + height/2. * sin(x*2*pi/width+i*interval)
#gc.clear()
gc.lines(pts)
gc.stroke_path()
#agg.write_bmp_rgb24("sin%d.bmp" % i,gc.bitmap)
t2 = time.clock()
tot_time = t2 - t1
print 'tot,per cycle:', tot_time, tot_time/cycles
return
def benchmark_compiled_path(cycles=10,n_pts=1000,sz=(1000,1000)):
""" Render a sin wave to a compiled_path then display it repeatedly.
"""
width,height = sz
pts = zeros((n_pts,2),Float)
x = pts[:,0]
y = pts[:,1]
interval = width / float(n_pts)
x[:] = arange(0,width,interval)
y[:] = height/2. + height/2. * sin(x*2*pi/n_pts)
path = agg.CompiledPath()
path.lines(pts)
#path.move_to(pts[0,0],pts[0,1])
#for x,y in pts[1:]:
# path.line_to(x,y)
t1 = time.clock()
gc = agg.GraphicsContextBitmap(sz)
for i in range(cycles):
#gc.clear()
gc.add_path(path)
gc.stroke_path()
t2 = time.clock()
tot_time = t2 - t1
print 'tot,per cycle:', tot_time, tot_time/cycles
return
def benchmark_draw_path_flags(cycles=10,n_pts=1000,sz=(1000,1000)):
print 'realtime:',
width,height = sz
pts = zeros((n_pts,2),Float)
x = pts[:,0]
y = pts[:,1]
interval = width / float(n_pts)
x[:] = arange(0,width,interval)
flags = [kiva.FILL, kiva.EOF_FILL, kiva.STROKE,
kiva.FILL_STROKE, kiva.EOF_FILL_STROKE]
for flag in flags:
t1 = time.clock()
for i in range(cycles):
gc = agg.GraphicsContextBitmap(sz)
y[:] = height/2. + height/2. * sin(x*2*pi/width+i*interval)
gc.lines(pts)
gc.draw_path(flag)
t2 = time.clock()
agg.write_bmp_rgb24("draw_path%d.bmp" % flag,gc.bitmap)
tot_time = t2 - t1
print 'tot,per cycle:', tot_time, tot_time/cycles
return
def star_array(size=40):
half_size = size * .5
tenth_size = size * .1
star_pts = [ array((tenth_size,0)),
array((half_size,size - tenth_size)),
array((size - tenth_size, 0)),
array((0,half_size)),
array((size,half_size)),
array((tenth_size,0)),
]
return array(star_pts)
def circle_array(size=5):
x = arange(0,6.3,.1)
pts = transpose(array((cos(x), sin(x)))).copy()*size/2.
return pts
def star_path_gen(size = 40):
star_path = agg.CompiledPath()
#spts = circle_array()
spts = star_array()
#star_path.lines(spts)
star_path.move_to(spts[0][0],spts[0][1])
for x,y in spts:
star_path.line_to(x,y)
star_path.close_path()
return star_path
def benchmark_individual_symbols(n_pts=1000,sz=(1000,1000)):
"Draws some stars"
width,height = sz
pts = stats.norm.rvs(size=(n_pts,2)) * array(sz)/8.0 + array(sz)/2.0
print pts[5,:]
print shape(pts)
star_path = star_path_gen()
gc = agg.GraphicsContextArray(sz)
gc.set_fill_color((1.0,0.0,0.0,0.1))
gc.set_stroke_color((0.0,1.0,0.0,0.6))
t1 = time.clock()
for x,y in pts:
with gc:
gc.translate_ctm(x,y)
gc.add_path(star_path)
gc.draw_path()
t2 = time.clock()
gc.save("benchmark_symbols1.bmp")
tot_time = t2 - t1
print 'star count, tot,per shape:', n_pts, tot_time, tot_time / n_pts
return
def benchmark_rect(n_pts=1000,sz=(1000,1000)):
"Draws a number of randomly-placed renctangles."
width,height = sz
pts = stats.norm.rvs(size=(n_pts,2)) * array(sz)/8. + array(sz)/2.
print pts[5,:]
print shape(pts)
gc = agg.GraphicsContextArray(sz)
gc.set_fill_color((1.0,0.0,0.0,0.1))
gc.set_stroke_color((0.0,1.0,0.0,0.6))
t1 = time.clock()
for x,y in pts:
with gc:
gc.translate_ctm(x,y)
gc.rect(-2.5,-2.5,5,5)
gc.draw_path()
t2 = time.clock()
gc.save("benchmark_rect.bmp")
tot_time = t2 - t1
print 'rect count, tot,per shape:', n_pts, tot_time, tot_time / n_pts
return
def benchmark_symbols_all_at_once(n_pts=1000,sz=(1000,1000)):
"""
Renders all the symbols.
"""
width,height = sz
pts = stats.norm.rvs(size=(n_pts,2)) * array(sz)/8. + array(sz)/2.
star_path = agg.CompiledPath()
star_path.lines(circle_array())
gc = agg.GraphicsContextArray(sz)
gc.set_fill_color((1.0,0.0,0.0,0.1))
gc.set_stroke_color((0.0,1.0,0.0,0.6))
path = agg.CompiledPath()
t1 = time.clock()
for x,y in pts:
path.save_ctm()
path.translate_ctm(x,y)
path.add_path(star_path)
path.restore_ctm()
gc.add_path(path)
t2 = time.clock()
gc.draw_path()
t3 = time.clock()
gc.save("benchmark_symbols2.bmp")
build_path_time = t2 - t1
render_path_time = t3 - t2
tot_time = t3 - t1
print 'star count, tot,building path, rendering path:', n_pts, \
tot_time, build_path_time,render_path_time
return
if __name__ == '__main__':
#sz = (1000,1000)
sz = (500,500)
n_pts = 1000
#benchmark_real_time(n_pts = n_pts, sz = sz)
#benchmark_compiled_path(n_pts = n_pts, sz=sz)
benchmark_individual_symbols(n_pts = n_pts, sz=sz)
benchmark_rect(n_pts = n_pts, sz=sz)
benchmark_symbols_all_at_once(n_pts = n_pts, sz=sz)
#benchmark_draw_path_flags(n_pts = n_pts, sz=sz)
# EOF
|