1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cusp/array1d.h>
#include <cusp/blas.h>
#include <cusp/coo_matrix.h>
#include <cusp/csr_matrix.h>
#include <cusp/detail/format_utils.h>
#include <thrust/adjacent_difference.h>
#include <thrust/binary_search.h>
#include <thrust/count.h>
#include <thrust/find.h>
#include <thrust/scan.h>
#include <thrust/sort.h>
#include <thrust/unique.h>
#include <thrust/iterator/constant_iterator.h>
namespace cusp
{
namespace detail
{
namespace device
{
namespace detail
{
template <typename IndexType>
struct occupied_diagonal_functor
{
typedef IndexType result_type;
const IndexType num_rows;
occupied_diagonal_functor(const IndexType num_rows)
: num_rows(num_rows) {}
template <typename Tuple>
__host__ __device__
IndexType operator()(const Tuple& t) const
{
const IndexType i = thrust::get<0>(t);
const IndexType j = thrust::get<1>(t);
return j-i+num_rows;
}
};
struct speed_threshold_functor
{
size_t num_rows;
float relative_speed;
size_t breakeven_threshold;
speed_threshold_functor(const size_t num_rows, const float relative_speed, const size_t breakeven_threshold)
: num_rows(num_rows),
relative_speed(relative_speed),
breakeven_threshold(breakeven_threshold)
{}
template <typename IndexType>
__host__ __device__
bool operator()(const IndexType rows) const
{
return relative_speed * (num_rows-rows) < num_rows || (size_t) (num_rows-rows) < breakeven_threshold;
}
};
template <typename Array1, typename Array2>
size_t count_diagonals(const size_t num_rows,
const size_t num_cols,
const size_t num_entries,
const Array1& row_indices,
const Array2& column_indices )
{
typedef typename Array1::value_type IndexType;
cusp::array1d<IndexType,cusp::device_memory> values(num_rows+num_cols,IndexType(0));
thrust::scatter(thrust::constant_iterator<IndexType>(1),
thrust::constant_iterator<IndexType>(1)+num_entries,
thrust::make_transform_iterator(thrust::make_zip_iterator( thrust::make_tuple( row_indices.begin(), column_indices.begin() ) ),
occupied_diagonal_functor<IndexType>(num_rows)),
values.begin());
return thrust::reduce(values.begin(), values.end());
}
template <typename Matrix>
size_t count_diagonals(const Matrix& coo, cusp::coo_format)
{
return count_diagonals( coo.num_rows, coo.num_cols, coo.num_entries, coo.row_indices, coo.column_indices );
}
template <typename Matrix>
size_t count_diagonals(const Matrix& csr, cusp::csr_format)
{
typedef typename Matrix::index_type IndexType;
// expand row offsets into row indices
cusp::array1d<IndexType, cusp::device_memory> row_indices(csr.num_entries);
cusp::detail::offsets_to_indices(csr.row_offsets, row_indices);
return count_diagonals( csr.num_rows, csr.num_cols, csr.num_entries, row_indices, csr.column_indices );
}
template <typename Array1d>
size_t compute_max_entries_per_row(const Array1d& row_offsets)
{
typedef typename Array1d::value_type IndexType;
size_t max_entries_per_row =
thrust::inner_product(row_offsets.begin() + 1, row_offsets.end(),
row_offsets.begin(),
IndexType(0),
thrust::maximum<IndexType>(),
thrust::minus<IndexType>());
return max_entries_per_row;
}
template <typename Matrix>
size_t compute_max_entries_per_row(const Matrix& coo, cusp::coo_format)
{
typedef typename Matrix::index_type IndexType;
// contract row indices into row offsets
cusp::array1d<IndexType, cusp::device_memory> row_offsets(coo.num_rows+1);
cusp::detail::indices_to_offsets(coo.row_indices, row_offsets);
return compute_max_entries_per_row(row_offsets);
}
template <typename Matrix>
size_t compute_max_entries_per_row(const Matrix& csr, cusp::csr_format)
{
return compute_max_entries_per_row(csr.row_offsets);
}
template <typename Array1d>
size_t compute_optimal_entries_per_row(const Array1d& row_offsets,
