File: math.py

package info (click to toggle)
python-enthoughtbase 3.0.5-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 960 kB
  • ctags: 1,034
  • sloc: python: 6,104; makefile: 9; sh: 5
file content (70 lines) | stat: -rw-r--r-- 1,969 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#------------------------------------------------------------------------------
# Copyright (c) 2005, Enthought, Inc.
# All rights reserved.
# 
# This software is provided without warranty under the terms of the BSD
# license included in enthought/LICENSE.txt and may be redistributed only
# under the conditions described in the aforementioned license.  The license
# is also available online at http://www.enthought.com/licenses/BSD.txt
# Thanks for using Enthought open source!
# 
# Author: Enthought, Inc.
# Description: <Enthought util package component>
#------------------------------------------------------------------------------
""" A placeholder for math functionality that is not implemented in SciPy.
"""

import numpy

def is_monotonic(array):
    """ Does the array increase monotonically?
    
    >>> is_monotonic(array((1, 2, 3, 4)))
    True
    >>> is_monotonic(array((1, 2, 3, 0, 5)))
    False
    
    This may not be the desired response but:
    
    >>> is_monotonic(array((1)))
    False
    """
    
    try: 
        min_increment = numpy.amin(array[1:] - array[:-1])
        if min_increment >= 0:
            return True
    except Exception:
            return False
    return False;
    
    
def brange(min_value, max_value, increment):
    """ Returns an inclusive version of arange().
    
    The usual arange() gives:
    
    >>> arange(1, 4, 1)
    array([1, 2, 3])
    
    However brange() returns:
    
    >>> brange(1, 4, 1)
    array([ 1.,  2.,  3.,  4.])
    """
    
    return numpy.arange(min_value, max_value + increment / 2.0, increment)
    

def norm(mean, std):
    """ Returns a single random value from a normal distribution. """
    
    return numpy.random.normal(mean, std)
    

def discrete_std (counts, bin_centers):
    """ Returns a standard deviation from binned data. """

    mean = numpy.sum(counts * bin_centers)/numpy.sum(counts)

    return numpy.sqrt((numpy.sum((counts-mean)**2))/len(counts))