1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
# Since this module is meant to offer safety wrappers around some Numeric
# functions, if we can't import Numeric or scipy, then gracefully handle
# the import error and define stubs.
try:
import Numeric as _nx
from Numeric import asarray, reshape, argmin, argmax, compress
from scipy.stats import mean, median
from scipy import isnan, amin, amax, inf, isfinite
def _asarray1d(arr):
"""Ensure 1d array for one array.
"""
m = asarray(arr)
if len(m.shape)==0:
m = reshape(m,(1,))
return m
def nansum(x,axis=-1):
"""Sum the array over the given axis treating nans as missing values.
"""
x = _asarray1d(x).copy()
_nx.putmask(x,isnan(x),0)
return _nx.sum(x,axis)
def nanmin(x,axis=-1):
"""Find the minimium over the given axis ignoring nans.
"""
x = _asarray1d(x).copy()
_nx.putmask(x,isnan(x),inf)
return amin(x,axis)
def nanargmin(x,axis=-1):
"""Find the indices of the minimium over the given axis ignoring nans.
"""
x = _asarray1d(x).copy()
_nx.putmask(x,isnan(x),inf)
return argmin(x,axis)
def nanmax(x,axis=-1):
"""Find the maximum over the given axis ignoring nans.
"""
x = _asarray1d(x).copy()
_nx.putmask(x,isnan(x),-inf)
return amax(x,axis)
def nanargmax(x,axis=-1):
"""Find the maximum over the given axis ignoring nans.
"""
x = _asarray1d(x).copy()
_nx.putmask(x,isnan(x),-inf)
return argmax(x,axis)
def nanmean(x):
"""Find the mean of x ignoring nans.
fixme: should be fixed to work along an axis.
"""
x = _asarray1d(x).copy()
y = compress(isfinite(x), x)
return mean(y)
def nanmedian(x):
"""Find the median over the given axis ignoring nans.
fixme: should be fixed to work along an axis.
"""
x = _asarray1d(x).copy()
y = compress(isfinite(x), x)
return median(y)
except ImportError:
_asarray1d = nansum = nanmin = nanargmin = nanmax = nanargmax = \
nanmean = nanmedian = None
|