float relative_speed,
size_t breakeven_threshold)
{
typedef typename Array1d::value_type IndexType;
const size_t num_rows = row_offsets.size()-1;
// compute maximum row length
IndexType max_cols_per_row = compute_max_entries_per_row(row_offsets);
// allocate storage for the cumulative histogram and histogram
cusp::array1d<IndexType,cusp::device_memory> cumulative_histogram(max_cols_per_row + 1, IndexType(0));
// compute distribution of nnz per row
cusp::array1d<IndexType,cusp::device_memory> entries_per_row(num_rows);
thrust::adjacent_difference( row_offsets.begin()+1, row_offsets.end(), entries_per_row.begin() );
// sort data to bring equal elements together
thrust::sort(entries_per_row.begin(), entries_per_row.end());
// find the end of each bin of values
thrust::counting_iterator<IndexType> search_begin(0);
thrust::upper_bound(entries_per_row.begin(),
entries_per_row.end(),
search_begin,
search_begin + max_cols_per_row + 1,
cumulative_histogram.begin());
// compute optimal ELL column size
IndexType num_cols_per_row = thrust::find_if( cumulative_histogram.begin(), cumulative_histogram.end()-1,
speed_threshold_functor(num_rows, relative_speed, breakeven_threshold) )
- cumulative_histogram.begin();
return num_cols_per_row;
}
template <typename Matrix>
size_t compute_optimal_entries_per_row(const Matrix& coo,
float relative_speed,
size_t breakeven_threshold,
cusp::coo_format)
{
typedef typename Matrix::index_type IndexType;
// contract row indices into row offsets
cusp::array1d<IndexType, cusp::device_memory> row_offsets(coo.num_rows+1);
cusp::detail::indices_to_offsets(coo.row_indices, row_offsets);
return compute_optimal_entries_per_row(row_offsets, relative_speed, breakeven_threshold);
}
template <typename Matrix>
size_t compute_optimal_entries_per_row(const Matrix& csr,
float relative_speed,
size_t breakeven_threshold,
cusp::csr_format)
{
return compute_optimal_entries_per_row(csr.row_offsets, relative_speed, breakeven_threshold);
}
} // end namespace detail
template <typename Matrix>
size_t count_diagonals(const Matrix& m)
{
return cusp::detail::device::detail::count_diagonals(m, typename Matrix::format());
}
template <typename Matrix>
size_t compute_max_entries_per_row(const Matrix& m)
{
return cusp::detail::device::detail::compute_max_entries_per_row(m, typename Matrix::format());
}
////////////////////////////////////////////////////////////////////////////////
//! Compute Optimal Number of Columns per Row in the ELL part of the HYB format
//! Examines the distribution of nonzeros per row of the input CSR matrix to find
//! the optimal tradeoff between the ELL and COO portions of the hybrid (HYB)
//! sparse matrix format under the assumption that ELL performance is a fixed
//! multiple of COO performance. Furthermore, since ELL performance is also
//! sensitive to the absolute number of rows (and COO is not), a threshold is
//! used to ensure that the ELL portion contains enough rows to be worthwhile.
//! The default values were chosen empirically for a GTX280.
//!
//! @param csr CSR matrix
//! @param relative_speed Speed of ELL relative to COO (e.g. 2.0 -> ELL is twice as fast)
//! @param breakeven_threshold Minimum threshold at which ELL is faster than COO
////////////////////////////////////////////////////////////////////////////////
template <typename Matrix>
size_t compute_optimal_entries_per_row(const Matrix& m,
float relative_speed = 3.0f,
size_t breakeven_threshold = 4096)
{
return cusp::detail::device::detail::compute_optimal_entries_per_row
(m, relative_speed, breakeven_threshold, typename Matrix::format());
}
} // end namespace device
} // end namespace detail
} // end namespace cusp
|